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ABSTRACT 

This tutorial on parallel and distributed simulation systems 
reviews some of the traditional synchronization techniques 
and presents some recent advances. 

1 INTRODUCTION 

Parallel and distributed simulation finds relevance in many 
applications, including civilian applications such as tele-
communication networks, physical system simulations and 
distributed multi-player gaming, and non-civilian applica-
tions such as battlefield simulations and emergency event 
training exercises, to name only a few. It deals with ways 
of using multiple processors in a single simulation. 
Achieving correctness of parallel execution requires syn-
chronization across processors. Parallel simulation, at its 
core, is concerned with accurately synchronizing simula-
tions that run on multiple inter-connected processors. All 
processors together serve to collectively simulate an inte-
grated set of application models. The simulation is parti-
tioned spatially (or temporally), and the partitions are 
mapped to processors. Although multiple processors can be 
employed to execute multiple separate single-processor 
simulation runs in parallel, here we focus on parallel simu-
lation methods in which all processors are together used to 
execute a single simulation run, be it an integrated set of 
simulators or a single monolithic parallel system. 

To be meaningful, the results produced by a parallel 
simulation run must ideally match those that could be pro-
duced by an equivalent sequential simulation run. To 
achieve this match, parallel execution must be properly 
synchronized to preserve the right orderings and depend-
encies during computation of simulation state across proc-
essors. One of the challenges in this synchronization is in 
minimizing the runtime execution overheads (memory, 
computation and communication) incurred during parallel 
execution. It is thus important to keep the overhead within 
acceptable levels, in order for the parallel execution to de-
liver sufficient value above and beyond sequential simula-
tion. A large amount of research has been focused on re-
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ducing this overhead by devising efficient methodologies, 
algorithms and implementations for synchronization in 
parallel and distributed simulation. 

In this vein, parallel and distributed simulation tech-
niques have been well studied in the past two to three dec-
ades. The literature is now sizable, and several comprehen-
sive books and survey articles, such as (Banks, et al. 1996, 
Fujimoto 1990, Fujimoto 1993, 2000), already serve well 
to document traditional techniques in parallel and distrib-
uted simulation. Recent emergence of new application de-
mands, techniques and hardware platforms are resulting in 
enhancements to traditional techniques and formulation of 
newer techniques. These have been appearing at various 
places in the literature and together represent newer ad-
vances in parallel and distributed simulation. Here we pre-
sent a brief overview of traditional techniques followed by 
a presentation of some of the recent advances. 

The structure of the paper is as follows. Section 2 pre-
sents quick overview of basic concepts and classical tech-
niques. Section 3 serves as a practical case study that de-
scribes the parallel time synchronization functionality 
provided by the IEEE standard called the High Level Ar-
chitecture. Section 4 documents some of the recent devel-
opments. Section 5 discusses the issues and challenges 
raised by the expanding set of hardware platform types on 
which parallel simulation is now being performed. Finally, 
a summary in Section 6 recapitulates the material. 

2 CLASSICAL TECHNIQUES 

Parallel and distributed simulation approaches can be 
broadly categorized into spatial parallel and time parallel 
schemes. In spatial parallel schemes, the application is par-
titioned along spatial dimensions underlying the applica-
tion’s models (e.g., three dimensional grid cells in physical 
system simulation, or computers and network routers in 
Internet simulations). Time parallel schemes partition the 
simulation along its time dimension (e.g., regular time in-
tervals along the simulation time axis). 

Spatial decomposition is by far the most commonly 
used parallel simulation scheme. In this scheme, applica-
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tion models are partitioned into logical processes (LPs). 
Each LP contains its own individual state variables, and 
interactions among LPs are only via exchange of time-
stamped events. The simulation progresses via execution of 
these events in temporal order. The temporal ordering is 
either maintained at every instant during simulation, or is 
achieved in an asymptotic manner (i.e., the system guaran-
tees eventual convergence to overall temporal order). Here 
we focus only on spatial parallel schemes. Further informa-
tion on time parallel schemes can be found in (Fujimoto 
2000) and other places. 

2.1 Basic Concepts 

Let us first examine some basic concepts that underlie any 
synchronized parallel/distributed simulation, followed by 
an overview of basic synchronization approaches. 

2.1.1 Notions of Time 

In simulations, there are generally three distinct notions of 
time. The first is the physical time, which is the time in the 
physical system that is being modeled (e.g., 10-11pm on 
January 1990). The second is the simulation time, which is 
a representation of the physical time for the purposes of 
simulation (e.g., number of seconds since 10pm of January 
1990, represented in floating point values in the range 
[0..3600] corresponding to the simulated time period of the 
physical time). Finally, the wallclock time is the elapsed 
real time during execution of the simulation, as measured 
by a hardware clock (e.g., number of milliseconds of com-
puter time during execution). For each, the notions of time 
axis and time instant can be defined – time axis is the to-
tally ordered set of time instants along the corresponding 
timeline. In particular, for simulation time, the time axis is 
common across all processors, and a processor’s simula-
tion time is its current time instant along the time axis up to 
which the processor has advanced its simulation. 

