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ABSTRACT

Classic linear regression metamodels and their concomitant

experimental designs assume a univariate (not multivariate)

simulation response and white noise. By definition, white

noise is normally (Gaussian), independently (implying no

common random numbers), and identically (constant vari-

ance) distributed with zero mean (valid metamodel). This

advanced tutorial tries to answer the following questions:

(i) How realistic are these classic assumptions in simulation

practice? (ii) How can these assumptions be tested? (iii) If

assumptions are violated, can the simulation’s I/O data be

transformed such that the analysis becomes correct? (iv) If

such transformations cannot be applied, which alternative

statistical methods (for example, generalized least squares,

bootstrapping, jackknifing) can then be applied?

1 INTRODUCTION

Simulation models may be either deterministic or random

(stochastic). To investigate the Input/Output (I/O) behavior

of these simulation models, the analysts often use linear

regression metamodels; for example, first-order and second-

order polynomial approximations of the I/O function implied

by the underlying simulation model. A good analysis (for

example, a regression analysis) requires a good statistical

design; for example, a fractional factorial such as a 2k−p

design. For more mathematical details and background

information I refer to my old textbook Kleijnen (1987) and

my forthcoming textbook Kleijnen (2007); a recent tutorial

is Kleijnen (2006).

In this article, I revisit the classic assumptions for linear

regression analysis and its concomitant designs. These

classic assumptions stipulate univariate output and white

noise. In practice, however, these assumptions usually do

not hold.

Indeed, in practice the simulation output (say) Θ̂ is

usually a multivariate random variable. For example, the

simulation output (response) Θ̂1 may estimate the mean
1071-4244-0501-7/06/$20.00 ©2006 IEEE
flow time, and Θ̂2 may estimate the 90% quantile of the

waiting time distribution. More examples will follow in

Section 2.

White noise (say) u is Normally, Independently, and

Identically Distributed (NIID) with zero mean: u ∼
NIID(0, σ2

u). This definition implies the following as-

sumptions:

1. normally (Gaussian) distributed simulation re-

sponses;

2. no Common Random Numbers (CRN) across the

(say) n factor (input) combinations simulated;

3. a common variance (or homoscedasticity) of the

simulation responses across these n combinations;

4. a valid regression metamodel; i.e., zero expected

values for the residuals of the fitted metamodel.

In this article, I raise the following questions:

1. How realistic are these classic assumptions?

2. How can these assumptions be tested if it is not

obvious that the assumption is violated (for ex-

ample, if CRN are used, then the independence

assumption is obviously violated)?

3. If an assumption is violated, can the simulation’s

I/O data be transformed such that the assumption

holds?

4. If not, which alternative statistical methods can

then be applied?

The answers to these questions are scattered throughout

the literature on statistics and simulation. In this advanced

tutorial, I therefore try to answer these questions in a coherent

way. For more details (including additional references and

examples) I refer to Kleijnen (2007).

The remainder of this article is organized as follows.

Section 2 discusses multivariate simulation output. Section

3 addresses possible nonnormality of the simulation output,

including tests of normality, transformations of simulation
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I/O data, jackknifing, and bootstrapping. Section 4 covers

variance heterogeneity (or heteroscedasticity) of the simula-

tion output. Section 5 discusses cross-correlated simulation

outputs, created through CRN. Section 6 discusses nonvalid

low-order polynomial metamodels. Section 7 summarizes

the major conclusions. A list with more than forty refer-

ences enables the interested readers to study the topic of

this tutorial, in much more detail.

2 MULTIVARIATE SIMULATION OUTPUT

2.1 Realistic Univariate Assumption?

In practice, the simulation model usually gives multivariate

output. A class of practical examples concerns inventory

simulation models with two outputs:

(i) the sum of the holding and the ordering costs,

averaged over the simulated periods;

(ii) the service (or fill) rate, averaged over the same

simulation periods.

The precise definitions of these costs and the service

rate vary with the applications; see Law and Kelton (2000)

and also Angün et al. (2006) and Ivanescu et al. (2006).

The case study in Kleijnen (1993) concerns a produc-

tion planning Decision Support System (DSS), based on a

simulation model. Originally, this simulation model had a

multitude of outputs. However, to support decision making,

it turned out that it sufficed to consider only the following

two outputs (DSS criteria, bivariate response):

(i) the total volume of steel tubes manufactured (which

was of major interest to the production manager);

(ii) the 90% quantile of delivery times (which was the

sales manager’s concern).

2.2 Multivariate Regression Metamodels

A general notation is

w = s(d1, . . . , dk, r0) (1)

with

w: vector of r simulation outputs, so w =
(w0, . . . , wr−1)

′ (in simulation optimization it is traditional

to label the r outputs starting with zero instead of one);

s(.): mathematical function implicitly defined by the

computer code implementing the given simulation model;

dj : factor (input variable) j of the simulation model, so

D = (dij) is the design matrix for the simulation experiment,

with j = 1, . . . k and i = 1, . . . , n where n denotes the fixed

number of combinations of the k factor levels (or values)

in that experiment;

r0: vector of PseudoRandom Number (PRN) seeds.

