
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

BLACK-BOX ALGORITHMS FOR SAMPLING FROM CONTINUOUS DISTRIBUTIONS

Josef Leydold
Wolfgang Hörmann

Department of Statistics and Mathematics
Vienna University of Economics

and Business Administration
Augasse 2-6, 1090 Vienna, AUSTRIA
ABSTRACT

For generating non-uniform random variates, black-box al-
gorithms are powerful tools that allow drawing samples
from large classes of distributions. We give an overview
of the design principles of such methods and show that
they have advantages compared to specialized algorithms
even for standard distributions, e.g., the marginal generation
times are fast and depend mainly on the chosen method
and not on the distribution. Moreover these methods are
suitable for specialized tasks like sampling from truncated
distributions and variance reduction techniques. We also
present a library called UNU.RAN that provides an interface
to a portable implementation of such methods.

1 INTRODUCTION

From a theoretical point of view non-uniform random vari-
ate generation can be seen as a procedure where a given
sequence of i.i.d. uniformly distributed random numbers is
transformed into a sequence of random variates that fol-
low the target distribution. (There is hardly any paper that
proposes a nonuniform random variate generator without
the help of a uniform random number generator.) Many
algorithms that are especially tailored for particular dis-
tributions have been developed for this task, see Devroye
(1986). Design goals for these algorithms are speed and lit-
tle memory consumption, sometimes particular simulation
problems. From a practitioner’s point of view random vari-
ate generation happens somewhere inside a routine provided
by some programming library. For her it is only impor-
tant that the library of choice (i) provides such a routine
for her particular distribution and (ii) the generated point
set is of “good quality”, i.e., the results of her stochastic
simulation is reliable. These different points of view raise
some problems when running a stochastic simulation:
1291-4244-0501-7/06/$20.00 ©2006 IEEE
• When there is no routine for the required distri-
bution, one needs to look for a different library,
or has to implement (and test!) some algorithm
found in literature by herself, or even worse has
to design such an algorithm. However, the latter
requires great expertise. Sometimes generic gen-
eration routines are provided. However these often
use inaccurate brute force methods and should be
used with extreme care.

• The theory of generation methods is based on the
assumption that we have truly random numbers
and that the calculations are conducted in the field
of real numbers R. Neither is true in real world
simulations as we only have pseudo-random num-
ber with restricted resolution and all computers use
floating point numbers, see Overton (2001) for an
overview of handling such numbers. Thus exten-
sive tests with each of these generators would be
necessary to guarantee reliability in all simulation
studies.

• The arguments of sampling routines depend on
the particular distributions. Thus running a sim-
ulation with (slightly) different input distributions
can be difficult to implement. There also exist
programming environments where the underlying
uniform random number generator is set by a global
variable. Hence running streams of (common or
independent) random numbers is difficult to im-
plement.

Black-box (also called automatic or universal) algo-
rithms are an important recent development in random vari-
ate generation. Such algorithms are designed to work with
large classes of distributions. The advantages of such an
approach compared to specialized generating methods are
obvious:

Leydold and Hörmann
• Only one piece of code, implemented and exhaus-
tively tested once, is required.

• Automatic methods can be applied by users with
little (or even no) experience in random variate
generation. They only have to provide some infor-
mation about the target distribution, typically its
probability density function (PDF) together with
some extra information like its mode.

• The quality and structural properties of point sets
generated by such algorithms do not depend on
the particular distribution but only on the chosen
method. Thus it is possible to choose a method
that is best suited for the application.

• The performance of these algorithms often does
not depend on the target distribution.

• These methods work equally well for non-standard
distributions where no special generation methods
exist. One only has to check whether the assump-
tions for the black-box algorithm are satisfied.

However, it should not be concealed that there are also some
drawbacks: Black-box algorithms require a setup step where
all constants that are necessary to run the sampling routine
are computed, which requires some time and slightly more
memory than specialized algorithms. Anyhow, there is a
trade off between setup time and marginal generation time
which can be controlled by the user. When implemented
in a programming library one also needs an application
programming interface (API) that allows to pass all required
data for the algorithm. Nevertheless, we think that in
a modern computing environment the advantages by far
exceed the disadvantages even for standard distributions.

