
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

PARALLEL AND DISTRIBUTED SIMULATION: TRADITIONAL TECHNIQUES AND RECENT ADVANCES

Kalyan S. Perumalla

Oak Ridge National Laboratory
One Bethel Valley Road

Oak Ridge, Tennessee 37831-6085, U.S.A.

ABSTRACT

This tutorial on parallel and distributed simulation systems
reviews some of the traditional synchronization techniques
and presents some recent advances.

1 INTRODUCTION

Parallel and distributed simulation finds relevance in many
applications, including civilian applications such as tele-
communication networks, physical system simulations and
distributed multi-player gaming, and non-civilian applica-
tions such as battlefield simulations and emergency event
training exercises, to name only a few. It deals with ways
of using multiple processors in a single simulation.
Achieving correctness of parallel execution requires syn-
chronization across processors. Parallel simulation, at its
core, is concerned with accurately synchronizing simula-
tions that run on multiple inter-connected processors. All
processors together serve to collectively simulate an inte-
grated set of application models. The simulation is parti-
tioned spatially (or temporally), and the partitions are
mapped to processors. Although multiple processors can be
employed to execute multiple separate single-processor
simulation runs in parallel, here we focus on parallel simu-
lation methods in which all processors are together used to
execute a single simulation run, be it an integrated set of
simulators or a single monolithic parallel system.

To be meaningful, the results produced by a parallel
simulation run must ideally match those that could be pro-
duced by an equivalent sequential simulation run. To
achieve this match, parallel execution must be properly
synchronized to preserve the right orderings and depend-
encies during computation of simulation state across proc-
essors. One of the challenges in this synchronization is in
minimizing the runtime execution overheads (memory,
computation and communication) incurred during parallel
execution. It is thus important to keep the overhead within
acceptable levels, in order for the parallel execution to de-
liver sufficient value above and beyond sequential simula-
tion. A large amount of research has been focused on re-
841-4244-0501-7/06/$20.00 ©2006 IEEE
ducing this overhead by devising efficient methodologies,
algorithms and implementations for synchronization in
parallel and distributed simulation.

In this vein, parallel and distributed simulation tech-
niques have been well studied in the past two to three dec-
ades. The literature is now sizable, and several comprehen-
sive books and survey articles, such as (Banks, et al. 1996,
Fujimoto 1990, Fujimoto 1993, 2000), already serve well
to document traditional techniques in parallel and distrib-
uted simulation. Recent emergence of new application de-
mands, techniques and hardware platforms are resulting in
enhancements to traditional techniques and formulation of
newer techniques. These have been appearing at various
places in the literature and together represent newer ad-
vances in parallel and distributed simulation. Here we pre-
sent a brief overview of traditional techniques followed by
a presentation of some of the recent advances.

The structure of the paper is as follows. Section 2 pre-
sents quick overview of basic concepts and classical tech-
niques. Section 3 serves as a practical case study that de-
scribes the parallel time synchronization functionality
provided by the IEEE standard called the High Level Ar-
chitecture. Section 4 documents some of the recent devel-
opments. Section 5 discusses the issues and challenges
raised by the expanding set of hardware platform types on
which parallel simulation is now being performed. Finally,
a summary in Section 6 recapitulates the material.

2 CLASSICAL TECHNIQUES

Parallel and distributed simulation approaches can be
broadly categorized into spatial parallel and time parallel
schemes. In spatial parallel schemes, the application is par-
titioned along spatial dimensions underlying the applica-
tion’s models (e.g., three dimensional grid cells in physical
system simulation, or computers and network routers in
Internet simulations). Time parallel schemes partition the
simulation along its time dimension (e.g., regular time in-
tervals along the simulation time axis).

Spatial decomposition is by far the most commonly
used parallel simulation scheme. In this scheme, applica-

Perumalla

tion models are partitioned into logical processes (LPs).
Each LP contains its own individual state variables, and
interactions among LPs are only via exchange of time-
stamped events. The simulation progresses via execution of
these events in temporal order. The temporal ordering is
either maintained at every instant during simulation, or is
achieved in an asymptotic manner (i.e., the system guaran-
tees eventual convergence to overall temporal order). Here
we focus only on spatial parallel schemes. Further informa-
tion on time parallel schemes can be found in (Fujimoto
2000) and other places.

2.1 Basic Concepts

Let us first examine some basic concepts that underlie any
synchronized parallel/distributed simulation, followed by
an overview of basic synchronization approaches.

2.1.1 Notions of Time

In simulations, there are generally three distinct notions of
time. The first is the physical time, which is the time in the
physical system that is being modeled (e.g., 10-11pm on
January 1990). The second is the simulation time, which is
a representation of the physical time for the purposes of
simulation (e.g., number of seconds since 10pm of January
1990, represented in floating point values in the range
[0..3600] corresponding to the simulated time period of the
physical time). Finally, the wallclock time is the elapsed
real time during execution of the simulation, as measured
by a hardware clock (e.g., number of milliseconds of com-
puter time during execution). For each, the notions of time
axis and time instant can be defined – time axis is the to-
tally ordered set of time instants along the corresponding
timeline. In particular, for simulation time, the time axis is
common across all processors, and a processor’s simula-
tion time is its current time instant along the time axis up to
which the processor has advanced its simulation.

2.1.2 Execution Pacing

In general, there is a one-to-one mapping from physical
time to simulation time. In contrast, there may or may not
exist a specific relationship between simulation time and
wallclock time. The mode of simulation execution deter-
mines this particular relationship. In an as-fast-as-possible
execution, the simulation time is advanced as fast as com-
puting speed can allow, unrelated to wallclock time. In
real-time execution, on the other hand, advances in simula-
tion time are performed in lockstep with wallclock time –
one unit of simulation time is advanced exactly in one
same unit of wallclock time. A variation of real-time exe-
cution is scaled real-time execution, in which simulation
time period is some constant factor times an equivalent
wallclock time period.
85
Synchronization algorithms are required to provide
correct execution, avoiding undesirable effects such as
deadlocks, live-locks and termination problems. What
more, in analytic simulations, which are executed in an as-
fast-as-possible fashion, an important system goal is to
minimize the overheads of synchronization such that the
simulation completes as faster than real-time as possible.
This adds the need for delivering rapid simulation pro-
gress, on top of correctness of parallel operation.

2.1.3 Events and Event Orderings

An event is an indication of an update to simulation system
state at a specific simulation time instant. Thus each event
specifies a timestamp. When events are exchanged among
processors, their delivery at the receiving processors needs
to be carefully coordinated at runtime. In general, multiple
different types of delivery ordering systems can be defined.
Two commonly used orderings are (1) receive-order (2)
timestamp-order. Other types (Lamport 1978), such as
causal order (Lee, et al. 2001), could also be useful in cer-
tain cases, but they are not as commonly used.