I assume that the multivariate I/O function s(.) in

Equation (1) is approximated by r univariate low-order
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polynomials:

yh = Xβh+eh with h = 0, . . . r − 1 (2)

with

yh: n-dimensional vector (y1;h, . . . , yn;h)′ with the

regression predictor yh for simulation output wh;

X: common n×q matrix of explanatory variables (xij)
with xij the value of explanatory variable j in combination

i (i = 1, . . . , n; j = 1, . . . , q); for simplicity, I assume that

all fitted regression metamodels are polynomials of the same

order (for example, either first order or second order) (if

q > 2 including an intercept, then the metamodel is called

a multiple regression model);

βh: q-dimensional vector (β1;h, . . . , βq;h)′ with the q
regression parameters for the hth metamodel;

eh: n-dimensional vector (e1;h, . . . , en;h)′ with the

residuals for the hth metamodel, in the n combinations.

The r regression models in Equation (2) together have

multivariate residuals e =(eh) with the following two prop-

erties:

1. The univariate residuals eh = (ei;h) have variances

that vary with the output variable wh (h = 1, . . . r):
σ2

h 6= σ2 (for example, simulated inventory costs

and service percentages have different variances,

σ2
1 6= σ2

2).

2. The univariate residuals ei;h and ei;h′ are not in-

dependent: σh;h′;i 6= 0 for h 6= h′. Obviously, if

these covariances (like the variances) would not

vary with the combination i, then this property

could be written as σh;h′;i = σh;h′ 6= 0 for h 6= h′

(for example, ‘unusual’ PRN streams in a given

combination i may result in inventory costs that are

‘relatively high’—that is, higher than expected—

and a relatively high service percentage, so these

two outputs are positively correlated: σ1;2 > 0).

These two properties violate the classic assumptions.

Consequently, it seems that the univariate Ordinary Least

Squares (OLS) estimators should be replaced by the Gen-

eralized Least Squares (GLS) estimator of the parameter

vector in the corresponding multivariate regression model.

Fortunately, Rao (1959)—a more recent reference is Ruud

(2000, p. 703)—proves that GLS reduces to OLS computed

per output if the same matrix of independent variables is

used (as is the case in Equation (2)); i.e., the Best Linear

Unbiased Estimator is Estimator (BLUE) of βh in Equation

(2) is

β̂h = (X′X)
−1

X′wh (h = 0, . . . , r − 1) (3)

where wh was defined below Equation (1), and D =(dij)
defined below Equation (1) determines X in Equations
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(2) and (3). Given this result, the simulation analysts can

easily obtain confidence intervals and statistical tests for the

regression parameters per type of output variable; i.e., the

analysts may indeed continue to use the classic formulas.

2.3 Designs for Multivariate Output

To the best of my knowledge, there are no general designs for

multivariate output. Let’s consider the following artificial

example (inspired by Breukers 2006). The analysts are

interested in two simulation response variables (so r = 2
in Equation (1)). The number of simulation inputs is 15

(so k = 15 in Equation (1)). First the analysts try to

estimate the first-order effects, so they use a resolution-III

design; for example, a 215−11 design (see Kleijnen 1987

and Kleijnen 2006). After running their simulation model

with this design, they find that the factors labeled 1 through

7 have important main effects for response type 0, while the

factors labeled 6 through 15 have important main effects for

response type 1. In the next stage of their investigation, the

analysts want to estimate the two-factor interactions between

those factors that turned out to have important main effects

in the first stage; i.e., the analysts use the strong heredity

assumption in Wu and Hamada (2000), which states that if

a factor has no important main effect, then this factor does

not interact with any other factor. Because the number of

two-factor interactions is k(k − 1)/2, this number sharply

increases with k (number of factors). In this example it is

therefore efficient to estimate the interactions in two separate

experiments, namely one experiment for each simulation

response type. So the analysts split the original group of

k = 15 factors into one subgroup with k0 = 7 factors

for simulation response 0, and k1 = 10 factors for the

simulation response 1 (the factors 6 and 7 are members of

both subgroups). The original group with 15 factors would

require 1+15+15×(15−1)/2 = 121 factor combinations at

least (a classic resolution-V design may require many more

combinations, because these designs are often not saturated;

see Kleijnen 1987 and Kleijnen 2006). Obviously, the first

subgroup requires at least 29 combinations, and the second

subgroup requires at least 56 combinations. So, together

the two subgroups require at least 29 + 56 = 85 instead

of 121 combinations; i.e., a ‘divide and conquer’ strategy

pays off indeed.