In this short survey we summarize the main principles
of automatic methods for random variate generation and
show how such algorithms are implemented in a library
called UNU.RAN (Universal Non-Uniform RAndom Variate
generators) using an object oriented programming paradigm,
see Leydold et al. (2005). For a detailed discussion of
modern black-box algorithms we refer the interested reader
to the monograph by Hörmann, Leydold, and Derflinger
(2004).

2 INVERSION METHOD

The inversion method (see Figure 1) is based on the following
observation: Let F(x) be a cumulative distribution function
(CDF) and and U a uniform U(0,1) random number. Then

X = F−1(U) = inf{x : F(x) ≥U}

is a random variate with CDF F . The inversion method is the
most general method for generating non-uniform random
variates. It has several advantages:
130
1

U

X
Figure 1: Inversion Method

• It transforms one uniform random number into one
non-uniform random number.

• It preserves the structural properties of the under-
lying uniform pseudo-random number generator
(PRNG).

Consequently, it can be used for variance reduction tech-
niques as well as in the framework of quasi-Monte Carlo
simulation where highly uniformly distributed point sets are
used. It is also easy to sample from truncated distributions.
Moreover, the quality of the generated random variates only
depends on the underlying uniform PRNG, not on the dis-
tribution. Hence it is the method of choice in simulation
literature, see, e.g., Bratley, Fox, and Schrage (1983).

Unfortunately, the inversion method requires the eval-
uation of the inverse of the CDF which is rarely available
except for special cases like the exponential distribution.
Thus numerical methods to invert the CDF have to be used,
most prominently Newton’s method and regula falsi. How-
ever, such methods are (very) slow and it is only possible to
improve them using large tables. Nevertheless, such meth-
ods are sometimes used as brute force implementation of
generic random variate generators.

A fast alternative to such slow methods is to approxi-
mate the inverse CDF by a function that is faster to evaluate.
Cubic Hermite interpolation is very suitable for this task.
To apply this method the CDF and the PDF are evalu-
ated at some construction points ci and for each subinterval
[F−1(ci),F−1(ci+1)] the inverse CDF is interpolated by
a polynomial of degree three which has the same values
and derivatives at the construction points. An advantage of
Hermite interpolation is that it can be improved by split-
ting single subintervals (i.e., by adding further construction
points) without the necessity to recompute the entire in-
terpolation (as for splines). The construction points can
be searched automatically by bisectioning subintervals such
that the maximal interpolation error is as small as desired
and monotonicity of the approximate inverse CDF is guar-
anteed. The resulting algorithm is very fast and can be
used whenever the CDF is available or can be computed
by a numerical integration routine. The costs for the latter
case are less important as only a few points (typically less

Leydold and Hörmann
than 1000) are required. Notice that this method does not
evaluate the inverse CDF for a given point directly. (For
details see Hörmann and Leydold 2003).

3 REJECTION METHOD

Numerical methods for the inversion method are often either
very slow or not exact, i.e., they produce random numbers
which follow only approximately the target distribution.
When speed and sampling from the exact distribution is
crucial the rejection method (see Figure 2) is a suitable
alternative. It is based on the following theorem: If a
random vector (X ,U) is uniformly distributed on

G = {(x,y) : 0 < y ≤ γ f (x)}

then X has PDF f for every constant γ > 0. Vice versa,
for a uniform random number U and a random variate X
having PDF f , (X ,Uγ f (X)) is uniformly distributed on G.

Utilizing this theorem we need a majorizing function
h(x) (also called hat function) for the PDF f (x), where h is
the multiple of some PDF g(x), i.e., f (x) ≤ h(x) = αg(x)
for all x. Then generate a random variate X with PDF
proportional to h and a (0,1) uniform random number U . If
U h(X) ≤ f (X), return X , otherwise reject X and try again.
Simple lower bounds s(x) ≤ f (x), called squeezes, can be
used to reduce the number of (expensive) evaluations of f .

π

1/2

Figure 2: Rejection Method: PDF f (x) = sin(x)/2 for
x ∈ [0,π], Constant Hat h(x) and Triangular Squeeze s(x)

The constant α =
∫

R
h(x)dx/

∫
R

f (x)dx is called the
rejection constant and gives the expected number of iter-
ations to get one random variate. In practice the ratio ρ
between the respective areas below hat and below squeeze
is more useful

ρ =
∫

h(x)dx
∫

s(x)dx
=

area below hat
area below squeeze

.