In receive-ordered delivery (RO), events from other
processors are delivered to the receiving processors as and
when the events arrive at the receiving processor. In con-
trast, in timestamp-ordered delivery (TSO), events are
guaranteed to be delivered in non-decreasing order of their
timestamps. Typically, since RO delivers events right
away, RO events incur lower delivery delay/latency from
the moment they are sent by a processor to the moment the
destination processor(s) receives them. TSO events on the
other hand undergo runtime checks and buffering until
their non-decreasing timestamp order can be ascertained
and guaranteed, and hence TSO events incur relatively
higher latency. However, a significant difference arises
with respect to modeling accuracy afforded by RO and
TSO. RO cannot always preserve “before and after” rela-
tionships, while TSO does guarantee preservation of such
relationships. Similarly, with TSO, all processors see the
exact same ordering of events, whereas with RO, identical
ordering among events cannot be guaranteed across proc-
essors. Overall parallel execution can be made repeatable
with TSO from one execution to the next, while RO cannot
ensure such repeatability.

2.1.4 Timestamp-Ordered (TSO) Processing

The rationale behind timestamp-ordered processing is that
it permits the models to be accurately simulated, such that
events are processed in the same order as their correspond-
ing actions in the physical system. To enable such process-
ing order, a simple local rule to follow is that a processor
whose simulation time is at T should not receive events
with timestamps less than T. Hence, advances of a proces-
sor’s current time have to be coordinated and controlled

Perumalla

carefully to prevent events appearing in processor’s “past.”
This requirement gives rise to different synchronization
approaches, and consequently, different algorithms.

2.2 Basic Synchronization Approaches

In parallel simulation, broadly four approaches are com-
monly used: conservative, optimistic, relaxed, and com-
bined synchronization.

Conservative: This approach always ensures safe
timestamp-ordered processing of simulation events within
each LP (Chandy and Misra 1978, 1981). In other words,
an LP does not execute an event until it can guarantee that
no event with a smaller timestamp will later be received by
that LP. However, runtime performance is critically de-
pendent on a priori determination of an application prop-
erty called lookahead, which is roughly dependent on the
degree to which the computation can predict future interac-
tions with other processes in the absence of global infor-
mation. In a lookahead-based approach, events that are be-
yond the next lookahead window are blocked until the
window advances later, sufficiently far to cover those
events. Typically the lookahead property is very hard to
extract in complex applications, as it tends to be implicitly
defined in the source code interdependencies. The appeal
of this approach however is that it is easier to implement
than the optimistic approach (described next) if such a loo-
kahead value can be specified by the application.

Optimistic: This approach avoids “blocked waiting”
by optimistically processing the events beyond the looka-
head window (Jefferson 1985). When some events are later
detected to have been processed in incorrect order, the sys-
tem invokes compensation code such as state restoration or
reverse computation (described later). A key issue intro-
duced by large-scale platforms is the increased delay of in-
ter-processor communication. Optimistic synchronization
offers the potential for greater resilience to delays in the
sense that computations may progress despite the delay in
generation/delivery of certain events. Since blocking is not
used, the lookahead value is not as important, and could
even be specified to be zero without greatly affecting the
runtime performance. While this approach eliminates the
problem of lookahead extraction, it has a different chal-
lenge – namely, support for compensating code. Tradi-
tional optimistic methods rely on state saving or other
techniques to enable rolling back to a previous state in case
an event arrives in the “past”.

Relaxed synchronization: This approach relaxes the
constraint that events be strictly processed in time stamp
order (e.g., see (Fujimoto 1999, Rao, et al. 1998)). For ex-
ample, it might be deemed acceptable to process two
events out of order if their time stamps are “close enough.”
This approach offers the potential of providing a simplified
approach to synchronization, but without the lookahead
constraints that plague conservative execution. A key chal-
86
lenge with this approach is determining the extent that or-
dering constraints can be relaxed without compromising
the validity of the simulation results. An additional chal-
lenge lies in ensuring that the execution of the simulation is
repeatable. Repeatability means multiple executions of the
same simulation with the same inputs are guaranteed to
yield the same numeric results from one execution to the
next. This property may not be preserved with relaxed exe-
cution because events within each process may be proc-
essed in a different order from one execution to the next
unless special care is taken.

Combined synchronization: This approach combines
elements of the previous three. For example, sometimes it
might help to have some parts of the application execute
optimistically ahead (e.g., parts for which lookahead is low
or hard to extract), while other parts execute conservatively
(e.g., parts for which lookahead is large, or for which com-
pensation code is difficult to generate) (e.g., see (Jha and
Bagrodia 1994, Perumalla 2005, Rajaei, et al. 1993)). In
such cases, a combination of synchronization techniques
can be appropriate. A practical application of such a com-
bined synchronization approach is the High Level Archi-
tecture, described in greater detail in Section 3.

3 CASE STUDY: THE HIGH LEVEL
ARCHITECTURE

The US Department of Defense (DoD) High Level Archi-
tecture (2000), heretofore referred to as the HLA, includes
support for time-synchronized parallel/distributed simula-
tions, built on fundamental concepts of parallel and dis-
tributed simulation (PADS). In the HLA, an integrated exe-
cution of simulations is called a federation. Individual
simulators participating in a federation are called federates.
Federates can be of different types: pure software simula-
tors such as computer generated forces, human-in-the-loop
simulators such as virtual simulators, or live components
such as instrumented weapon systems. In this section, we
will use the terms “federate” and “processor” inter-
changeably.

As mentioned earlier, a significant amount of literature
exists in the PADS research community, which has ex-
plored issues in time synchronized simulations. The time
synchronization module of the HLA, called the Time Man-
agement (TM) has, in large part, been built on insights
from PADS research. Thus, the fundamental concepts in
HLA TM are common with those in PADS.

3.1.1 Interoperability Challenge

The HLA’s TM services address two important compo-
nents: (1) overall event processing order by each federate
(2) synchronized event delivery to each federate.

While enabling event processing order and synchro-
nized event delivery, all in a single encompassing standard

Perumalla

framework, the HLA needs to accommodate a large variety
of individual types of simulators. In general, there is a
plethora of different simulator types – event-stepped vs.
time-stepped, sequential vs. parallel, real-time vs. as-fast-
as-possible, conservative vs. optimistic, etc. An HLA fed-
eration might include any combination of any of these
simulator types. Moreover, the exact combination of the
types is not always made known a priori to the HLA RTI,
and hence the interface as well as the implementation must
be sufficiently general to accommodate any/all of them.
The HLA TM interface does an amazing job of accommo-
dating any arbitrary combinations of, and any number of
instances of, different types of simulators, all in one core,
seamless interface.