3 NONNORMAL SIMULATION OUTPUT

Least Squares (LS) is a mathematical criterion, so LS does

not assume a normal distribution. Only if the simulation

analysts require statistical properties—such as BLUE, con-

fidence intervals, and tests—then they usually assume a

normal distribution. In this section, I try to answer the

following questions (already formulated more generally in

Section 1):
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(i) How realistic is the normality assumption?

(ii) How can this assumption be tested?

(iii) How can the simulation’s I/O data be transformed

such that the normality assumption holds?

(iv) Which statistical methods can be applied that do

not assume normality?

3.1 Realistic Normality Assumption?

By definition, deterministic simulation models do not have a

normally distributed output for a given factor combination;

this output is a single fixed value. In practice, simulation

analysts often assume a normal distribution for the residuals

of the fitted metamodel. An example is the case study in

Kleijnen (1995) on coal mining using deterministic System

Dynamics simulation; another example is the case study in

Kleijnen, Van Ham, and Rotmans (1992) on global heating

caused by the CO2 greenhouse effect. Indeed, the simulation

analysts might argue that so many things affect the residuals

that the classic Central Limit Theorem (CLT) applies; i.e.,

a normal distribution is a good assumption for the residuals

of a metamodel fitted to a deterministic simulation’s I/O

data.

In the remainder of this subsection, I focus on ran-

dom simulation models. Simulation responses within a run

are autocorrelated (serially correlated). By definition, a

stationary covariance process has a constant mean (say)

E(wt) = µ and a constant variance var(wt) = σ2; its

covariances depend only on the lag |t − t′| between the

variables wt and wt′ ; that is, cov(wt, wt′) = σ|t−t′|. The

average of a stationary covariance process is asymptoti-

cally normally distributed if the covariances tend to zero

sufficiently fast for large lags; see Lehmann (1999, Chapter

2.8). For example, in inventory simulations the output is

often the costs averaged over the simulated periods; this

average is probably normally distributed. Another output

of an inventory simulation may be the service percentage

calculated as the fraction of demand delivered from on-

hand stock per (say) week, so ‘the’ output is the average per

year computed from these 52 weekly averages. This yearly

average may be normally distributed—unless the service

goal is ‘close’ to 100%, so the average service rate is cut

off at this threshold and the normal distribution is a bad

approximation.

Note that confidence intervals based on Student’s t
statistic are quite insensitive to nonnormality, whereas the

lack-of-fit F -statistic is more sensitive to nonnormality; see

Kleijnen (1987) for details including references.

In summary, a limit theorem may explain why random

simulation outputs are asymptotically normally distributed.

Whether the actual simulation run is long enough, is al-

ways hard to know. Therefore it seems good practice to

check whether the normality assumption holds (see the next

subsection).
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3.2 Testing Normality

Basic statistics textbooks (also see the recent article, Arcones

and Wang 2006) and simulation textbooks (for example,

Kleijnen 1987 and Law and Kelton 2000) propose several

visual plots and goodness-of-fit statistics to test whether

a set of observations come from a specific distribution

type such as a normal distribution. A basic assumption is

that these observations are IID. Simulation analysts may

therefore obtain ‘many’ (say, m = 100) replicates for a

specific factor combination (for example, the base scenario)

if such an approach is computationally feasible. However,

if a single simulation run takes relatively much computer

time, then only ‘a few’ (say, 2 ≤ m ≤ 10) replicates are

feasible, so the plots are too rough and the goodness-of-fit

tests lack power.

Actually, the white noise assumption concerns the meta-

model’s residuals e—not the simulation model’s outputs w;

see Equation (2). The estimated residuals are êi = ŷi −wi

with i = 1, . . . n and ŷi = xiβ̂; an alternative definition is

êi = ŷi − wi where wi =
∑mi

r=1 wi;r/mi is the simulation

output averaged over the mi replicates. I assume that the

simulation analysts obtain at least a few replicates, mi > 1.

For simplicity of presentation, I further assume that the

number of replicates is constant: mi = m (> 1). If the

simulation outputs w have a constant variance (σ2
w), then

σ2
w (= σ2

w/m) is also constant. Unfortunately, even if the

average simulation outputs have a constant variance (σ2
w)

and are independent (no CRN), the estimated residuals do

not have a constant variance and they are not independent;

it can be proven that

cov(ê) = [I − X(X′X)−1X′]σ2
w (4)

where X is the n × q matrix of explanatory regression

variables defined below Equation (3). Nevertheless, analysts

(for example, Ayanso, Diaby, and Nair 2006) apply visual

inspection of residual plots, which are standard output of

many statistical packages. Note that Equation (4) uses

the well-known hat matrix H = X(X
′
X)

−1
X′; also see

Atkinson and Riani (2000).