2.1.2 Execution Pacing 

In general, there is a one-to-one mapping from physical 
time to simulation time. In contrast, there may or may not 
exist a specific relationship between simulation time and 
wallclock time. The mode of simulation execution deter-
mines this particular relationship. In an as-fast-as-possible 
execution, the simulation time is advanced as fast as com-
puting speed can allow, unrelated to wallclock time. In 
real-time execution, on the other hand, advances in simula-
tion time are performed in lockstep with wallclock time – 
one unit of simulation time is advanced exactly in one 
same unit of wallclock time. A variation of real-time exe-
cution is scaled real-time execution, in which simulation 
time period is some constant factor times an equivalent 
wallclock time period. 
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Synchronization algorithms are required to provide 
correct execution, avoiding undesirable effects such as 
deadlocks, live-locks and termination problems. What 
more, in analytic simulations, which are executed in an as-
fast-as-possible fashion, an important system goal is to 
minimize the overheads of synchronization such that the 
simulation completes as faster than real-time as possible. 
This adds the need for delivering rapid simulation pro-
gress, on top of correctness of parallel operation. 

2.1.3 Events and Event Orderings 

An event is an indication of an update to simulation system 
state at a specific simulation time instant. Thus each event 
specifies a timestamp. When events are exchanged among 
processors, their delivery at the receiving processors needs 
to be carefully coordinated at runtime. In general, multiple 
different types of delivery ordering systems can be defined. 
Two commonly used orderings are (1) receive-order (2) 
timestamp-order. Other types (Lamport 1978), such as 
causal order (Lee, et al. 2001), could also be useful in cer-
tain cases, but they are not as commonly used. 

In receive-ordered delivery (RO), events from other 
processors are delivered to the receiving processors as and 
when the events arrive at the receiving processor. In con-
trast, in timestamp-ordered delivery (TSO), events are 
guaranteed to be delivered in non-decreasing order of their 
timestamps. Typically, since RO delivers events right 
away, RO events incur lower delivery delay/latency from 
the moment they are sent by a processor to the moment the 
destination processor(s) receives them. TSO events on the 
other hand undergo runtime checks and buffering until 
their non-decreasing timestamp order can be ascertained 
and guaranteed, and hence TSO events incur relatively 
higher latency. However, a significant difference arises 
with respect to modeling accuracy afforded by RO and 
TSO. RO cannot always preserve “before and after” rela-
tionships, while TSO does guarantee preservation of such 
relationships. Similarly, with TSO, all processors see the 
exact same ordering of events, whereas with RO, identical 
ordering among events cannot be guaranteed across proc-
essors. Overall parallel execution can be made repeatable 
with TSO from one execution to the next, while RO cannot 
ensure such repeatability. 

2.1.4 Timestamp-Ordered (TSO) Processing 

The rationale behind timestamp-ordered processing is that 
it permits the models to be accurately simulated, such that 
events are processed in the same order as their correspond-
ing actions in the physical system. To enable such process-
ing order, a simple local rule to follow is that a processor 
whose simulation time is at T should not receive events 
with timestamps less than T. Hence, advances of a proces-
sor’s current time have to be coordinated and controlled 
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carefully to prevent events appearing in processor’s “past.” 
This requirement gives rise to different synchronization 
approaches, and consequently, different algorithms. 

2.2 Basic Synchronization Approaches 

In parallel simulation, broadly four approaches are com-
monly used: conservative, optimistic, relaxed, and com-
bined synchronization. 

Conservative: This approach always ensures safe 
timestamp-ordered processing of simulation events within 
each LP (Chandy and Misra 1978, 1981). In other words, 
an LP does not execute an event until it can guarantee that 
no event with a smaller timestamp will later be received by 
that LP. However, runtime performance is critically de-
pendent on a priori determination of an application prop-
erty called lookahead, which is roughly dependent on the 
degree to which the computation can predict future interac-
tions with other processes in the absence of global infor-
mation. In a lookahead-based approach, events that are be-
yond the next lookahead window are blocked until the 
window advances later, sufficiently far to cover those 
events. Typically the lookahead property is very hard to 
extract in complex applications, as it tends to be implicitly 
defined in the source code interdependencies. The appeal 
of this approach however is that it is easier to implement 
than the optimistic approach (described next) if such a loo-
kahead value can be specified by the application. 

Optimistic: This approach avoids “blocked waiting” 
by optimistically processing the events beyond the looka-
head window (Jefferson 1985). When some events are later 
detected to have been processed in incorrect order, the sys-
tem invokes compensation code such as state restoration or 
reverse computation (described later). A key issue intro-
duced by large-scale platforms is the increased delay of in-
ter-processor communication. Optimistic synchronization 
offers the potential for greater resilience to delays in the 
sense that computations may progress despite the delay in 
generation/delivery of certain events. Since blocking is not 
used, the lookahead value is not as important, and could 
even be specified to be zero without greatly affecting the 
runtime performance. While this approach eliminates the 
problem of lookahead extraction, it has a different chal-
lenge – namely, support for compensating code. Tradi-
tional optimistic methods rely on state saving or other 
techniques to enable rolling back to a previous state in case 
an event arrives in the “past”. 

