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ABSTRACT

This paper describes efficient data structures, namely the
Indexed P-tree, Block P-tree, and Indexed-Block P-tree (or
IP-tree, BP-tree, and IBP-tree, respectively, for short), for
maintaining future events in a general purpose discrete event
simulation system, and studies the performance of their
event set algorithms under the event horizon principle. For
comparison reasons, some well-known event set algorithms
were also selected and studied; that is, the Dynamic-heap and
the P-tree algorithms. To gain insight into the performance
of the proposed event set algorithms and allow comparisons
with the other selected algorithms, they are tested under
a wide variety of conditions in an experimental way. The
time needed for the execution of the Hold operation is taken
as the measure for estimating the average time complexity
of the algorithms. The experimental results show that the
BP-tree algorithm and the IBP-tree algorithm behave very
well with all the sizes of the event set and their performance
is almost independent from the stochastic distributions.

1 INTRODUCTION

In a discrete event simulation system an event (or future
event) is a collection of actions that are scheduled to be
executed in a specific simulation time called event time. In
such a system events are kept in objects known as event
notices and maintained in a data structure known as event set.
An event notice is represented by a record with two fields,
t and a, where t is the scheduled time for its occurrence,
and a is the activity which is scheduled in time t (Fishman
1973, Mitrani 1982).

In a discrete-event simulation system based on the next-
event time-advance approach, the next-event time-advance
mechanism is responsible for the simulation clock; it ini-
tializes the simulation clock, and then it determines the
event times of future events. The simulation clock is then
advanced to the event time of the earliest event known as
next event (i.e., the event with the minimum event time) and
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the system state is updated to account for the occurrence of
this event. When the next event occurs, it is removed from
the event set and the simulation clock is advanced to the
time of the next event. The processing of this event may
lead to the generation and scheduling of additional (new)
future events. A new event is scheduled when its event
time t becomes known. Then, an event notice is created
and inserted into the event set in such a way that it is
ensured that this event will occur at the scheduled time t .
This type of simulation approach is referred to as discrete
event-driven simulation.

The responsibility for the execution of these operations
in a discrete event-driven simulation is due to an algorithm
which is known as an event set algorithm (or event scheduling
algorithm); that is, it

• scans the event set to determine the proper insertion
position for the new event,

• removes the next-event from the event set, and
• advances the simulation clock to the time of the

next-event.

It is obvious that being able to repeatedly select the event
notice from the event set that has the minimum event time
is essential. If all of the event notices in this event set are
known in advance, and their event times remain unchanged,
then the problem of determining the next event and updating
the simulation clock is easily solved by sorting the event
notices and retrieving them in order. In the simulation
process discussed above, however, it is often necessary to
insert new event notices into the event set as other events are
being processed. This leads to the following set of priority
queue operations:

• insert a new event notice into the event set (in a
proper position according to its event time),

• find the event notice with the minimum event time,
and
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• remove the event notice with the minimum event
time from the event set.

The above priority queue operations are the most frequent
operations required by a discrete event simulation system
and they are involved in any event scheduling algorithm.
Thus, it is clear that the main factor that affects the efficiency
of an event scheduling algorithm is the structure of the event
set.

The most important requirements of an event schedul-
ing algorithm are speed of operation and storage economy.
Many researchers have extensively studied this field and
presented both analytical and empirical results concerning
the time and space performance of many event schedul-
ing algorithms. They use different data structures for the
simulation of the event sets; that is, linear lists, special
kinds of trees, time-indexed lists, two-level structures and
many other. Moreover, they use different techniques for
the operations performed by the scheduling algorithms; see,
(Brown 1988, Franta and Maly 1975, Franta and Maly 1977,
Jonassen and Dahl 1975, Kaplan, Shafrir, and Tarjan 2002,
McCormack and Sargent 1981, Reeves 1984, Tan and Thng
2000) for an exposition of the main results.