The ratio ρ gives the expected number of evaluations of f
to get one random variate and is an upper bound for the
131
rejection constant. It is important to note that for applying
the rejection method f can be any (unknown) multiple of
a PDF. Then α might not be known but can be estimated
by ρ when we choose hat and squeeze accordingly.

For the design of black-box algorithms based on the
rejection method we have to construct hat and squeeze au-
tomatically. For the design of fast and simple algorithms we
have to take care about the following construction principles:

• The hat and squeeze must be easy to compute.
• It must be possible to sample from the hat distri-

bution easily by inversion. This is necessary as
we want to save most of the good properties of
the inversion method for the black-box rejection
algorithm. For example, it is then easy to sample
from truncated distributions.

• It must be possible to obtain a ratio ρ close to 1.
For values near one we hardly have to evaluate
the PDF and thus the marginal generation time
is almost independent of the target distribution.
Moreover, it is “close” to the inversion method.

• There is a trade-off between setup time (and mem-
ory consumption) and marginal generation times
which depends on the ratio ρ . Thus it can be
controlled by the user.

3.1 Ahrens Method

The simplest method for constructing hat and squeeze is
to use piecewise constant hat and squeeze functions. It is
unbeatable simple in the case of monotone and bounded
densities with bounded domains. It can be extended to
arbitrary densities as long as the extremal points are known.
Ahrens (1995) describes an algorithm (see Figure 3) based
on this idea.

� � � � � � � � � � � � � � � � � �

Figure 3: Ahrens Method

The main steps of this algorithm for a given density f with
domain [a,b] are:

Leydold and Hörmann
SETUP:

1. Select constructions points a = c0,c1,c2, . . . ,cn =
b and construct hat hi and squeeze si for each
subinterval [ci−1,ci].

2. Compute areas below hat in each subinterval,
Hi = hi(ci − ci−1).

GENERATOR:

3. Generate I with probability vector proportional to
(H1, . . . ,Hn).

4. Generate X ∼ hI (by inversion) and U ∼ U(0,1).
5. If U h(X) ≤ s(X), return X .
6. If U h(X) ≤ f (X), return X .
7. Otherwise goto 3 and try again.

Sampling step 3 can be executed in constant time, i.e.,
independent of the number n of subintervals, by means
of indexed search (Chen and Asau 1974). Notice that the
uniform random number that is necessary for drawing the
discrete random variable I can be recycled (Hörmann et al.
2004, § 2.3.2) for step 4. Thus sampling X is done by means
of the inversion method. The marginal generation times of
this algorithm are extremely fast and the ratio ρ can be made
as close to 1 as desired. It can be even improved since we
have a region of “immediate acceptance” below the squeeze,
where no uniform random number U is required. That is,
we have a mixture of distributions with PDF proportional
to squeeze s(x) and h(x)− s(x), respectively.

The drawback of this simple algorithm is that we have to
cut off tails in case of unbounded domains and of regions near
a pole in case of unbounded densities. This is no problem as
long as these regions are not of “computational relevance”,
i.e., when their probability is negligible. Moreover, the
convergence of ρ towards 1 is rather slow.

3.2 Transformed Density Rejection

Transformed density rejection (TDR) is a very flexible
method. It has been introduced under a different name by
Gilks and Wild (1992), and was generalized by Hörmann
(1995). It is based on the idea that the given density is
transformed by a strictly monotonically increasing trans-
formation T : (0,∞) → R such that T (f (x)) is concave.
We then say f is T -concave; log-concave densities are an
example with T (x) = log(x).

By the concavity of T (f (x)) it is easy to construct
a majorizing function for the transformed density as the
minimum of several tangents. Transforming this function
back into the original scale we get a hat function h(x) for
the density f . By using secants between the touching points
of the tangents of the transformed density we analogously
can construct squeezes. Figure 4 illustrates the situation for
the standard normal distribution and T (x) = log(x). Evans
132
and Swartz (1998) have shown that this technique is even
suitable for arbitrary densities provided that the inflection
points of the transformed density are known. It should be
noted here that the tangent on the transformed density can
be replaced by secants through two points that are close
together, shifted away from the mode by the distance of
these two points. Thus no derivatives are required.

Algorithms based on TDR work similar to the Ahrens
method: Choose construction points ci; compute subinter-
vals where the tangent at ci forms the hat function; compute
the volumes below the hat for each subinterval. The gener-
ator part works similar as well but rejection from a constant
hat is replaced by general rejection. There exist many vari-
ants of this basic algorithm. For a complete reference we
refer to Chapter 4 of Hörmann et al. (2004).