Relaxed synchronization: This approach relaxes the 
constraint that events be strictly processed in time stamp 
order (e.g., see (Fujimoto 1999, Rao, et al. 1998)). For ex-
ample, it might be deemed acceptable to process two 
events out of order if their time stamps are “close enough.” 
This approach offers the potential of providing a simplified 
approach to synchronization, but without the lookahead 
constraints that plague conservative execution. A key chal-
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lenge with this approach is determining the extent that or-
dering constraints can be relaxed without compromising 
the validity of the simulation results. An additional chal-
lenge lies in ensuring that the execution of the simulation is 
repeatable. Repeatability means multiple executions of the 
same simulation with the same inputs are guaranteed to 
yield the same numeric results from one execution to the 
next. This property may not be preserved with relaxed exe-
cution because events within each process may be proc-
essed in a different order from one execution to the next 
unless special care is taken. 

Combined synchronization: This approach combines 
elements of the previous three. For example, sometimes it 
might help to have some parts of the application execute 
optimistically ahead (e.g., parts for which lookahead is low 
or hard to extract), while other parts execute conservatively 
(e.g., parts for which lookahead is large, or for which com-
pensation code is difficult to generate) (e.g., see (Jha and 
Bagrodia 1994, Perumalla 2005, Rajaei, et al. 1993)). In 
such cases, a combination of synchronization techniques 
can be appropriate. A practical application of such a com-
bined synchronization approach is the High Level Archi-
tecture, described in greater detail in Section 3. 

3 CASE STUDY: THE HIGH LEVEL 
ARCHITECTURE 

The US Department of Defense (DoD) High Level Archi-
tecture (2000), heretofore referred to as the HLA, includes 
support for time-synchronized parallel/distributed simula-
tions, built on fundamental concepts of parallel and dis-
tributed simulation (PADS). In the HLA, an integrated exe-
cution of simulations is called a federation. Individual 
simulators participating in a federation are called federates. 
Federates can be of different types: pure software simula-
tors such as computer generated forces, human-in-the-loop 
simulators such as virtual simulators, or live components 
such as instrumented weapon systems. In this section, we 
will use the terms “federate” and “processor” inter-
changeably. 

As mentioned earlier, a significant amount of literature 
exists in the PADS research community, which has ex-
plored issues in time synchronized simulations. The time 
synchronization module of the HLA, called the Time Man-
agement (TM) has, in large part, been built on insights 
from PADS research. Thus, the fundamental concepts in 
HLA TM are common with those in PADS. 

3.1.1 Interoperability Challenge 

The HLA’s TM services address two important compo-
nents: (1) overall event processing order by each federate 
(2) synchronized event delivery to each federate. 

While enabling event processing order and synchro-
nized event delivery, all in a single encompassing standard 



Perumalla 

 
framework, the HLA needs to accommodate a large variety 
of individual types of simulators. In general, there is a 
plethora of different simulator types – event-stepped vs. 
time-stepped, sequential vs. parallel, real-time vs. as-fast-
as-possible, conservative vs. optimistic, etc. An HLA fed-
eration might include any combination of any of these 
simulator types. Moreover, the exact combination of the 
types is not always made known a priori to the HLA RTI, 
and hence the interface as well as the implementation must 
be sufficiently general to accommodate any/all of them. 
The HLA TM interface does an amazing job of accommo-
dating any arbitrary combinations of, and any number of 
instances of, different types of simulators, all in one core, 
seamless interface. 

3.1.2 Synchronization Services 

The HLA Time Management module provides a clear in-
terface that each federate must invoke in order to synchro-
nize with other processors. The three most commonly used 
services are: Time Advance Request (TAR), Next Event 
Request (NER) and Flush Queue Request (FQR). 

A federate undertaking fixed time increments in simu-
lation time can use TAR(T) to unconditionally advance its 
simulation time to T. Events from other federates that ar-
rive with timestamps less than T are all delivered to this 
federate before the runtime permits the federate to advance 
to time T. Time-stepped parallel simulations typically use 
this service to coordinate their time steps across proces-
sors. 

A federate operating under a discrete event paradigm 
invokes the NER(T) primitive to conditionally advance its 
simulation time to T. If the runtime discovers that other 
events with timestamps less than T are generated by other 
processors, the earliest of those events are delivered to the 
federate, and time is advanced only to their timestamp. 
This service is most commonly used by conservative paral-
lel discrete event simulators. 

A federate equipped to execute its events in optimistic 
mode (i.e., ahead of receiving guarantees of correctness) 
can invoke FQR(T) to force the runtime to release any and 
all events that it currently has, irrespective of their time-
stamps. The runtime utilizes the supplied timestamp T to 
compute absolute global time advances. 

3.1.3 Computing LBTS 

A fundamental role of a TM implementation is in comput-
ing a quantity known as Lower Bound on incoming Time 
Stamps (LBTS). At each federate, the LBTS value speci-
fies a guarantee on the least timestamp on any future in-
coming event. In other words, no event will ever arrive at 
that federate with a timestamp smaller than LBTS. Once 
this global value is known, it is rather straightforward to 
locally serve TM requests, such as TAR, NER and FQR. 
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In order to compute the LBTS value at each federate, a 
distributed algorithm is required that exchanges messages 
to coordinate the LBTS computation without deadlocks, 
live-locks or undue performance degradation. Several such 
algorithms have been proposed in PADS literature – see 
for example (Perumalla and Fujimoto 2001). A close 
cousin to the LBTS computation is Global Virtual Time 
(GVT) computation in optimistic simulation (Bellenot 
1990). Another closely related work in general distributed 
processing is that of distributed “flush barrier” algorithms 
(Ahuja 1990). Analogous to these algorithms, several vari-
ants exist for LBTS computation. 