3.1.2 Synchronization Services

The HLA Time Management module provides a clear in-
terface that each federate must invoke in order to synchro-
nize with other processors. The three most commonly used
services are: Time Advance Request (TAR), Next Event
Request (NER) and Flush Queue Request (FQR).

A federate undertaking fixed time increments in simu-
lation time can use TAR(T) to unconditionally advance its
simulation time to T. Events from other federates that ar-
rive with timestamps less than T are all delivered to this
federate before the runtime permits the federate to advance
to time T. Time-stepped parallel simulations typically use
this service to coordinate their time steps across proces-
sors.

A federate operating under a discrete event paradigm
invokes the NER(T) primitive to conditionally advance its
simulation time to T. If the runtime discovers that other
events with timestamps less than T are generated by other
processors, the earliest of those events are delivered to the
federate, and time is advanced only to their timestamp.
This service is most commonly used by conservative paral-
lel discrete event simulators.

A federate equipped to execute its events in optimistic
mode (i.e., ahead of receiving guarantees of correctness)
can invoke FQR(T) to force the runtime to release any and
all events that it currently has, irrespective of their time-
stamps. The runtime utilizes the supplied timestamp T to
compute absolute global time advances.

3.1.3 Computing LBTS

A fundamental role of a TM implementation is in comput-
ing a quantity known as Lower Bound on incoming Time
Stamps (LBTS). At each federate, the LBTS value speci-
fies a guarantee on the least timestamp on any future in-
coming event. In other words, no event will ever arrive at
that federate with a timestamp smaller than LBTS. Once
this global value is known, it is rather straightforward to
locally serve TM requests, such as TAR, NER and FQR.
87
In order to compute the LBTS value at each federate, a
distributed algorithm is required that exchanges messages
to coordinate the LBTS computation without deadlocks,
live-locks or undue performance degradation. Several such
algorithms have been proposed in PADS literature – see
for example (Perumalla and Fujimoto 2001). A close
cousin to the LBTS computation is Global Virtual Time
(GVT) computation in optimistic simulation (Bellenot
1990). Another closely related work in general distributed
processing is that of distributed “flush barrier” algorithms
(Ahuja 1990). Analogous to these algorithms, several vari-
ants exist for LBTS computation.

One such algorithm is based on global asynchronous
distributed reductions. In this algorithm, the minimum lo-
cal (conditional) guarantee on timestamps of events that
could be generated is taken at each federate, and a global
reduction algorithm is used to find the minimum of all the
local minima. This can be performed fairly quickly and
scalably, in log(Np) steps, where Np is the number of feder-
ates, using a butterfly pattern of communication (Brooks
1986). Assuming there are no events in transit across fed-
erates, the minimum of the minima gives a tight lower
bound on LBTS.

3.1.4 Transient Messages

What if there are some events that are in transit in the net-
work while the global minimum of local minima is being
computed? This is called the transient event problem, in
which some events could become potentially unaccounted
for if they are not considered into the global algorithm.
There exist different schemes by which transient events
can be accounted for, albeit at the cost of either additional
messages being sent/received and/or additional time spent
blocking while waiting for all transient events to reach
their destinations. A popular one is called the Mattern’s al-
gorithm (Mattern 1993) in which distributed consistent
cuts are used to mark and recognize events belonging to
distributed different snapshots.

For conservative parallel simulations, it is clear that
the larger the lookahead, the fewer the number of LBTS
computations that need to be performed, because of in-
creased concurrency enabled by the larger lookahead.

3.1.5 Serving Synchronization Requests

The RTI internally maintains a priority queue of TSO
events, ordered by their timestamps. When a federate in-
vokes TAR(T), the RTI first examines if LBTS is greater
than T. If so, the request is trivially satisfied – the RTI de-
livers all events from its TSO queue whose timestamps are
less than or equal to T, and then issues a TAG(T). If T is
greater than LBTS, then the RTI initiates a new distributed
LBTS computation (if one is not already in progress). The
lesser of T and minimum timestamp in TSO queue is used

Perumalla

as this federate’s contribution in the LBTS computation.
The operation is similar for NER(T) invocations as well,
except that the TAG time could be smaller than T if events
with timestamps earlier than T are delivered.

3.2 Other HLA TM Services

In addition to supporting basic integration of conservative
federates, the HLA TM services include primitives to inte-
grate federates that use advanced simulation methods, such
as event retractions and optimistic event execution.

3.2.1 Event Retractions

In simulations, models are sometimes written to un-
schedule previously generated events. For example, al-
though a move event is scheduled on an entity at T, it
might have to be retracted later if the entity gets destroyed
after the event is scheduled but prior to T. Such event re-
tractions are called user-level retractions. Typically, user-
level retractions are enabled as follows. When an event is
scheduled, the system returns a handle to that event. Later,
if and when that event needs to be retracted, a retract
primitive is invoked to which the event handle is given.
The system then un-schedules that event. The HLA RTI
provides such a framework using event handles and retrac-
tion primitive. Interestingly, the same service is also used
for “system-level” retraction in optimistic simulations, as
described next.

3.2.2 Optimistic Event Execution

As mentioned previously, the HLA supports conservative
federates as well as optimistic federates, as well as their
arbitrary combinations. Optimistic federates differ from
their conservative counterparts in that they do not discard
events after processing them. Instead they keep the events
around, and also maintain copies of simulation states be-
fore modifying them as part of event processing. Since op-
timistic federates do not rely on lookahead, they execute
their events without blocking for safety. In particular, they
use the FQR(T) service of the RTI to force the RTI to de-
liver events from its TSO queue even if LBTS has not pro-
gressed past T. The difference between FQR and NER is
that FQR does not guarantee that it has delivered all events
with timestamp less than T. Thus, the federate will have to
rollback its computation if/when it later receives events
whose timestamp is less than T. There are two main parts
to such rollback: (1) undo local computation by restoring
the state prior to erroneous event processing (2) undo all
events erroneously sent to other federates. The first part is
typically federate-specific, and hence the HLA does not
provide a standard service for it. The second part is real-
ized by using the event retraction service described previ-
ously. When an optimistic federate receives a retraction re-
88
quest, it performs an event annihilation procedure
canceling the original event.

Note that the HLA RTI shields conservative federates
from optimistic events by holding on to optimistic events
in RTI TSO queues until such a time that LBTS sweeps
past their timestamps. If the optimistically scheduled
events happen to get retracted by their sending federates,
those events will get annihilated within the RTI’s TSO
queues without ever getting delivered to the (conservative)
destination federate.