3.3 Transformations, Jackknifing, and Bootstrapping

The simulation output w may be transformed to obtain better

normality. Well-known is the Box-Cox power transforma-

tion:

v =
wλ − 1

λ
if λ 6= 0; else v = ln(w). (5)

A complication is that the metamodel now explains not

the behavior of the original output, but the behavior of the

transformed output! See Atkinson and Riani (2000, p. 82)

and Freeman and Modarres (2006).
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In case of nonnormal output, outliers occur more fre-

quently when the actual distribution has ‘fatter’ tails. Robust

regression analysis might then be applied; see Atkinson and

Riani (2000) and Salibian-Barres (2006). However, I have

not seen any applications of this approach in simulation.

Normality is not assumed by the following two general

computer-intensive statistical procedures that use the original

simulation I/O data (D,w): jackknifing and bootstrapping

(actually, the jackknife is a linear approximation of the

bootstrap; see Efron and Tibshirani 1993). Both procedures

have become popular since powerful and cheap computers

have become available to the analysts.

3.3.1 Jackknifing

In general, jackknifing solves the following two types of

problems:

1. How to compute confidence intervals in case of

nonnormal observations?

2. How to reduce possible bias of estimators?

Examples of nonnormal observations are the estimated

service rate close to 100% in inventory simulations, and

extreme quantiles such as the 99.99% point in risk simu-

lations (see the nuclear waste simulations in Kleijnen and

Helton 1999). Examples of biased estimators will follow

in Section 4.

Suppose the analysts want a confidence interval for

the regression coefficients β in case the simulation output

has a very nonnormal distribution. So the linear regression

metamodel is still Equation (2), but now with r = 1. Assume

that each factor combination i is replicated an equal number

of times, mi = m > 1. The original OLS estimator (also

see Equation (3)) is

β̂ = (X′X)
−1

X′w. (6)

Jackknifing deletes the rth replicate among the m IID

replicates, and recomputes the estimator for which a con-

fidence interval is wanted:

β̂−r = (X′X)
−1

X′w−r (r = 1, . . . ,m) (7)

where w−r is the n-dimensional vector with elements that

are the averages of the m − 1 replicates after deleting

replicate r:

wi;−r =

∑m
r′ 6=r wi;r′

m − 1
(8)

where for the case r = m the summation runs from 1 to

m − 1 (not m).

Obviously, Equation (7) gives the m correlated (vector)

estimators β̂−1, . . . , β̂−m. For ease of presentation, I focus



Kleijnen
on βq (the last of the q individual regression parameters in

the vector β). Jackknifing uses the pseudovalue (say) J ,

which is the following weighted average of β̂q (the original

estimator) and β̂q;−r (the qth element of the jackknifed

estimator β̂−r defined in Equation (7)) with the number of

observations as weights:

Jr = mβ̂q − (m − 1)β̂q;−r. (9)

In this example both the original and the jackknifed

estimators are unbiased, so the pseudovalues also remain

unbiased estimators. Otherwise it can be proven that the

bias is reduced by the jackknife point estimator

J =

∑m
r=1 Jr

m
, (10)

which is simply the average of the m pseudovalues defined

in Equation (9).

To compute a confidence interval, jackknifing treats the

pseudovalues as if they were NIID:

P (J − tm−1;1−α/2σ̂J < βq < J + tm−1;1−α/2σ̂J) = 1−α
(11)

where tm−1;1−α/2 denotes the 1−α/2 quantile (upper α/2
point) of the distribution of Student’s t statistic with m− 1
degrees of freedom, and

σ̂J =

√∑m
r=1(Jr − J)2

m(m − 1)
.

The interval in Equation (11) may be used to test the null-

hypothesis that the true regression parameter has a specific

value, such as zero.

Applications of jackknifing in simulation are numer-

ous. For example, jackknifing gave confidence intervals

for Weighted LS (WLS) with estimated covariance matrix

ĉov(w); see Kleijnen et al. (1987) and Section 4. Jack-

knifing reduced the bias and gave confidence intervals for

a Variance Reduction Technique (VRT) called control vari-

ates or regression sampling; see Kleijnen et al. (1989).

Jackknifing may also be applied in the renewal analysis of

steady-state simulation (renewal analysis uses ratio estima-

tors, which are biased); see Kleijnen and Van Groenendaal

(1992, pp. 202-203).

3.3.2 Bootstrapping

Textbooks on bootstrapping are Davison and Hinkley (1997),

Efron and Tibshirani (1993), Good (2005), and Lun-

neborg (2000); a recent article is Davidson and MacKinnon

(2006)—more references will follow below. Bootstrapping

may be used to solve two types of problems:
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1. The relevant distribution is not Gaussian.

2. The statistic is not standard.

Sub 1: Reconsider the example used for jackknifing; i.e.,

the analysts want a. confidence interval for the regression

coefficients β in case of nonnormal simulation output. Again

assume that each of the n factor combinations is replicated

an equal number of times, mi = m > 1 (i = 1, . . . , n).
The original LS estimator was given in Equation (6).