One such algorithm is based on global asynchronous 
distributed reductions. In this algorithm, the minimum lo-
cal (conditional) guarantee on timestamps of events that 
could be generated is taken at each federate, and a global 
reduction algorithm is used to find the minimum of all the 
local minima. This can be performed fairly quickly and 
scalably, in log(Np) steps, where Np is the number of feder-
ates, using a butterfly pattern of communication (Brooks 
1986). Assuming there are no events in transit across fed-
erates, the minimum of the minima gives a tight lower 
bound on LBTS. 

3.1.4 Transient Messages 

What if there are some events that are in transit in the net-
work while the global minimum of local minima is being 
computed? This is called the transient event problem, in 
which some events could become potentially unaccounted 
for if they are not considered into the global algorithm. 
There exist different schemes by which transient events 
can be accounted for, albeit at the cost of either additional 
messages being sent/received and/or additional time spent 
blocking while waiting for all transient events to reach 
their destinations. A popular one is called the Mattern’s al-
gorithm (Mattern 1993) in which distributed consistent 
cuts are used to mark and recognize events belonging to 
distributed different snapshots. 

For conservative parallel simulations, it is clear that 
the larger the lookahead, the fewer the number of LBTS 
computations that need to be performed, because of in-
creased concurrency enabled by the larger lookahead. 

3.1.5 Serving Synchronization Requests 

The RTI internally maintains a priority queue of TSO 
events, ordered by their timestamps. When a federate in-
vokes TAR(T), the RTI first examines if LBTS is greater 
than T. If so, the request is trivially satisfied – the RTI de-
livers all events from its TSO queue whose timestamps are 
less than or equal to T, and then issues a TAG(T). If T is 
greater than LBTS, then the RTI initiates a new distributed 
LBTS computation (if one is not already in progress). The 
lesser of T and minimum timestamp in TSO queue is used 
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as this federate’s contribution in the LBTS computation. 
The operation is similar for NER(T) invocations as well, 
except that the TAG time could be smaller than T if events 
with timestamps earlier than T are delivered. 

3.2 Other HLA TM Services 

In addition to supporting basic integration of conservative 
federates, the HLA TM services include primitives to inte-
grate federates that use advanced simulation methods, such 
as event retractions and optimistic event execution. 

3.2.1 Event Retractions 

In simulations, models are sometimes written to un-
schedule previously generated events. For example, al-
though a move event is scheduled on an entity at T, it 
might have to be retracted later if the entity gets destroyed 
after the event is scheduled but prior to T. Such event re-
tractions are called user-level retractions. Typically, user-
level retractions are enabled as follows. When an event is 
scheduled, the system returns a handle to that event. Later, 
if and when that event needs to be retracted, a retract 
primitive is invoked to which the event handle is given. 
The system then un-schedules that event. The HLA RTI 
provides such a framework using event handles and retrac-
tion primitive. Interestingly, the same service is also used 
for “system-level” retraction in optimistic simulations, as 
described next. 

3.2.2 Optimistic Event Execution 

As mentioned previously, the HLA supports conservative 
federates as well as optimistic federates, as well as their 
arbitrary combinations. Optimistic federates differ from 
their conservative counterparts in that they do not discard 
events after processing them. Instead they keep the events 
around, and also maintain copies of simulation states be-
fore modifying them as part of event processing. Since op-
timistic federates do not rely on lookahead, they execute 
their events without blocking for safety. In particular, they 
use the FQR(T) service of the RTI to force the RTI to de-
liver events from its TSO queue even if LBTS has not pro-
gressed past T. The difference between FQR and NER is 
that FQR does not guarantee that it has delivered all events 
with timestamp less than T. Thus, the federate will have to 
rollback its computation if/when it later receives events 
whose timestamp is less than T. There are two main parts 
to such rollback: (1) undo local computation by restoring 
the state prior to erroneous event processing (2) undo all 
events erroneously sent to other federates. The first part is 
typically federate-specific, and hence the HLA does not 
provide a standard service for it. The second part is real-
ized by using the event retraction service described previ-
ously. When an optimistic federate receives a retraction re-
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quest, it performs an event annihilation procedure 
canceling the original event. 

Note that the HLA RTI shields conservative federates 
from optimistic events by holding on to optimistic events 
in RTI TSO queues until such a time that LBTS sweeps 
past their timestamps. If the optimistically scheduled 
events happen to get retracted by their sending federates, 
those events will get annihilated within the RTI’s TSO 
queues without ever getting delivered to the (conservative) 
destination federate. 

4 RECENT ADVANCES 

While parallel and distributed simulation as an area has 
been well studied, some advances are being made recently 
along multiple fronts. These advances are driven by new 
challenges raised by high-performance needs of applica-
tions such as large-scale telecommunication network simu-
lation (e.g., Internet-scale TCP/IP simulations), hard-
ware/VLSI system simulations. Some of these advances 
are examined next. 

4.1 Mixed Synchronization 

When large application scenarios are considered, it often is 
the case that the models are heterogeneous in nature, with 
varying amounts of computational loads across spatial di-
mensions and varying levels of modeling. For example, 
simulations of the Earth’s magnetosphere inherently con-
tain models of varying granularity and synchronization re-
quirements (Karimabadi, et al. 2005). 