4 RECENT ADVANCES

While parallel and distributed simulation as an area has
been well studied, some advances are being made recently
along multiple fronts. These advances are driven by new
challenges raised by high-performance needs of applica-
tions such as large-scale telecommunication network simu-
lation (e.g., Internet-scale TCP/IP simulations), hard-
ware/VLSI system simulations. Some of these advances
are examined next.

4.1 Mixed Synchronization

When large application scenarios are considered, it often is
the case that the models are heterogeneous in nature, with
varying amounts of computational loads across spatial di-
mensions and varying levels of modeling. For example,
simulations of the Earth’s magnetosphere inherently con-
tain models of varying granularity and synchronization re-
quirements (Karimabadi, et al. 2005).

In contrast to the heterogeneity needs, the traditional
method of prevalence in building parallel simulation sys-
tems is to build a system specifically for one synchroniza-
tion method (e.g., one conservative algorithm, or one opti-
mistic variant). This tradition has two fallouts. First,
additions to the underlying framework involve major over-
hauls. Secondly, modelers need to either determine and
stick to one mechanism, or re-code their models to switch
to a new mechanism.

A set of systems are being constructed to alleviate this
problem when the application needs to accommodate mul-
tiple synchronization types and be resilient to future
changes to parts of its models. An early system that pro-
vided this type of interface is the Maisie language
(Bagrodia and Liao 1994), in which entities (equivalent to
LPs) are capable of choosing and/or changing their own
conservative/optimistic modes dynamically at runtime.
Later, the HLA has been designed to accommodate multi-
ple simulator types, including optimistic and conservative
ones, although this has been leveraged mostly in the con-
text of coarse-grained simulators, and is not readily ame-
nable to high-performance execution of fine-grained simu-
lations. More recently, the µsik system (Perumalla 2005)
was developed that provides a fine-grained simulation en-

Perumalla

vironment for mixed mode synchronization across shared
memory and distributed memory platforms.

4.2 Lookahead Extraction

In purely conservative parallel simulations, the single most
important parameter is the lookahead value. A small loo-
kahead can have a large detrimental effect on overall run-
time performance. Thus lookahead extraction has been a
subject of intense study in PADS literature.

Recently many important analytic applications have
been developed using conservative synchronization,
largely in the network simulation context. In these applica-
tions, the models are prohibitively complex to apply opti-
mistic simulation techniques but are also very tightly-
coupled, exhibiting very small lookahead between LPs.
Wireless network simulation is one such application (e.g.,
predicting the performance of IEEE 802.11 Wi-Fi net-
works). Static lookahead in such applications is typically
very small, given by the time for electromagnetic signal
propagation (at close to speed of light) over short dis-
tances. When coupled with the need to use such simula-
tions in real-time context (for network emulation), the gain
from improving the lookahead even by a small amount can
be quite significant.

It is precisely in this context that recent efforts have
focused on extracting as much lookahead information as
possible from the models. Moving from purely static esti-
mates of lookahead, these new techniques examine the LP
inter-dependency structures dynamically at simulation run-
time, and manage to extract values of lookahead that are
higher than those estimated statically. Two such efforts are
presented in (Zhou, et al. 2004) and (Liu and Nicol 2002).

4.3 Critical Channel Traversal

Another method of improving performance of conservative
simulations focuses on scheduling alternatives. In the most
common event scheduling approach, events from the future
event list are executed in an earliest-timestamp-first man-
ner. While being very simple to implement, such a scheme
is less than optimal when caching and other effects are
considered. Newer scheduling algorithms such as Critical
Channel Traversal are designed for exposing and taking
advantage of inherent locality of event execution in con-
servative simulations. Benefits include better cache per-
formance due to immediate reuse of event buffers across
causal chain of events and improved spatial locality due to
reflection of LP inter-dependence on event processing pat-
terns. The gains from such sophisticated event scheduling
approaches have been shown to be significant, with very
high event rates achieved even on fine-grained applications
such as ATM network simulations. LPs that are “closely
related” with respect to event communication are grouped
together as “tasks”. Tasks are then used as the primary
89
scheduling units, and LPs within a task form secondary
scheduling units. When LPs within a task interact among
themselves more heavily than with other LPs outside that
task, locality is enhanced and event scheduling overheads
are decreased. Other beneficial effects include automatic
realization of dynamic load balancing on shared-memory
multiprocessor platforms, because processors operate on a
dynamic pool of active tasks rather than with a traditional
static assignment of LPs to processors.

While CCT is useful for enhancing performance, it
does require the application be amenable to grouping of
LPs into tasks, and is specific to conservative (lookahead-
based) parallel simulations.

4.4 Optimizations for Efficient Rollback

While lookahead extraction is the bane of conservative
parallel simulations, rollback support mechanism is its
counterpart in optimistic parallel simulations. Efficient
rollback techniques thus play an important role in the mak-
ing or breaking of optimistic schemes. For a long time,
checkpointing-based approaches were the dominant form
of enabling rolling back computations. However, these im-
posed undue amount of overheads, making optimistic
simulation schemes unappealing to many applications. An
alternative scheme called reverse computation has been re-
cently developed to alleviate this problem, as described
next.

4.4.1 State Saving for Rollback

One of the common approaches for rolling back incorrect
computations is based on checkpointing, also called state-
saving. Checkpointing methods make a copy of the state
variables of LPs before the variables are overwritten by op-
timistic event computations. If and when those event com-
putations have to be negated (due to arrival of a remote
event with an earlier timestamp, or due to with-
drawal/cancellation of an event by a remote processor),
state variable values are fetched from the checkpoint log
and overwritten, thereby restoring the LP state to their cor-
rect values corresponding to the fault point.

The most commonly used state-saving technique is
copy state-saving (CSS), in which a copy of the entire state
is made before an event is executed. In CSS, the state is
saved every time an event is processed. A variation of copy
state-saving is called periodic state saving (PSS). PSS is a
generalized technique in which state is saved only periodi-
cally, say, every pth event, instead of every event as is done
with CSS. This implies that some events save state before
processing, and others do not. The former set of events can
be rolled back easily by restoring the state to the saved
values. The latter set of events needs special treatment,
since they do not have saved state. The state restoration for
these events is achieved by starting with a past processed

Perumalla

event that does have saved state, and then re-executing the
sequence of events from that past event to the event just
before the rolled back event.

Incremental state-saving (ISS) is an alternative state-
saving technique in which only the modified portions are
saved just before modification. Modifications to state are
logged as pairs of address-value pairs, and stored in a log
array for each LP. Optimistic simulators can permit CSS,
PSS and ISS to be used simultaneously together in the
same application, although most applications tend to use
them mutually exclusively, because either the LP states are
uniformly too large (warranting ISS) or uniformly small
(warranting CSS) or in between (warranting PSS). A de-
tailed treatment of compiler-based techniques to optimize
the appropriate state saving operations is given in (Gomes
1996).