It is obvious that the transformation T must have the
property that the area below the hat is finite, and that
generating a random variable with density proportional to
the hat function by inversion must be easy (and fast). Thus
we have to choose the transformations T carefully. Hörmann
(1995) suggests the family Tc of transformations, where

T0(x) = log(x) and Tc(x) = sign(c)xc. (1)

(sign(c) makes Tc increasing for all c.) For densities with
unbounded domain we must have c ∈ (−1,0]. For the
choice of c it is important to note that the area below the
hat increases when c decreases. Moreover we find that
if f is Tc-concave, then f is Tc′-concave for every c′ ≤ c
(Hörmann 1995).

Because of computational reasons, the choice of c =
−1/2 (if possible) is suggested. This includes all log-
concave distributions. Table 1 gives examples of T−1/2-
concave distributions.

3.3 Construction Points

The proper choice of construction points is crucial for both
algorithms, Ahrens method and TDR. We want to have a
small ratio ρ with a small number of construction points.
There are several options:

• Simple heuristics: equal-area rule (construct subin-
tervals such that all have the same area Hi be-
low the hat) and equidistributed points (use ci =
tan(−π/2 + iπ/(n + 1)), i = 1, . . . ,n). These
work astonishingly well for “well-behaved” den-
sities.

• Adaptive rejection sampling (ARS). Start with a hat
function with a few construction points and run the
generator. Whenever we have to evaluate f at X
use this point as new construction point and thus
decrease ρ in the corresponding subinterval.

Leydold and Hörmann
Figure 4: Hat Function and Squeeze with Three Points of Contact for the Normal Distribution and Logarithm as Transformation:
Transformed Scale (Left) and Original Scale (Right)

Table 1: T−1/2-Concave Densities (Normalization Constants Omitted)

Distribution Density Support T−1/2-concave for

Normal e−x2/2
R

Log-normal 1/x exp(− ln(x−μ)2/(2σ2)) [0,∞) σ ≤√
2

Exponential λ e−λ x [0,∞) λ > 0

Gamma xa−1 e−b x [0,∞) a ≥ 1, b > 0

Beta xa−1 (1− x)b−1 [0,1] a,b ≥ 1

Weibull xa−1 exp(−xa) [0,∞) a ≥ 1

Perks 1/(ex + e−x +a) R a ≥−2

Gen. inv. Gaussian xa−1 exp(−bx−b∗/x) [0,∞) a ≥ 1, b,b∗ > 0

Student’s t (1+(x2/a))−(a+1)/2
R a ≥ 1

Pearson VI xa−1/(1+ x)a+b
R a,b ≥ 1

Cauchy 1/(1+ x2) R

Planck xa/(ex −1) [0,∞) a ≥ 1

Burr xa−1/(1+ xa)b [0,∞) a ≥ 1, b ≥ 2

Snedecor’s F xm/2−1/(1+m/nx)(m+n)/2 [0,∞) m,n ≥ 2
• De-randomized adaptive rejection sampling
(DARS). Similar to ARS. For all subintervals where
the area between hat and squeeze is larger than a
threshold value a new construction point is inserted.

• Optimal construction points. There exist sophisti-
cated algorithms for finding such points at adequate
time, see Section 4.4 in (Hörmann et al. 2004).

3.4 Correlation Induction

Common random numbers and antithetic variates are two
of the best known variance reduction techniques for sim-
ulation experiments. Both methods require the generation
of correlated random variates. Using the inversion method
it is no problem to induce the strongest possible positive
or negative correlation when generating two random vari-
ate streams (even with different distributions). For positive
correlation (common random numbers) we simply use the
133
same uniform random numbers for both streams, for nega-
tive correlation (antithetic variates) we take U for the first
stream and 1−U for the second one. However, correlation
induction also works for the rejection method. Following
Schmeiser and Kachitvichyanukul (1990) we have the fol-
lowing recipe: Use two independent streams of uniform
random numbers. When drawing one random variate use
stream 1 for the first acceptance/rejection step. If the point
is rejected switch to the auxiliary stream 2 until a point is
accepted. Start the next iteration with stream 1 again. Thus
streams of non-uniform random variates keep synchronized
and correlation is only affected whenever rejection happens
in one of the streams. Again a value close to 1 for the ratio
ρ is important which is possible for automatic algorithms.