In contrast to the heterogeneity needs, the traditional 
method of prevalence in building parallel simulation sys-
tems is to build a system specifically for one synchroniza-
tion method (e.g., one conservative algorithm, or one opti-
mistic variant). This tradition has two fallouts. First, 
additions to the underlying framework involve major over-
hauls. Secondly, modelers need to either determine and 
stick to one mechanism, or re-code their models to switch 
to a new mechanism. 

A set of systems are being constructed to alleviate this 
problem when the application needs to accommodate mul-
tiple synchronization types and be resilient to future 
changes to parts of its models. An early system that pro-
vided this type of interface is the Maisie language 
(Bagrodia and Liao 1994), in which entities (equivalent to 
LPs) are capable of choosing and/or changing their own 
conservative/optimistic modes dynamically at runtime. 
Later, the HLA has been designed to accommodate multi-
ple simulator types, including optimistic and conservative 
ones, although this has been leveraged mostly in the con-
text of coarse-grained simulators, and is not readily ame-
nable to high-performance execution of fine-grained simu-
lations. More recently, the µsik system (Perumalla 2005) 
was developed that provides a fine-grained simulation en-
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vironment for mixed mode synchronization across shared 
memory and distributed memory platforms. 

4.2 Lookahead Extraction 

In purely conservative parallel simulations, the single most 
important parameter is the lookahead value. A small loo-
kahead can have a large detrimental effect on overall run-
time performance. Thus lookahead extraction has been a 
subject of intense study in PADS literature. 

Recently many important analytic applications have 
been developed using conservative synchronization, 
largely in the network simulation context. In these applica-
tions, the models are prohibitively complex to apply opti-
mistic simulation techniques but are also very tightly-
coupled, exhibiting very small lookahead between LPs. 
Wireless network simulation is one such application (e.g., 
predicting the performance of IEEE 802.11 Wi-Fi net-
works). Static lookahead in such applications is typically 
very small, given by the time for electromagnetic signal 
propagation (at close to speed of light) over short dis-
tances. When coupled with the need to use such simula-
tions in real-time context (for network emulation), the gain 
from improving the lookahead even by a small amount can 
be quite significant. 

It is precisely in this context that recent efforts have 
focused on extracting as much lookahead information as 
possible from the models. Moving from purely static esti-
mates of lookahead, these new techniques examine the LP 
inter-dependency structures dynamically at simulation run-
time, and manage to extract values of lookahead that are 
higher than those estimated statically. Two such efforts are 
presented in (Zhou, et al. 2004) and (Liu and Nicol 2002). 

4.3 Critical Channel Traversal 

Another method of improving performance of conservative 
simulations focuses on scheduling alternatives. In the most 
common event scheduling approach, events from the future 
event list are executed in an earliest-timestamp-first man-
ner. While being very simple to implement, such a scheme 
is less than optimal when caching and other effects are 
considered. Newer scheduling algorithms such as Critical 
Channel Traversal are designed for exposing and taking 
advantage of inherent locality of event execution in con-
servative simulations. Benefits include better cache per-
formance due to immediate reuse of event buffers across 
causal chain of events and improved spatial locality due to 
reflection of LP inter-dependence on event processing pat-
terns. The gains from such sophisticated event scheduling 
approaches have been shown to be significant, with very 
high event rates achieved even on fine-grained applications 
such as ATM network simulations. LPs that are “closely 
related” with respect to event communication are grouped 
together as “tasks”. Tasks are then used as the primary 
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scheduling units, and LPs within a task form secondary 
scheduling units. When LPs within a task interact among 
themselves more heavily than with other LPs outside that 
task, locality is enhanced and event scheduling overheads 
are decreased. Other beneficial effects include automatic 
realization of dynamic load balancing on shared-memory 
multiprocessor platforms, because processors operate on a 
dynamic pool of active tasks rather than with a traditional 
static assignment of LPs to processors. 

While CCT is useful for enhancing performance, it 
does require the application be amenable to grouping of 
LPs into tasks, and is specific to conservative (lookahead-
based) parallel simulations. 

4.4 Optimizations for Efficient Rollback 

While lookahead extraction is the bane of conservative 
parallel simulations, rollback support mechanism is its 
counterpart in optimistic parallel simulations. Efficient 
rollback techniques thus play an important role in the mak-
ing or breaking of optimistic schemes. For a long time, 
checkpointing-based approaches were the dominant form 
of enabling rolling back computations. However, these im-
posed undue amount of overheads, making optimistic 
simulation schemes unappealing to many applications. An 
alternative scheme called reverse computation has been re-
cently developed to alleviate this problem, as described 
next. 

4.4.1 State Saving for Rollback 

One of the common approaches for rolling back incorrect 
computations is based on checkpointing, also called state-
saving. Checkpointing methods make a copy of the state 
variables of LPs before the variables are overwritten by op-
timistic event computations. If and when those event com-
putations have to be negated (due to arrival of a remote 
event with an earlier timestamp, or due to with-
drawal/cancellation of an event by a remote processor), 
state variable values are fetched from the checkpoint log 
and overwritten, thereby restoring the LP state to their cor-
rect values corresponding to the fault point. 