As it turns out, state saving techniques imposes two
types of penalties: (1) a memory copy overhead during
forward computation (2) memory consumption beyond that
of conservative execution. The degree of severity varies
with the particular variant of state saving, but they carry
across all variants. The first penalty reduces the efficiency
of parallel execution (e.g., a four-processor optimistic
simulation running at the same speed as that of a uni-
processor conservative simulation). The second type of
penalty introduces not only undue memory overheads for
fine-grained applications (fine grained events, by defini-
tion, execute rapidly, and therefore can produce a long
state vector log equally rapidly), but also pollute the proc-
essor cache, thereby reducing forward computation speed.

4.4.2 Reverse Computation

Alternatives to checkpointing solutions evaded the com-
munity until recently a reverse computation (RC) approach
was proposed. In this approach, values of state variables
are not saved for rollback support. Instead, as and when
rollback is initiated, a perfect inverse of event computation
is invoked that serves to recover the modified state values
to their original values. In other words, the overwritten
state values are reconstructed by executing the forward
code backwards.

The RC approach has been successfully applied in dif-
ferent application domains, such as telecommunication
network simulations (Carothers, et al. 1999, Garrett, et al.
2003) and physical system simulations (Tang, et al. 2005).
Among optimistic simulation systems that currently sup-
port RC are ROSS (Carothers, et al. 2002) and µsik
(Perumalla 2005).

Note that PSS and RC can be seen as duals of each
other. Figure 1 depicts the relation between PSS and RC
using a generic snapshot of execution at which rollback is
initiated. The rightmost vertical bar represents the latest
optimistically executed event. The light vertical bar in the
middle represents the point to which computation needs to
9

be rolled back. The left-most dark vertical line indicates
the most recent periodic checkpoint before the rollback
point. If RC is used, reverse execution is invoked on all
events from left to middle. If PSS is used, coast forwarding
computation (event re-execution to regenerate state) is in-
voked from left to middle. Clearly, the efficiency of RC or
PSS depends on expected distance of left or right points,
respectively, from the rollback point.

Figure 1: Comparison of Rollback Operation Using Re-
verse Computation vs. Periodic State Saving

However, a crucial difference between RC and PSS is
that the state size is independent of the computing platform
for RC, whereas it depends on sizes of data types in PSS.
Also, PSS has the drawback that not all events from time
points earlier than GVT/LBTS can be reclaimed for reuse
(i.e., cannot be fossil-collected). Those events that fall be-
tween the periodic checkpoint time and GVT/LBTS need
to be retained for coast-forwarding (Perumalla 1999).

4.5 Intra-Processor Lookahead

In large-scale application scenarios, each processor typi-
cally hosts many LPs. For example, in Internet simulations,
each processor simulates thousands of network nodes. Tra-
ditional conservative parallel simulation maps network
links crossing processor boundaries to in/out channels in
null-message algorithms, and uses the minimum among all
transmission delays as the lookahead values on all those
out channels, irrespective of delays added by internal net-
work nodes. However, time advances can be improved sig-
nificantly if the additional topology information can be in-
corporated into the null message algorithm. The concept of
“internal lookahead”, illustrated in Figure 2, is defined as
the minimum among all shortest paths between all pairs of
in- and out-channels. This is easily computed as the sum of
transmission delays along the shortest paths from all in
channels to all out channels, which can add up to much
more than lookahead along one transmission link. Adding
this “internal lookahead” to null message timestamps sig-
nificantly improves concurrency of the conservative simu-
lation, delivering time advances in increments larger than
one lookahead. The internal lookahead feature is supported
in newer systems such as libSynk (Perumalla 2004).

Reverse Computation

Forward Computation

Rollback
point

Periodic
Checkpoint

Coast Forwarding

Event Computation

Straggler or cancelled event
0

malla
Peru

Figure 2: Illustration of Internal Lookahead

4.6 PADS Applied to Sequential Execution

Interestingly, even though parallel/distributed simulation
techniques are developed specifically for execution on par-
allel computing platforms, they are in fact being discov-
ered to be useful even in a sequential processing (uni-
processor) setting. When properly applied, the concepts
developed for parallel execution can also be used to im-
prove the speed of sequential simulation as an efficient al-
ternative to traditional execution based on a central event
list.

4.6.1.1 Conservative Execution on 1 Processor

The beneficial effects of parallel/distributed simulation
techniques for sequential execution arise primarily due to
(a) lower priority queue overheads (b) better caching ef-
fects (Curry, et al. 2005, Simmonds, et al. 2002). In a cen-
tral event list implementation, events are organized into
one priority queue (PQ), whereas in a parallel implementa-
tion, they are organized into multiple PQs. If Ne is the size
of PQ encountered on average by each event, each event
insertion/deletion incurs O(log(Ne)) time overhead (assum-
ing a general-purpose PQ implementation). On the other
hand, if parallel simulation of the same application organ-
izes the simulation as Np logical processes, then, with algo-
rithms such as critical channel traversal (Xiao, et al. 1999),
each insertion/deletion of an event incurs priority queue
sizes that are smaller than Ne/Np. This makes the amortized
event overhead less than O(log(Ne/Np) + log(Np)), where
log(Ne/Np) is the time to enqueue events into event priority
queues and log(Np) is the time taken to order the LPs by
their earliest event timestamps. Moreover, reuse of mem-
ory buffers induces good caching effects which results in
significant increase in performance. Such reuse of buffers
for events processes immediately after one another natu-
rally occurs for a chain of causally related events that fall
within the same safe-time window.

4.6.1.2 Optimistic Execution on 1 Processor

Similar to application of conservative parallel simulation to
sequential simulation, there are two different ways in
which sequential simulation can benefit from optimistic
parallel simulation methods: aggregate event processing
and pipe-lined event processing.
91
In aggregate event processing, two or more events in
the future event list are scheduled together (invoked with
one “aggregate event handler”), with the expectation that
no intermediate event computation arises between them to
break their aggregate. In other words, the runtime behaves
as though the events are scheduled as one event, rather
than as multiple events. Rollback is initiated on the aggre-
gate computation if violation of this assumption is detected
at runtime (e.g., when a new event is scheduled by one of
the events in the aggregate with timestamp intervening the
aggregate’s range of timestamps). The advantage of this
approach is two-fold: event scheduling costs are reduced
and compiler optimizations (such as common sub-
expression elimination) are realized on the aggregate event
handler.

In pipe-lined event processing, newly generated events
are executed at the tail of event handler of the generating
event, bypassing the event queue, thereby reducing event
queuing overheads and improving locality. Rollback is ini-
tiated on the tail-executed events if their time order is de-
tected to be violated by later events.