The bootstrap distinguishes between the original ob-

servations w and the bootstrapped observations (say) w∗

(note the superscript). Standard bootstrapping assumes that

the original observations are IID. In the example, there

are mi = m IID original simulated observations per factor

combination i, namely wi;1, . . . , wi;m (these observations

give wi, which give the vector w, which occurs in Equation

(6)).

The bootstrap observations are obtained by resampling

with replacement from the original observations, while the

sample size is kept constant, at m. In the example, the boot-

strapped observations w∗
i;1, . . . , w

∗
i;m occur with frequencies

f1, . . . , fm such that f1+ . . .+fm = m; i.e., these frequen-

cies follow the multinomial (or polynomial) distribution with

parameters m and p1 = . . . = pm = 1/m. This resampling

is executed for each combination i (i = 1, . . . n). These

bootstrapped outputs w∗
i;1, . . . , w

∗
i;m give the bootstrapped

average simulation output w∗. Substitution into Equation

(6) gives the bootstrapped LS estimator

β̂∗ = (X′X)
−1

X′w∗. (12)

To reduce sampling variation, this resampling is re-

peated (say) B times; B is known as the bootstrap sample

size (typical values for B are 100 and 1,000). This gives

β̂∗
1 , . . . , β̂∗

B (or β̂∗
b with b = 1, . . . , B).

Let’s again focus on the single regression parameter, βq.

The bootstrap literature gives several confidence intervals,

but most popular is

P (β̂∗
q;(bBα/2c) < βq < β̂∗

q;(bB(1−α/2)c)) = 1 − α

where β̂∗
q;(bBα/2c) is the α/2 quantile of the Empirical

Density Function (EDF) of the bootstrap estimate β̂∗
q , and

β̂∗
q;(bB(1−α/2)c) is its 1 − α/2 quantile.

Applications of bootstrapping include Kleijnen, Cheng,

and Bettonvil (2001), validating trace-driven simulation

models in case of serious nonnormal outputs (the test statis-

tic was the difference between the average output of the

real and the simulated systems).

Sub 2: Besides classic statistics such as the t and F
statistics, the simulation analysts may be interested in statis-

tics that have no tables with critical values, which provide

confidence intervals—assuming normality. For example,
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Kleijnen and Deflandre (2006) bootstrapped R2 to test the

validity of regression metamodels in simulation.

4 HETEROSCEDASTIC SIMULATION OUTPUT

By definition, deterministic simulation models give a single

fixed value for a given factor combination, so the conditional

variance is zero: var(w|x) = 0. Simulation analysts often

assume a normal distribution for the residuals of the meta-

model fitted to the I/O data of the deterministic simulation

model (see Section 3.1). Usually, the analysts then assume

a normal distribution with a constant variance (Kriging

models also assume a constant variance). I do not know a

better assumption that works in practice for deterministic

simulation models.

I further focus on random simulation models, and try

to answer the following questions:

1. How realistic is the common variance assumption?

2. How can this assumption be tested?

3. How can the simulation’s I/O data be transformed

such that the common variance assumption holds?

4. Which statistical analysis methods can be applied

that allow nonconstant variances?

5. Which statistical design methods can be applied

to account for variance heterogeneity?

4.1 Realistic Constant Variance Assumption?

In practice, the variances of random simulation outputs

change when factor combinations change. For example,

in the M/M/1 queueing simulation not only the mean of

the steady-state waiting time changes as the traffic rate

changes—the variance of this output changes even more!

So the constant variance assumption seems very unrealistic!

4.2 Testing the Constant Variance Assumption

Though it may be a priori certain that the variances of the

simulation outputs are not constant, the analysts may hope

that the variances are (nearly) constant in their particular

application. Unfortunately, the variances are unknown so

they must be estimated. This estimator itself has high

variance; in case of normally distributed output,var(σ̂2) =
2σ4/m. Actually, there are n combinations of the k factors

in the simulation experiment, so n variance estimators σ̂2
i

need to be compared. This problem may be solved in many

different ways, but I recommend the distribution-free test

in Conover (1980, p. 241).

4.3 Variance Stabilizing Transformation

The logarithmic transformation in Equation (5) may be used

not only to obtain normal output but also to obtain outputs
11
with constant variances. A problem may again be that the

metamodel now explains the transformed output instead of

the original output.

4.4 Alternative Analysis Methods

In case of heterogeneous variances, the LS criterion still

gives an unbiased estimator (it suffices that the residuals

have zero mean, E(e) = 0). The variance of the LS (or

OLS) estimator, however, now is

cov(β̂) = (X′
NXN )

−1
X′

NcovN (w)XN (X′
NXN )

−1

(13)

where I explicitly denote the number of rows N =
∑n

i=1

of XN , which is an N × q matrix; covN (w) is an N ×N
matrix, and the first m1 elements on its main diagonal are

var(w1), ..., the last mn elements on this main diagonal

are var(wn). In Section 5, I shall present a simple method

to derive confidence intervals for the q individual OLS

estimators β̂j (see Equation (24)).