Leydold and Hörmann
3.5 Multivariate Distributions

One important advantage of the rejection method is that it
can also be used to generate random vectors, in contrast to
the inversion method. Even the principle of TDR can be
generalized easily to multivariate log-concave or T -concave
distributions as we can use tangential hyperplanes of the
transformed density to construct hat-functions. The imple-
mentation of the details is of course much more complicated
than in the univariate setting. Nevertheless it is possible to
construct TDR-based black-box algorithms for log-concave
densities that work well up to dimension five and acceptable
up to dimension ten. Figure 5 illustrates the situation on a
simple example. For details see Section 11.3 in (Hörmann
et al. 2004) and the references given there.

It is obvious that also the principle of the Ahrens method
can be easily generalized to higher dimensions. But due
to the bad fit of the constant hat function the necessary
number of intervals explodes so fast that its use is limited
mainly to two and three-dimensional distributions.

4 UNU.RAN

We have implemented most of the important black-box al-
gorithms described in the monograph Hörmann et al. (2004)
in a library called UNU.RAN which can be downloaded
from our website (Leydold et al. 2005). It has been coded
in ANSI C using an object oriented programming paradigm.

The design of an API for black-box algorithms for
random variate generation requires an approach that is dif-
ferent from the “traditional” style. We use four different
types of objects: a distribution object holds the necessary
data for the required distribution like pointers to the PDF
or the mode; a parameter object for the chosen methods
and its parameter, a URNG object that is used as source
of uniform random numbers, and a generator object that
is used to generate random variates. Thus we have the
following steps:

1. Create a distribution object. For easy use of the
library UNU.RAN provides creators for many stan-
dard distribution. But it is also possible to create
objects for arbitrary distributions from scratch. The
following piece of code creates an instance for the
normal distribution with mean 2 and standard de-
viation 0.5.

fparams[] = {2., 0.5};
distr = unur_distr_normal(fparams,2);

2. Choose a generation method. Most black-box al-
gorithms have lots of parameters that can be used
to adjust the algorithm for the given sampling
problem. However, for many situations the de-
fault values are well suited and there is no need
to change these. Thus an instance of a parame-
134
ter object is created that holds a marker for the
chosen algorithm together with these parameters.
These default values can then be changed on de-
mand. We can select TDR with parameter c = 0
(T (x) = log(x)) by

par = unur_tdr_new(distr);
unur_tdr_set_c(par,0.);

3. Select a source of randomness. The library can
work with any source of uniform random numbers.
The source can be set for each instance of a pa-
rameter object (or changed for each instance of a
generator object). Thus is is easy to switch the un-
derlying URNG “on the fly”. An excellent source
of multiple random streams which is well suited to
work with UNU.RAN is the RngStreams pack-
age developed by L’Ecuyer et al. (2002). When
no generator is set explicitly, a global generator is
used.

4. Initialize the generator. This executes the setup of
the algorithm and computes all necessary tables.

gen = unur_init(par);

5. Run the generator. It can be used to draw a sample
from the distribution. Notice that it is easy to rerun
a simulation with different generation methods or
different input distributions simply by creating a
different instance of a generator object.

x = unur_sample_cont(gen);

UNU.RAN also provides a simpler interface where
distribution and method are set by means of a string. Here
is the above example implemented in a small C program:

#include <unuran.h>

main() {
/* Declare UNURAN generator object. */
UNUR_GEN *gen;

/* Create the generator object. */
/* distribution: normal */
/* method: TDR with c=0 */
gen = unur_str2gen(

"normal(2.,0.5) & method=tdr; c=0.");

/* sample */
x = unur_sample_cont(gen);

/* destroy generator object */
unur_free(gen);

exit (EXIT_SUCCESS);
}

Leydold and Hörmann

-2

0

2

-2
0 2

-2

0

2

-2
0 2

-2

0

2

-2
0

2

-2

0

2

-2
0

2

Figure 5: Multivariate Transformed Density Rejection: Density (Solid Surface) and Hat (Grid) for a Bivariate Normal
Distribution Using Four Points of Contact: Transformed (Logarithmic) Scale (Left) and Original Scale (Right)
This string API allows using UNU.RAN easily within
other programming environments like R. There also exists
an ActiveX wrapper for the string API that works for MS
Windows operating systems.