4.6.1.3 Supercomputer-based Parallel Simulations

Another recent advance is in the realm of large-scale paral-
lel computing platforms. Applications such as Internet
simulations are serving to motivate the use of high-end
computing for parallel discrete event simulation. With nas-
cent interest in utilizing supercomputing facilities for such
simulations, a few leading efforts have focused on porting,
testing and improving traditional techniques on supercom-
puters. The state of the art in this area has now pushed the
capabilities to one thousand processors and beyond.

Some of these include the demonstration of the
PHOLD benchmark executed on 1,033 processors on the
Pittsburgh Supercomputing Center using the DSIM Time
Warp system (Chen and Szymanski 2005), and the RC-
based PHOLD execution on 1,024 processors using the
µsik system (Perumalla 2005) at the San Diego Supercom-
puting Center. The latter includes conservative, optimistic
and mixed-mode simulations. Figure 3 shows processing
time per event on PHOLD with increasing number of LPs
and message population (MSG), with the largest recorded
configuration containing 1 million LPs and 1 billion mes-
sages active at all times during the simulation. The amor-
tized overhead of less than 20 microseconds per event
brings it within the reach of even the most demanding fine
grained simulation.

Conservative simulations have pushed the scalability
limits to 512 processors on physical system simulations
(Perumalla, et al. 2006) and to 1,536 processors (Fujimoto,
et al. 2003) on network simulations. Additional refine-
ments were shown using a variant of null message algo-
rithm in (Park, et al. 2004).

Perumalla

0
5

10
15
20
25
30
35

0 128 256 384 512 640 768 896 1024
Number of Processors

M
ic

ro
-s

ec
 p

er
 e

ve
nt

LP=1 thousand, MSG=1 million
LP=1 million, MSG=100 million
LP=1 million, MSG=1 billion

Figure 3: Runtime Performance Results from Optimistic
Simulation of the PHOLD Benchmark on a Supercomputer

4.7 Approximate Time

Another exciting development in relatively recent past is
the articulation of a new concept called Approximate
Time. In this world model, the traditional notion of abso-
luteness of timestamps is relaxed into a range, rather than a
point, on the simulation time axis. The range notion hinges
on the realization that models typically have implicit fuzzi-
ness in the timestamps they generate (e.g., variation in the
time taken for a battle tank to travel a given distance). This
implicit uncertainty in timestamps can be exploited to relax
the tight lookahead-based dependencies across processors,
and consequently the parallel simulation speed can be im-
proved. Systems that exploit temporal uncertainty are
documented in (Fujimoto 1999, Loper 2002, Loper and Fu-
jimoto 2004).

4.8 Fault Tolerance and Security

With the increase in the number of processors/federates
participating in a large integrated simulation, the probabil-
ity increases that one or more of the processors fail during
simulation. Transparent techniques to sustain the progress
of the simulation despite such crashes is a subject of recent
interest. Schemes to incorporate such fault tolerance and/or
continued optimistic execution are now being explored
(Santoro and Quaglia 2006) (Chen, et al. 2006).

Also, secure exchange of information across proces-
sors without compromising confidentiality of information
contained in models is an important facet of interoperable
integrated simulations (e.g., preventing undesirable leaking
of model information in joint exercises by different na-
tions). This concern for security of information exchange
during simulation raises new challenges, such as runtime
overhead for encrypted communication, which are begin-
ning to be addressed only recently.
92
5 EXPANDING SIMULATION PLATFORMS

Another exciting dimension of new advances in parallel
simulation is in the use of novel computing platforms.
With the advent of new computing hardware such as net-
work co-processors and general-purpose graphical process-
ing units, parallel simulation techniques are being revis-
ited. Here we document some recent efforts in this light.

5.1 General-Purpose Graphical Processing Units

Traditionally, graphics cards for workstations and personal
computers have been designed to handle intensive graphics
operations to enable high speed rendering of complex ob-
jects and scenes. More recently, their programmability has
reached a point to make them suitable for more general-
purpose computation (Owens, et al. 2005, Pharr and Fer-
nando 2005). As illustrated in Figure 4, certain applications
have been shown to execute much faster on GPGPUs than
on CPUs (Owens, et al. 2005). Texture data are input to a
fragment processors (FPs), which “render” the results of
their computation to target textures.

Figure 4: Simplified Schematic of GPGPU Operation

Since GPGPUs lack efficient random write access to

memory (texture) locations, the traditional discrete event
loop cannot be employed. Instead, algorithms such as the
one shown in Figure 5 are more suitable. Computing the
step dtmin=min(dti), for example, is efficient on
GPGPUs, taking only logarithmic time.

While not end of simulation
/*Find next update times for all LPs*/
For all (i): dti = compute_dt(i)
/*Find minimum among all update times*/
dtmin = min(dti) of all (i)
/*Advance current simulation time*/
tnow += dtmin
/*Advance all LPs to current time*/
For all (i): compute_state(i, dtmin)

Figure 5: A Variant of the Typical Sequential Discrete
Event Algorithm Modified to Suit Execution on GPGPUs

While time-stepped approaches have been studied in

simulations using GPGPUs, not enough work has focused

FP

FP

FP

FP

Texture
Memory

FP=Fragment Processor

Perumalla

on discrete event simulation (DES) on GPGPU. Some re-
cent work has shown the potential of GPGPUs for discrete
event simulation (Perumalla 2006), showing four-fold
speedup of GPGPU-based execution over that of regular
processor.

5.2 Network Co-Processors and Hybrid Processors

The programmability of network co-processors is also be-
ing exploited to speed up certain operations. One of the
uses is in off-loading state saving and other checkpointing
functionality to programmable Myrinet network switches
(Quaglia and Santoro 2003, Santoro and Fujimoto 2004).
This helps free up the main processor to continue with
main computation, minimizing rollback overhead. Another
interesting use of co-processor is in fast computation of
LBTS values in optimistic simulation (Rosu, et al. 1997),
exploiting the low latency access to network operations by
programs executing on the network card.

5.3 Other Architectures

Other architectures include Web-based execution, such as
used in Extensible modeling and simulation framework
(Moves-Institute 2006), and Internet/grid-based architec-
tures, as used in the master-worker paradigm of (Park and
Fujimoto 2006). The Cell processor from IBM is another
new architecture that is poised to be suitable for high-
performance parallel simulation, similar to the GPGPUs.

Tera- and Peta-Scale Computing Platforms such as the
Blue Gene/L and Cray XT3 impose unprecedented scal-
ability challenges for which it is unclear if traditional tech-
niques will be adequate. For example, it is unclear if fully
peer-to-peer architecture of traditional parallel simulation
is appropriate in the presence of frequent node failures.
Concerns such as fault tolerance and security are poised to
become critical on such large-scale platforms. Similarly,
recent multi-core processor architectures are yet to be fully
explored. For example, key problems such as contention
for I/O and communication among cores on a single sys-
tem need to be resolved, possibly via staggered execution.