Though the OLS estimator remains unbiased, it is no

longer the BLUE. It can be proven that the BLUE is now

the Weighted LS (or WLS) estimator

β̃ = (X
′

N [cov(w)]−1XN )
−1

X′
N [cov(w)]−1w. (14)

For a constant number of replicates (mi = m), the WLS

estimator may also be written as

β̃ = (X
′

[cov(w)]−1X)
−1

X
′

[cov(w)]−1w (15)

where X is n×q and cov(w) = cov(w)/m where cov(w)
is n × n. The covariance matrix of this WLS estimator is

cov(β̃) = (X
′

[cov(w)]−1X)
−1

. (16)

In practice, cov(w) is unknown so this covariance

matrix must be estimated. The elements on this diagonal

matrix are estimated through the classic unbiased variance

estimator

v̂ar(wi) = σ̂2(wi) = s2
i (w) =

∑m
r=1(wir − wi)

2

m − 1
, (17)

which gives ĉov(w). Substituting this estimated matrix into

the classic WLS formula Equation (14) gives the Estimated

WLS (EWLS) or Aitken estimator. For a constant number

of replicates this EWLS estimator is

̂̃
β = (X

′

[ĉov(w)]−1X)
−1

X′[ĉov(w)]−1w. (18)

This EWLS is not a linear estimator. Consequently, the

statistical analysis becomes more complicated. For example,

the analogue of Equation (16) holds only asymptotically
2
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(under certain conditions); see, for example, Godfrey (2006)

and Kleijnen, Cremers, and Van Belle (1985):

cov(
̂̃
β) ≈ (X

′

[cov(w)]−1X)
−1

. (19)

Classic confidence intervals no longer hold.

Relatively simple solutions for this type of problem

were already presented in Sections 3.3.1 and 3.3.2, namely

jackknifing and bootstrapping. Jackknifing the EWLS esti-

mator was done in Kleijnen et al. (1987), as follows. Delete

the rth replicate among the m IID replicates, and recompute

the EWLS estimator (analogous to Equation (7)):

̂̃
β−r = (X

′

[ĉov(w)−r]
−1X)

−1
X′[ĉov(w)−r]

−1w−r

where w−r consists of n averages computed from m −
1 replicates after deleting replicate r, and ĉov(w)−r is

computed from the same replicates. These
̂̃
β−r and the

original
̂̃
β computed through Equation (18) can be used to

compute the pseudovalues, which give the desired confidence

interval. Bootstrapping the EWLS estimator is discussed in

Kleijnen and Deflandre (2006).

4.5 Alternative Designs

If the output variances are not constant, classic designs still

give the unbiased OLS estimator β̂ and WLS estimator

β̃. The literature pays little attention to the derivation

of alternative designs for heterogeneous output variances.

Kleijnen and Van Groenendaal (1995) investigated designs in

which the n factor combinations are replicated so many times

that the estimated variances of the averages per combination

are (approximately) constant. Because var(wi) = σ2
i /mi

(i = 1, . . . , n), the number of replicates should satisfy

mi = c0σ
2
i (20)

where c0 is a common positive constant such that the mi

become integers. This equation implies that the higher

the variability of the simulation output wi is, the more

replicates are simulated. The allocation of the total number

of simulation runs (N =
∑n

i=1mi) according to Equation

(20) is not necessarily optimal, but it simplifies the regression

analysis and the design of the simulation experiment (an

alternative design replaces σ2
i by σi). Indeed the regression

analysis can now apply OLS to the averages wi to get

BLUE.

In practice, however, the variances of the simulation

outputs must be estimated. A two-stage procedure takes

a pilot sample of (say) m0 ≥ 2 replicates for each factor
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combination, and estimates the variances σ2
i through

s2
i (m0) ==

∑m0

r=1 [wir − wi(m0)]
2

m0 − 1
(i = 1, . . . n) (21)

with wi(m0) =
∑m0

r=1 wir/m0. Combining Equations (21)

and (20), Kleijnen and Van Groenendaal (1995) selects

additional replicates m̂i − m0 where

m̂i = m0

⌊
s2

i (m0)

min1≤i≤n s2
i (m0)

⌋

with bxc denoting the integer closest to x (so, in the second

stage no additional replicates are simulated for the combina-

tion with the smallest estimated variance). After the second

stage all m̂i replicates are used to estimate the average

output and its variance. OLS is applied to these averages.

The covariance matrix cov(β̂) is estimated through Equa-

tion (13) with cov(w) estimated through a diagonal matrix

with diagonal elements s2
i (m̂i)/m̂i. Confidence intervals

are based on the classic t statistic with degrees of freedom

equal to m0 − 1.