The data structures used for the simulation of the event
set can generally be classified under three types; that is,
lists, tree structures and multi-lists. Lists are structures that
are based on the simple linear list. They include doubly
linked lists, indexed lists (Nikolopoulos and MacLeod 1993),
SPEEDES Queue which is based on the event horizon
technique (Steinman 1992, Steinman 1994, Steinman 1996)
and many other. Trees are structures that are based on
the simple binary tree, and include binary heaps (Andreou
and Nikolopoulos 1998, Franta and Maly 1975, Franta and
Maly 1977, Hwang and Steyaert, to appear), skip lists
(Nikolopoulos and MacLeod 1993), priority trees (Jonassen
and Dahl 1975, Lewis and Denenberg 1991, Nikolopoulos
and MacLeod 1993) which are studied here as well. Finally,
multi-lists are structures that are the result of a combination
of several types of lists. This is done in order to combine the
merits of two structures that may not perform as well when
implemented separately. Such structures are the calendar
queue and the SNOOPY calendar queue (Tan and Thng
2000).

This paper describes efficient data structures, namely
the Indexed P-tree, Block P-tree, and Indexed-Block P-tree
(or IP-tree, BP-tree, and IBP-tree, respectively, for short),
for the simulation event set. All the structures, combine the
advantages of both the P-tree and the static representation
of the list. The combination of the P-tree and the list
provides efficient date structures for the simulation event
set in the case where the event horizon technique is applied.
The main feature of each of our event set algorithm is
the efficiency of the merging process in the event horizon
technique; that is, the process of sorting the event notices
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of the secondary queue and inserting them back into the
event set. We point out that, in the horizon technique the
most time consuming operation performed by the event set
algorithm is the merging process of the secondary queue
back into the main event set.

To gain insight into the performance of the IP-tree, the
BP-tree and the IBP-tree, and allow comparisons with other
selected algorithms (i.e., Dynamic-heap and P-tree), they
are coded and tested under a wide variety of conditions in
an experimental way. The objective was to estimate the
average complexity of each algorithm. For this purpose, we
used a revised definition of complexity. That is, for a given
configuration of event set and a given distribution providing
the scheduled time, we estimate the time expected to be
needed for the execution of the Hold procedure (or Hold
model).

Two main parameters affect the execution time of the
above operations. They are (i) the schedule time T , and (ii)
the size N of the event set. The parameter T , which is given
by a stochastic distribution, determines how long an event
will remain in the event set. Six stochastic distributions
are especially chosen which are not only representative of
typical simulation problems but also capable of showing the
advantages and limitations of each algorithm. The parameter
N defines the notion of the small and large event sets. Tests
were performed with values of N from 64 (small event set)
to 262144 (large event set). This range is representative of
actual simulations and the behaviour of the algorithms for
N > 262144 can be extrapolated from the results.

The results of this work show that the IP-tree algorithm
combines time performance, storage economy and simplic-
ity of coding. The BP-tree and the IBP-tree algorithms
outperform the IP-tree algorithm, and the BP-tree algo-
rithm has a slightly better performance than the IBP-tree
algorithm.

The paper is organized as follows. Section 2 presents
the main features of the Hold model and the event horizon
technique. Section 3 describes the P-tree structure which
is the structure that our approach is based on. The IP-tree,
the BP-tree and the IBP-tree structures are described in
Sections 4, 5 and 6, respectively. An experimental evaluation
of the algorithms is presented in Section 7, where we also
compare the performance of the algorithms. Finally, Section
8 concludes the paper with a summary of our results.