6 SUMMARY

This tutorial presented an overview of parallel and distrib-
uted simulation systems, their traditional synchronization
approaches and a case study using the HLA standard inter-
face and implementation. Recent advances, such as scal-
ability to supercomputing platforms and novel rollback
techniques have been presented. The interaction of parallel
simulation with newly emerging hardware architectures is
outlined.

The future outlook seems to warrant focus on needs
from larger scale simulation scenarios (e.g., large-scale
human behavior modeling & simulation, and large traffic
93
simulations), to be achieved on high-end computing plat-
forms. There is also interest on high-performance simula-
tions on low-end platforms such as using the multi-core ar-
chitectures, GPGPUs and other co-processor-based
systems. However, practical challenges remain to be ex-
plored, including: (a) wide spectrum of network latencies
(b) highly dynamic participation by processors (c) seman-
tics and implementations of always-on presence for large
simulations.

ACKNOWLEDGEMENTS

This paper has been authored by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 with the U.S. Department
of Energy. Accordingly, the United States Government re-
tains and the publisher, by accepting the article for publica-
tion, acknowledges that the United States Government re-
tains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States
Government purposes.

REFERENCES

"IEEE Std. 1516. 2000. High Level Architecture," in Insti-
tute of Electrical and Electronic Engineers.

Ahuja, M. 1990. Flush Primitives for Asynchronous Dis-
tributed Systems. Information Processing Letters5-12..

Bagrodia, R. and W.-T. Liao. 1994. Maisie: A Language
for the Design of Efficient Discrete-Event Simula-
tions. IEEE Transactions on Software Engineering,
vol. 20(4), pp. 225-238.

Banks, J., J. S. Carson II, and B. L. Nelson. 1996. Dis-
crete-Event System Simulation. Upper Saddle River,
N.J.: Prentice Hall.

Bellenot, S. 1990. Global Virtual Time Algorithms," in
Proceedings of the SCS Multiconference on Distrib-
uted Simulation: Society for Computer Simulation, pp.
122-127.

Brooks, D. E. 1986. The Butterfly Barrier. The Interna-
tional Journal of Parallel Programming, vol. 14295-
307.

Carothers, C., D. Bauer and S. Pearce. 2002. ROSS: A
High-Performance, Low Memory, Modular Time
Warp System. Journal of Parallel and Distributed
Computing, vol. 62(11), pp. 1648-1669.

Carothers, C., K. S. Perumalla and R. M. Fujimoto. 1999.
Efficient Optimistic Parallel Simulations using Re-
verse Computation. ACM Transactions on Modeling
and Computer Simulation, vol. 9(3), pp. 224-253.

Chandy, K. M. and J. Misra. 1978. Distributed Simulation:
A Case Study in Design and Verification of Distrib-
uted Programs. IEEE Transactions on Software Engi-
neering, vol. SE-5(5), pp. 440-452.

Perumalla

Chandy, K. M. and J. Misra. 1981. Asynchronous Distrib-

uted Simulation via a Sequence of Parallel Computa-
tions. Communications of the ACM, vol. 24(4), pp.
198-205.

Chen, D. and B. K. Szymanski. 2005. DSIM: Scaling Time
Warp to 1,033 Processors. In Proceedings of the 2005
Winter Simulation Conference. Piscataway, NJ: Insti-
tute of Electrical and Electronics Engineers.

Chen, D., S. J. Turner and W. Cai. 2006. A Framework for
Robust HLA-based Distributed Simulations. In Pro-
ceedings of the 20th Workshop on Principles of Ad-
vanced and Distributed Simulation.

Curry, R., C. Kiddle, R. Simmonds and B. Unger. 2005.
Sequential Performance of Asynchronous Conserva-
tive PDES Algorithms. In Proceedings of the 19th
Workshop on Principles of Advanced and Distributed
Simulation.

Fujimoto, R. M. 1990. Parallel Discrete Event Simulation.
Communications of the ACM, vol. 33(10), pp. 30-53,
1990.

Fujimoto, R. M. 1993. Parallel Discrete Event Simulation:
Will the Field Survive? ORSA Journal on Computing,
vol. 5(3), pp. 213-230.

Fujimoto, R. M. 1999. Exploiting Temporal Uncertainty in
Parallel and Distributed Simulations. In Proceedings
of the 13th Workshop on Parallel and Distributed
Simulation.

Fujimoto, R. M. 2000. Parallel and Distributed Simulation
Systems: Wiley Interscience.

Fujimoto, R. M., K. S. Perumalla, A. Park, H. Wu, M.
Ammar, and G. F. Riley. 2003. Large-Scale Network
Simulation - How Big? How Fast? In Proceedings of
the 11th International Symposium on Modeling, Analy-
sis and Simulation of Computer and Telecommunica-
tion Systems.

Garrett, Y., D. C. Christopher and K. Shivkumar. 2003.
Large-Scale TCP Models Using Optimistic Parallel
Simulation. In Proceedings of the 17th Workshop on
Parallel and Distributed Simulation.

Gomes, F. 1996. Compiler Techniques for State Saving in
Parallel Discrete Event Simulation, thesis, University
of Calgary, Canada.

Jefferson, D. 1985. Virtual Time. ACM Transactions on
Programming Languages and Systems, vol. 7(3), pp.
404-425.

Jha, V. and R. Bagrodia. 1994.A unified framework for
conservative and optimistic distributed simulation. In
Proceedings of the 8th Workshop on Parallel and Dis-
tributed Simulation..

Karimabadi, H., J. Driscoll, Y. Omelchenko, K. S. Peru-
malla, R. M. Fujimoto, and N. Omidi. 2005. Parallel
Discrete Event Simulation of Grid-based Models:
Asynchronous Electromagnetic Hybrid Code. Interna-
tional Conference on Applied Parallel Computing,
2005.
94
Lamport, L. 1978. Time, Clocks, and the Ordering of
Events in a Distributed System. Communications of
the ACM, vol. 21(7), pp. 558-565.

Lee, B.-S., W. Cai and J. Zhou. 2001. A Causality Based
Time Management Mechanism for Federated Simula-
tions. In Proceedings of the 15th Workshop on Paral-
lel and Distributed Simulation, pp. 83-90.

Liu, J. and D. Nicol. 2002. Lookahead Revisited in Wire-
less Network Simulations. In Proceedings of the 16th
Workshop on Parallel and Distributed Simulation.

Loper, M. 2002. Approximate Time and Temporal Uncer-
tainty in Parallel and Distributed Simulation, thesis,
Georgia Institute of Technology.