Because these s2
i (m̂i)/m̂i may still differ considerably,

this two-stage approach may be replaced by a sequential

approach. The latter approach adds one replicate at a

time, until the estimated variances of the average simulation

outputs have become practically constant; see Kleijnen and

Van Groenendaal (1995). The sequential procedure requires

fewer simulation responses, but is harder to understand,

program, and implement.

5 COMMON RANDOM NUMBERS

In this section, I try to answer the following questions:

1. How realistic is it to assume the use of CRN?

2. Which statistical analysis methods can be applied

that allow CRN?

3. Which statistical design methods can be applied

to account for CRN?

5.1 Realistic CRN Assumption?

Obviously, CRN are applied in random simulation only. In

practice, simulation analysts often use CRN; actually, CRN

is the default of much simulation software. The goal of CRN

is to reduce var(β̂j) with j = 1, . . . , q (actually, the variance

of the intercept increases when CRN are used). So CRN is

useful to better explain the factor effects, and to better predict

the output of combinations not yet simulated (provided the

inaccuracy of the estimated intercept is outweighed by the

accuracy of all other estimated effects). The use of CRN

creates correlation between the simulation outputs wi;r and

wi′;r (i, i′ = 1, . . . , n; r = 1, . . . ,m; m = mini mi).
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5.2 Alternative Analysis Methods

So, CRN violates the classic assumptions of regression

analysis. The analysts have two options (analogous to the

options in case of heterogeneous variances):

(i) Continue to use OLS

(ii) Switch to GLS.

Sub (i): The variance of the OLS estimator is given by

Equation (13), but now cov(w) is not a diagonal matrix.

This covariance matrix may be estimated by ĉov(w) with

the elements

ĉov(wi, wi′) =

∑m

r=1
(wi;r − wi)(wi′;r − wi′)

m − 1
(22)

where m = min(mi,mi′); usually, mi = mi′(= m) if

CRN is applied. This ĉov(w) is singular if the number

of replicates is ‘too small’; that is, if m ≤ n; see Dykstra

(1970).

Kleijnen (1992) showed that confidence intervals for

the q individual OLS estimators can be computed from a

Student t statistic with m−1 degrees of freedom—provided

m > n (in this statistic, the standard errors s(β̂j) are the

square roots of the elements on the main diagonal of the

corrected covariance matrix in Equation (13)).

An alternative method does not require the estimation

of cov(w) to derive confidence intervals for the OLS esti-

mators, so it suffices that m > 1. This alternative requires

m computations of the OLS estimator (also see Law and

Kelton 2000, p. 630, 642); i.e., from replicate r the analysts

compute

β̂r = (X′X)
−1

X′wr (r = 1, . . . ,m). (23)

The n elements of the vector wr are correlated (because

they use CRN) and may have different variances, but the

m estimators β̂j;r of a specific regression parameter βj

are independent (because they use non-overlapping PRN

streams) and have a common standard deviation (say) σ(β̂j).
So

tm−1 =
β̂j − βj

s(β̂j)
with j = 1, . . . , q (24)

with

s(β̂j) =

√√√√
∑m

r=1(β̂j;r − β̂j)
2

m(m − 1)
.

Sub (ii): CRN implies that the BLUE is the GLS

estimator; see Equation (14) where cov(w) is now not di-

agonal. Obviously, cov(β̃) is analogous to Equation (16).

Substituting ĉov(w) into the classic GLS formula gives

the Estimated GLS (EGLS), which is the analogue of the
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EWLS estimator in Equation (18). The EGLS estimator can

again be analyzed through jackknifing and bootstrapping.

Kleijnen (1992) compared OLS and EGLS relying on the

asymptotic covariance matrix Equation (19) with nondiag-

onal ĉov(w); Davidson and MacKinnon (2006), however,

claims that ‘bootstrap tests ... yield more reliable inferences

than asymptotic tests in a great many cases’.

In conclusion, CRN with EGLS may give better point

estimates of the factor effects than CRN with OLS, but the

EGLS estimate requires ‘many’ replicates—namely m >
n—to obtain a nonsingular ĉov(w).

5.3 Alternative Designs for CRN

The literature pays no attention to the derivation of alterna-

tive designs for CRN. Sequential procedures are proposed in

Kleijnen and Van Beers (2004) and Van Beers and Kleijnen

(2006). These designs select the next factor combination

to be simulated, where the simulation model may be either

deterministic or random. The simulation I/O data (D,w)
are now analyzed through Kriging (instead of linear re-

gression), which allows the simulation outputs of different

combinations to be correlated (as Kriging assumes a sta-

tionary covariance process).

6 NONVALID LOW-ORDER POLYNOMIAL

METAMODEL

Now, I try to answer the following questions:

1. How can the validity of the low-order polynomial

metamodel be tested?

2. If this metamodel is not valid, how can the simula-

tion’s I/O data be transformed such that a low-order

polynomial becomes valid?