The most commonly used state-saving technique is 
copy state-saving (CSS), in which a copy of the entire state 
is made before an event is executed. In CSS, the state is 
saved every time an event is processed. A variation of copy 
state-saving is called periodic state saving (PSS). PSS is a 
generalized technique in which state is saved only periodi-
cally, say, every pth event, instead of every event as is done 
with CSS. This implies that some events save state before 
processing, and others do not. The former set of events can 
be rolled back easily by restoring the state to the saved 
values. The latter set of events needs special treatment, 
since they do not have saved state. The state restoration for 
these events is achieved by starting with a past processed 
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event that does have saved state, and then re-executing the 
sequence of events from that past event to the event just 
before the rolled back event. 

Incremental state-saving (ISS) is an alternative state-
saving technique in which only the modified portions are 
saved just before modification. Modifications to state are 
logged as pairs of address-value pairs, and stored in a log 
array for each LP. Optimistic simulators can permit CSS, 
PSS and ISS to be used simultaneously together in the 
same application, although most applications tend to use 
them mutually exclusively, because either the LP states are 
uniformly too large (warranting ISS) or uniformly small 
(warranting CSS) or in between (warranting PSS). A de-
tailed treatment of compiler-based techniques to optimize 
the appropriate state saving operations is given in (Gomes 
1996). 

As it turns out, state saving techniques imposes two 
types of penalties: (1) a memory copy overhead during 
forward computation (2) memory consumption beyond that 
of conservative execution. The degree of severity varies 
with the particular variant of state saving, but they carry 
across all variants. The first penalty reduces the efficiency 
of parallel execution (e.g., a four-processor optimistic 
simulation running at the same speed as that of a uni-
processor conservative simulation). The second type of 
penalty introduces not only undue memory overheads for 
fine-grained applications (fine grained events, by defini-
tion, execute rapidly, and therefore can produce a long 
state vector log equally rapidly), but also pollute the proc-
essor cache, thereby reducing forward computation speed. 

4.4.2 Reverse Computation 

Alternatives to checkpointing solutions evaded the com-
munity until recently a reverse computation (RC) approach 
was proposed. In this approach, values of state variables 
are not saved for rollback support. Instead, as and when 
rollback is initiated, a perfect inverse of event computation 
is invoked that serves to recover the modified state values 
to their original values. In other words, the overwritten 
state values are reconstructed by executing the forward 
code backwards. 

The RC approach has been successfully applied in dif-
ferent application domains, such as telecommunication 
network simulations (Carothers, et al. 1999, Garrett, et al. 
2003) and physical system simulations (Tang, et al. 2005). 
Among optimistic simulation systems that currently sup-
port RC are ROSS (Carothers, et al. 2002) and µsik 
(Perumalla 2005). 

Note that PSS and RC can be seen as duals of each 
other. Figure 1 depicts the relation between PSS and RC 
using a generic snapshot of execution at which rollback is 
initiated. The rightmost vertical bar represents the latest 
optimistically executed event. The light vertical bar in the 
middle represents the point to which computation needs to 
9

be rolled back. The left-most dark vertical line indicates 
the most recent periodic checkpoint before the rollback 
point. If RC is used, reverse execution is invoked on all 
events from left to middle. If PSS is used, coast forwarding 
computation (event re-execution to regenerate state) is in-
voked from left to middle. Clearly, the efficiency of RC or 
PSS depends on expected distance of left or right points, 
respectively, from the rollback point. 

 

 
Figure 1: Comparison of Rollback Operation Using Re-
verse Computation vs. Periodic State Saving 

However, a crucial difference between RC and PSS is 
that the state size is independent of the computing platform 
for RC, whereas it depends on sizes of data types in PSS. 
Also, PSS has the drawback that not all events from time 
points earlier than GVT/LBTS can be reclaimed for reuse 
(i.e., cannot be fossil-collected). Those events that fall be-
tween the periodic checkpoint time and GVT/LBTS need 
to be retained for coast-forwarding (Perumalla 1999). 

4.5 Intra-Processor Lookahead 

In large-scale application scenarios, each processor typi-
cally hosts many LPs. For example, in Internet simulations, 
each processor simulates thousands of network nodes. Tra-
ditional conservative parallel simulation maps network 
links crossing processor boundaries to in/out channels in 
null-message algorithms, and uses the minimum among all 
transmission delays as the lookahead values on all those 
out channels, irrespective of delays added by internal net-
work nodes. However, time advances can be improved sig-
nificantly if the additional topology information can be in-
corporated into the null message algorithm. The concept of 
“internal lookahead”, illustrated in Figure 2, is defined as 
the minimum among all shortest paths between all pairs of 
in- and out-channels. This is easily computed as the sum of 
transmission delays along the shortest paths from all in 
channels to all out channels, which can add up to much 
more than lookahead along one transmission link. Adding 
this “internal lookahead” to null message timestamps sig-
nificantly improves concurrency of the conservative simu-
lation, delivering time advances in increments larger than 
one lookahead. The internal lookahead feature is supported 
in newer systems such as libSynk (Perumalla 2004). 
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Figure 2: Illustration of Internal Lookahead 

4.6 PADS Applied to Sequential Execution 

Interestingly, even though parallel/distributed simulation 
techniques are developed specifically for execution on par-
allel computing platforms, they are in fact being discov-
ered to be useful even in a sequential processing (uni-
processor) setting. When properly applied, the concepts 
developed for parallel execution can also be used to im-
prove the speed of sequential simulation as an efficient al-
ternative to traditional execution based on a central event 
list. 