Loper, M. and R. Fujimoto. 2004. A Case Study in Ex-
ploiting Temporal Uncertainty in Parallel Simulations.
International Conference on Parallel Processing,
2004.

Mattern, F. 1993. Efficient Algorithms for Distributed
Snapshots and Global Virtual Time Approximation.
Journal of Parallel and Distributed Computing, vol.
18(4), pp. 423-434.

Extensible Modeling and Simulation Framework (XMSF).
2006. Moves-Institute. Available online via
<http://www.movesinstitute.org/xmsf/
xmsf.html>.

Owens, J. D., D. Luebke, N. Govindaraju, M. Harris, J.
Kruger, A. E. Lefohn, and T. J. Purcell. 2005. A Sur-
vey of General-Purpose Computation on Graphics
Hardware. Eurographics 2005.

Park, A. and R. Fujimoto. 2006. Aurora: An Approach to
High Throughput Parallel Simulation. In Proceedings
of the 20th Workshop on Principles of Advanced and
Distributed Simulation.

Park, A., R. M. Fujimoto and K. S. Perumalla. 2004. Con-
servative Synchronization of Large-scale Network
Simulations. In Proceedings of the 18th Workshop on
Parallel and Distributed Simulation.

Perumalla, K. S. 1999. Techniques for Efficient Parallel
Simulation and their Application to Large-scale Tele-
communication Network Models, thesis, Georgia In-
stitute of Technology.

libSynk, Perumalla, K. S. 2004. Available online via
<http://www.cc.gatech.edu/computing/
pads/kalyan/libsynk.htm>.

Perumalla, K. S. 2005. µsik - A Micro-Kernel for Paral-
lel/Distributed Simulation Systems. In Proceedings of
the 19th Workshop on Principles of Advanced and Dis-
tributed Simulation.

Perumalla, K. S. 2006. Discrete Event Execution Alterna-
tives on General Purpose Graphical Processing Units
(GPGPUs). In Proceedings of the 20th Workshop on
Principles of Advanced and Distributed Simulation.

Perumalla, K. S. and R. M. Fujimoto. 2001. Virtual Time
Synchronization over Unreliable Network Transport.

http://www.movesinstitute.org/xmsf/xmsf.html
http://www.movesinstitute.org/xmsf/xmsf.html
http://www.cc.gatech.edu/computing/pads/kalyan/libsynk.htm
http://www.cc.gatech.edu/computing/pads/kalyan/libsynk.htm

Perumalla

In Proceedings of the 15th Workshop on Parallel and
Distributed Simulation.

Perumalla, K. S., R. M. Fujimoto and H. Karimabadi.
2006. Scalable Simulation of Electro-magnetic Hybrid
Codes. In Proceedings of the 6th International Con-
ference on Computational Science.

Pharr, M. and R. Fernando. 2005. GPU Gems 2: Pro-
gramming Techniques for High-Performance Graph-
ics and General-Purpose Computation: Addison
Wesley Professional.

Quaglia, F. and A. Santoro. 2003. Non-blocking Check-
pointing for Optimistic Parallel Simulation. IEEE
Transactions on Parallel and Distributed Systems, vol.
14(6), pp. 593-610.

Rajaei, H., R. Ayani and L.-E. Thorelli. 1993. The Local
Time Warp Approach to Parallel Simulation. In Pro-
ceedings of the 7th Workshop on Parallel and Distrib-
uted Simulation.

Rao, D. M., N. V. Thondugulam, R. Radhakrishnan and P.
A. Wilsey. 1998. Unsynchronized Parallel Discrete
Event Simulation. In Proceedings of the 1998 Winter
Simulation Conference, pp. 1563-1570. Piscataway,
NJ: Institute of Electrical and Electronics Engineers.

Rosu, M., K. Schwan and R. M. Fujimoto. 1997. Support-
ing Parallel Applications on Clusters of Workstations:
The Intelligent Network Interface Approach. IEEE
Symposium on High Performance Distributed Com-
puting, 1997.

Santoro, A. and R. M. Fujimoto. 2004. Off-Loading Data
Distribution Management to Network Processors in
HLA-Based Distributed Simulations. Distributed
Simulations and Real-Time Applications, 2004.

Santoro, A. and F. Quaglia. 2006. Transparent Optimistic
Synchronization in HLA via Time Management Con-
verter. In Proceedings of the 20th Workshop on Princi-
ples of Advanced and Distributed Simulation.

Simmonds, R., C. Kiddle and B. Unger. 2002. Addressing
Blocking and Scalability in Critical Channel Travers-
ing. In Proceedings of the 16th Workshop on Parallel
and Distributed Simulation.

Tang, Y., K. S. Perumalla, R. M. Fujimoto, H. Karimabadi,
J. Driscoll, and Y. Omelchenko. 2005. Optimistic Par-
allel Discrete Event Simulations of Physical Systems
using Reverse Computation. In Proceedings of the19th
Workshop on Principles of Advanced and Distributed
Simulation.

Xiao, Z., B. Unger, R. Simmonds and J. Cleary. 1999.
Scheduling Critical Channels in Conservative Parallel
Discrete Event Simulation. In Proceedings of the 13th
Workshop on Parallel and Distributed Simulation.

Zhou, J., Z. Ji, M. Takai and R. Bagrodia. 2004. MAYA:
Integrating hybrid network modeling to the physical
world ACM Transactions on Modeling and Computer
Simulation, vol. 14(2), pp. 149-169.

95
AUTHOR BIOGRAPHIES

KALYAN S. PERUMALLA is a senior researcher in the
Computational Sciences and Engineering Division at the
Oak Ridge National Laboratory. He also holds an adjunct
faculty appointment with the College of Computing, Geor-
gia Tech. He received a Ph.D. in Computer Science from
Georgia Tech (1999). Dr. Perumalla has over 10 years of
research and development experience in the area of parallel
and distributed simulation systems, including high-
performance runtime infrastructures and large-scale simu-
lation, and has published widely on these topics. He co-
developed the Federated Simulations Development Kit
(FDK), a widely-disseminated high-performance runtime
infrastructure for HLA-like distributed simulator federa-
tions. He has also built several additional research proto-
type systems and tools (e.g., for distributed debugging,
network modeling, interoperable simulations and parallel
optimization), most of which are in use by researchers
worldwide. He has served as co-PI on multiple federally-
funded projects on scalable parallel/distributed discrete
event simulation systems. His e-mail is <perumallaks
@ornl.gov> and his Web address is <http://www.
ornl.gov/~2ip>.

mailto:perumallaks@ornl.gov
mailto:perumallaks@ornl.gov
http://www.ornl.gov/~2ip
http://www.ornl.gov/~2ip

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