3. Which alternative metamodels can be applied?

6.1 Testing the Validity Variance Assumption

A valid metamodel has zero mean residuals, so H0 : E(e) =
0. To test this null-hypothesis, the analysts may apply the

classic lack-of-fit F-statistic assuming white noise. However,

if the analysts apply CRN, then they may apply Rao’s variant

derived in Rao (1959) (and evaluated in Kleijnen 1992):

Fn−q;m−n+q =

m−n+q
(n−q)(m−1) (w − ̂̃y)′[ĉov(w)]−1(w − ̂̃y) (25)

where n > q, m > n, and ̂̃y denotes the EGLS estimator.

Obviously, this test also allows EWLS instead of EGLS.

Normality of the simulation output is an important assump-

tion for both the classic test and Rao’s test. In case of

nonnormality, the analysts may apply jackknifing or boot-
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strapping; Kleijnen and Deflandre (2006) bootstraps Rao’s

statistic and the classic R2 statistic.

An alternative test uses cross-validation and the t statis-

tic, which is less sensitive to nonnormality than the F statis-

tic; see Kleijnen (1992). Moreover, this t statistic requires

fewer replications, namely m > 1 instead of m > n if

EWLS or EGLS is used.

Besides these quantitative tests, the analysts may use

graphical methods to judge the validity of a fitted metamodel

(be it a linear regression model or some other type of

metamodel such as a Kriging model). Scatterplots are well

known; they are the standard output of many software

packages. The recent panel publication Simpson et al.

(2004) also emphasizes the importance of visualization;

also see Helton et al. (2006).

If a validation test rejects H0, then the analysts may

consider the following alternatives.

6.2 Transformations

A well-known transformation in queueing simulations com-

bines two simulation inputs—namely, the arrival rate λ and

the service rate µ—into a single independent regression

variable—namely, the traffic rate x = λ/µ. Another trans-

formation replaces y, λ, and µ by log(y), log(λ), and

log(µ), to make the first-order polynomial approximate rel-

ative changes.

Another simple transformation assumes that the I/O

function of the underlying simulation model is monotonic.

Then the dependent and independent variables may be re-

placed by their ranks, which results in so-called rank re-

gression; see Conover and Iman (1981) and Saltelli and

Sobol (1995). Note that Spearman’s correlation coefficient

uses the same transformation for two correlated random

variables. For example, Kleijnen and Helton (1999) applies

rank regression and Spearman’s coefficient to find the most

important factors in a simulation model of nuclear waste

disposal.

Transformations may also be applied to make the sim-

ulation output (dependent regression variable) better satisfy

the assumptions of normality (see Equation (5)) and vari-

ance homogeneity. Unfortunately, different goals of the

transformation may conflict with each other; for example,

the analysts may apply the logarithmic transformation to

reduce nonnormality, but this transformation may give a

metamodel in variables that are not of immediate interest.

If classic low-order polynomial metamodels (estimated

from their concomitant designs) do not give valid meta-

models, then I recommend to look for transformations, as

discussed above. I do not recommend routinely adding

higher-order terms to the metamodel, because these terms

are hard to interpret. However, if the goal is not to better

understand the underlying simulation model but to better

predict the output of an expensive simulation model, then
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high-order terms may be added. Indeed, full factorial 2k de-

signs enable the estimation of all interactions (for example,

the interaction among all k factors).

If more than two levels are simulated per factor, then

the following types of metamodels may be considered.

6.3 Alternative Metamodels

There are several alternative metamodel types; for example,

Kriging models. These alternatives may give better predic-

tions than low-order polynomials do. However, these alter-

natives are so complicated that they do not help the analysts

better understand the underlying simulation model—except

for sorting the simulation inputs in order of their importance.

Furthermore, these alternative metamodels require alterna-

tive design types (for example, Latin Hypercube Sampling

and max-min designs). This is a completely different issue,

so I refer to the extensive literature on this topic (including

Kleijnen 2007).

7 CONCLUSIONS

In this advanced tutorial, I discussed the assumptions of

classic linear regression analysis and the concomitant sta-

tistical designs when these methods are applied in simula-

tion practice. In Section 2, I pointed out that multivariate

simulation output can still be analyzed through OLS. In

Section 3, I addressed possible nonnormality of simulation

output, including normality tests, transformations of simula-

tion I/O data, jackknifing, and bootstrapping. In Section 4,

I presented analysis and design methods for heteroscedastic

simulation output. In Section 5, I discussed how to analyze

simulation I/O data that uses CRN, so the simulation out-

puts are correlated (across different factor combinations, but

within the same replicate). In Section 6, I discussed possi-

ble lack-of-fit tests for low-order polynomial metamodels,

transformations to improve the metamodel’s validity, and

alternative metamodels and designs. Throughout this paper,

I gave many references for further study of these issues.
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