4.6.1.1 Conservative Execution on 1 Processor 

The beneficial effects of parallel/distributed simulation 
techniques for sequential execution arise primarily due to 
(a) lower priority queue overheads (b) better caching ef-
fects (Curry, et al. 2005, Simmonds, et al. 2002). In a cen-
tral event list implementation, events are organized into 
one priority queue (PQ), whereas in a parallel implementa-
tion, they are organized into multiple PQs. If Ne is the size 
of PQ encountered on average by each event, each event 
insertion/deletion incurs O(log(Ne)) time overhead (assum-
ing a general-purpose PQ implementation). On the other 
hand, if parallel simulation of the same application organ-
izes the simulation as Np logical processes, then, with algo-
rithms such as critical channel traversal (Xiao, et al. 1999), 
each insertion/deletion of an event incurs priority queue 
sizes that are smaller than Ne/Np. This makes the amortized 
event overhead less than O(log(Ne/Np) + log(Np)), where 
log(Ne/Np) is the time to enqueue events into event priority 
queues and log(Np) is the time taken to order the LPs by 
their earliest event timestamps. Moreover, reuse of mem-
ory buffers induces good caching effects which results in 
significant increase in performance. Such reuse of buffers 
for events processes immediately after one another natu-
rally occurs for a chain of causally related events that fall 
within the same safe-time window. 

4.6.1.2 Optimistic Execution on 1 Processor 

Similar to application of conservative parallel simulation to 
sequential simulation, there are two different ways in 
which sequential simulation can benefit from optimistic 
parallel simulation methods: aggregate event processing 
and pipe-lined event processing. 
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In aggregate event processing, two or more events in 
the future event list are scheduled together (invoked with 
one “aggregate event handler”), with the expectation that 
no intermediate event computation arises between them to 
break their aggregate. In other words, the runtime behaves 
as though the events are scheduled as one event, rather 
than as multiple events. Rollback is initiated on the aggre-
gate computation if violation of this assumption is detected 
at runtime (e.g., when a new event is scheduled by one of 
the events in the aggregate with timestamp intervening the 
aggregate’s range of timestamps). The advantage of this 
approach is two-fold: event scheduling costs are reduced 
and compiler optimizations (such as common sub-
expression elimination) are realized on the aggregate event 
handler. 

In pipe-lined event processing, newly generated events 
are executed at the tail of event handler of the generating 
event, bypassing the event queue, thereby reducing event 
queuing overheads and improving locality. Rollback is ini-
tiated on the tail-executed events if their time order is de-
tected to be violated by later events. 

4.6.1.3 Supercomputer-based Parallel Simulations 

Another recent advance is in the realm of large-scale paral-
lel computing platforms. Applications such as Internet 
simulations are serving to motivate the use of high-end 
computing for parallel discrete event simulation. With nas-
cent interest in utilizing supercomputing facilities for such 
simulations, a few leading efforts have focused on porting, 
testing and improving traditional techniques on supercom-
puters. The state of the art in this area has now pushed the 
capabilities to one thousand processors and beyond. 

Some of these include the demonstration of the 
PHOLD benchmark executed on 1,033 processors on the 
Pittsburgh Supercomputing Center using the DSIM Time 
Warp system (Chen and Szymanski 2005), and the RC-
based PHOLD execution on 1,024 processors using the 
µsik system (Perumalla 2005) at the San Diego Supercom-
puting Center. The latter includes conservative, optimistic 
and mixed-mode simulations. Figure 3 shows processing 
time per event on PHOLD with increasing number of LPs 
and message population (MSG), with the largest recorded 
configuration containing 1 million LPs and 1 billion mes-
sages active at all times during the simulation. The amor-
tized overhead of less than 20 microseconds per event 
brings it within the reach of even the most demanding fine 
grained simulation. 

Conservative simulations have pushed the scalability 
limits to 512 processors on physical system simulations 
(Perumalla, et al. 2006) and to 1,536 processors (Fujimoto, 
et al. 2003) on network simulations. Additional refine-
ments were shown using a variant of null message algo-
rithm in (Park, et al. 2004). 
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Figure 3: Runtime Performance Results from Optimistic 
Simulation of the PHOLD Benchmark on a Supercomputer 

4.7 Approximate Time 

Another exciting development in relatively recent past is 
the articulation of a new concept called Approximate 
Time. In this world model, the traditional notion of abso-
luteness of timestamps is relaxed into a range, rather than a 
point, on the simulation time axis. The range notion hinges 
on the realization that models typically have implicit fuzzi-
ness in the timestamps they generate (e.g., variation in the 
time taken for a battle tank to travel a given distance). This 
implicit uncertainty in timestamps can be exploited to relax 
the tight lookahead-based dependencies across processors, 
and consequently the parallel simulation speed can be im-
proved. Systems that exploit temporal uncertainty are 
documented in (Fujimoto 1999, Loper 2002, Loper and Fu-
jimoto 2004). 