4.1 Automatic Code Generator

Implementing the above methods results in a rather long
computer program for two reasons: (1) Hat and squeezes
have to be constructed in the setup. (2) The given distri-
bution has to fulfill the assumption of the chosen method
or transformation Tc. This has to be tested in the setup.
The actual sampling routines, however, consist only of a
few lines of code. Thus the same methods can be used
to produce a single piece of (C, C++, Fortran, Java, . . .)
code for a fast generator of a particular distribution selected
by a user who needs no experience in random number
generation. This program then produces random variates
at a known speed and of predictable quality. An experi-
mental version of such a code generator can be found on
our website <http://statmath.wu-wien.ac.at/
projects/anuran/>.

5 CONCLUSIONS

We have presented shortly main ideas that can be utilized
to construct black-box algorithms for random variate gen-
eration. The implementation of these algorithms in our
UNU.RAN library results in flexible generators that can be
used for a large classes of continuous distributions. Thus the
use of the UNU.RAN library or any other implementation
of black-box algorithms may greatly facilitate the use of
standard and non-standard input distributions in simulation.

ACKNOWLEDGMENTS

This work was supported by the Austrian Science Foundation
(FWF), project number P16767-N12.
135
REFERENCES

Ahrens, J. H. 1995. A one-table method for sampling from
continuous and discrete distributions. Computing 54
(2): 127–146.

Bratley, P., B. L. Fox, and E. L. Schrage. 1983. A guide to
simulation. New York: Springer-Verlag.

Chen, H. C., and Y. Asau. 1974. On generating random vari-
ates from an empirical distribution. American Institute
of Industrial Engineers (AIIE) Transactions 6:163–166.

Devroye, L. 1986. Non-uniform random variate generation.
New-York: Springer-Verlag.

Evans, M., and T. Swartz. 1998. Random variable generation
using concavity properties of transformed densities.
Journal of Computational and Graphical Statistics 7
(4): 514–528.

Gilks, W. R., and P. Wild. 1992. Adaptive rejection sampling
for Gibbs sampling. Applied Statistics 41 (2): 337–348.

Hörmann, W. 1995. A rejection technique for sampling
from T-concave distributions. ACM Transactions on
Mathematical Software 21 (2): 182–193.

Hörmann, W., and J. Leydold. 2003. Continuous random
variate generation by fast numerical inversion. ACM
Transactions on Modelling and Computer Simulation 13
(4): 347–362.

Hörmann, W., J. Leydold, and G. Derflinger. 2004. Auto-
matic nonuniform random variate generation. Berlin
Heidelberg: Springer-Verlag.

L’Ecuyer, P., R. Simard, E. J. Chen, and W. D. Kelton. 2002.
An object-oriented random-number package with many
long streams and substreams. Operations Research 50
(6): 1073–1075.

Leydold, J., W. Hörmann, E. Janka, R. Karawatzki, and
G. Tirler. 2005. UNU.RAN – a library for non-
uniform universal random variate generation. A-1090
Wien, Austria: Department of Statistics and Mathemat-
ics, WU Wien. available at <http://statmath.
wu-wien.ac.at/unuran/>.

Leydold and Hörmann
Overton, M. L. 2001. Numerical computing with IEEE
floating point arithmetic. Philadelphia: SIAM.

Schmeiser, B. W., and V. Kachitvichyanukul. 1990. Non-
inverse correlation induction: guidelines for algorithm
development. Journal of Computational and Applied
Mathematics 31:173–180.

AUTHOR BIOGRAPHIES

JOSEF LEYDOLD is an Associate Professor in the Depart-
ment of Statistics and Mathematics at the Vienna University
of Economics and Business Administration. He received
M.S. and Ph.D. degrees in mathematics from the University
of Vienna. His email address is <Josef.Leydold@
wu-wien.ac.at> and his Web address is <http:
//statmath.wu-wien.ac.at/˜leydold>.

WOLFGANG HÖRMANN is visiting researcher in the De-
partment of Industrial Engineering at Boğaziçi University
Istanbul. He received M.S. and Ph.D. degrees in mathe-
matics from the University of Vienna, and was associate
professor in the Department of Statistics at the University
of Economics and Business-Administration Vienna. His
email address is <hormannw@boun.edu.tr> and his
Web address is <http://statmath.wu-wien.ac.
at/˜hoermann>.
136

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