 

4.8 Fault Tolerance and Security 

With the increase in the number of processors/federates 
participating in a large integrated simulation, the probabil-
ity increases that one or more of the processors fail during 
simulation. Transparent techniques to sustain the progress 
of the simulation despite such crashes is a subject of recent 
interest. Schemes to incorporate such fault tolerance and/or 
continued optimistic execution are now being explored 
(Santoro and Quaglia 2006) (Chen, et al. 2006). 

Also, secure exchange of information across proces-
sors without compromising confidentiality of information 
contained in models is an important facet of interoperable 
integrated simulations (e.g., preventing undesirable leaking 
of model information in joint exercises by different na-
tions). This concern for security of information exchange 
during simulation raises new challenges, such as runtime 
overhead for encrypted communication, which are begin-
ning to be addressed only recently. 
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5 EXPANDING SIMULATION PLATFORMS 

Another exciting dimension of new advances in parallel 
simulation is in the use of novel computing platforms. 
With the advent of new computing hardware such as net-
work co-processors and general-purpose graphical process-
ing units, parallel simulation techniques are being revis-
ited. Here we document some recent efforts in this light. 

5.1 General-Purpose Graphical Processing Units 

Traditionally, graphics cards for workstations and personal 
computers have been designed to handle intensive graphics 
operations to enable high speed rendering of complex ob-
jects and scenes. More recently, their programmability has 
reached a point to make them suitable for more general-
purpose computation (Owens, et al. 2005, Pharr and Fer-
nando 2005). As illustrated in Figure 4, certain applications 
have been shown to execute much faster on GPGPUs than 
on CPUs (Owens, et al. 2005). Texture data are input to a 
fragment processors (FPs), which “render” the results of 
their computation to target textures. 

 

 
Figure 4: Simplified Schematic of GPGPU Operation  

 
Since GPGPUs lack efficient random write access to 

memory (texture) locations, the traditional discrete event 
loop cannot be employed. Instead, algorithms such as the 
one shown in Figure 5 are more suitable. Computing the 
step dtmin=min(dti), for example, is efficient on 
GPGPUs, taking only logarithmic time. 

 

While not end of simulation 
/*Find next update times for all LPs*/  
For all (i): dti = compute_dt(i) 
/*Find minimum among all update times*/ 
dtmin = min(dti) of all (i) 
/*Advance current simulation time*/ 
tnow += dtmin 
/*Advance all LPs to current time*/ 
For all (i): compute_state(i, dtmin) 

Figure 5: A Variant of the Typical Sequential Discrete 
Event Algorithm Modified to Suit Execution on GPGPUs 

 
While time-stepped approaches have been studied in 

simulations using GPGPUs, not enough work has focused 
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on discrete event simulation (DES) on GPGPU. Some re-
cent work has shown the potential of GPGPUs for discrete 
event simulation (Perumalla 2006), showing four-fold 
speedup of GPGPU-based execution over that of regular 
processor. 

5.2 Network Co-Processors and Hybrid Processors 

The programmability of network co-processors is also be-
ing exploited to speed up certain operations. One of the 
uses is in off-loading state saving and other checkpointing 
functionality to programmable Myrinet network switches 
(Quaglia and Santoro 2003, Santoro and Fujimoto 2004). 
This helps free up the main processor to continue with 
main computation, minimizing rollback overhead. Another 
interesting use of co-processor is in fast computation of 
LBTS values in optimistic simulation (Rosu, et al. 1997), 
exploiting the low latency access to network operations by 
programs executing on the network card. 

5.3 Other Architectures 

Other architectures include Web-based execution, such as 
used in Extensible modeling and simulation framework 
(Moves-Institute 2006), and Internet/grid-based architec-
tures, as used in the master-worker paradigm of (Park and 
Fujimoto 2006). The Cell processor from IBM is another 
new architecture that is poised to be suitable for high-
performance parallel simulation, similar to the GPGPUs. 

Tera- and Peta-Scale Computing Platforms such as the 
Blue Gene/L and Cray XT3 impose unprecedented scal-
ability challenges for which it is unclear if traditional tech-
niques will be adequate. For example, it is unclear if fully 
peer-to-peer architecture of traditional parallel simulation 
is appropriate in the presence of frequent node failures. 
Concerns such as fault tolerance and security are poised to 
become critical on such large-scale platforms. Similarly, 
recent multi-core processor architectures are yet to be fully 
explored. For example, key problems such as contention 
for I/O and communication among cores on a single sys-
tem need to be resolved, possibly via staggered execution. 

6 SUMMARY 

This tutorial presented an overview of parallel and distrib-
uted simulation systems, their traditional synchronization 
approaches and a case study using the HLA standard inter-
face and implementation. Recent advances, such as scal-
ability to supercomputing platforms and novel rollback 
techniques have been presented. The interaction of parallel 
simulation with newly emerging hardware architectures is 
outlined. 

The future outlook seems to warrant focus on needs 
from larger scale simulation scenarios (e.g., large-scale 
human behavior modeling & simulation, and large traffic 
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simulations), to be achieved on high-end computing plat-
forms. There is also interest on high-performance simula-
tions on low-end platforms such as using the multi-core ar-
chitectures, GPGPUs and other co-processor-based 
systems. However, practical challenges remain to be ex-
plored, including: (a) wide spectrum of network latencies 
(b) highly dynamic participation by processors (c) seman-
tics and implementations of always-on presence for large 
simulations. 
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