2 HOLD AND EVENT HORIZON

As already mentioned, the two basic operations performed
on the event set by an event set algorithm are (i) insertion
of a new event notice into event set, and (ii) determination
and deletion of the notice of the next event. A standard
metric for comparison of the performance of an event set
algorithm is the time required for a Hold operation, which
combines both insertion and deletion operations (Andreou
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and Nikolopoulos 1998, Franta and Maly 1975, Law and
Kelton 2000, Mitrani 1982). Under the Hold model, event
notices are repeatedly deleted and then re-inserted with a
randomly reduced priority; this sequence of operations is
known as a Hold operation. The hold operation works as
follows:

(1) determine and remove the event notice with the
minimum event time Tmin from the event set; that
is, the current notice,

(2) increase the event time value of the current notice
by T , where T is a random variate distributed
according to some distribution F (t), and

(3) re-insert the new notice back into the event set;it
now has Tnew = Tmin + T event time.

The Hold model has two parameters: N , the number of
notices in the event set, and F , the distribution used to
determine the time an inserted event will occur. Thus, the
model allows the average combined time for insertion and
deletion to be measured as a function of the size of the
event set and the stochastic distribution.

The event horizon is a fundamental concept that applies
to both parallel and sequential discrete event simulations
(Rao and Kumar 1988, Steinman 1992, Steinman 1994,
Steinman 1996). Using event horizon one can improve the
performance of several event sets; that is, priority queue
data structures such as linked lists and various binary trees.

In order to exploit the event horizon for event set
management algorithms, it is assumed that as new events
are generated they are not inserted into the main priority
queue data structure immediately; they are collected in an
unsorted temporary (secondary) queue in such a way that
one can always track the event with the earliest event time.
As a result, when the event to be processed happens to be
in the secondary queue, the queue is sorted and then it is
“merged" back into the main priority queue.

The secondary queue is most frequently a linked list,
providing the advantage of inserting a new event in constant
time since the list is kept unsorted; it is sorted just before the
merging process. Merging the two data structures, however,
is not always a simple process. The main priority queue
(event set) itself may be a very complicated data structure.

3 P-TREE

A Priority-tree (or P-tree) is either empty or it is a sorted,
non-increasing sequence of nodes, the “left path", such that
to each node of the left path except the last one, is associated
a P-tree (possibly empty), the “right subtree". The nodes of
the right subtree associated with a node x on the left path,
are ranked between x and the left successor of x (Jonassen
and Dahl 1975, Lewis and Denenberg 1991, Nikolopoulos
and MacLeod 1993).
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Neglecting node values, a binary tree is a P-tree if and
only if each node having a right successor also has a left
successor. The terminal node on the leftmost path is the
element with the smallest key value. In order to insert a
new element x into a P-tree T the algorithm P-insert below
is applied recursively.
P-insert x into T :

1. If T = ∅ or x.v ≥ T .v, let x be the new root and
T its left subtree;

2. Otherwise search down the left path of T for the
first node y, if any, such that y.v ≤ x.v;

2.1 If none, append x as the new left leaf;

2.2 Otherwise y.v ≤ x.v ≤ z.v, where z is the
predecessor of y (y = z.�). P-insert x into
the right subtree of z;

where x, y and z denote nodes, u.� and u.v denote the left
subtree and the node value of u, respectively.

The detection of the event notice with the earliest time
value can be performed in constant time provided that there
is an additional pointer to the terminal notice on the left
path. After the removal of this notice, the last right subtree,
if it is not empty, is appended to the left path.

4 THE INDEXED P-TREE

An Indexed P-tree (or IP-tree) consists of a tree structure,
the P-tree, and a static representation of a list structure, the
I-list. The elements of the I-list point into specific event
notices in the P-tree; see Figure 1. Using the event horizon
technique, when the event horizon is crossed (i.e., when
the event to be processed happens to be in the secondary
queue), the secondary priority queue is sorted and then it
is merged back into the main priority queue (P-tree).
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Figure 1: An IP-tree structure; it consists of a list of pointers,
called I-list, and a P-tree.
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We next describe the main operations performed in a
discrete event simulation system using the IP-tree for the
simulation of the event set.

(i) Insert operation: According to the event horizon
technique, a new event notice is inserted in the
secondary queue, which is a linked list structure. As
the secondary queue is kept unsorted, the insertion
of a new event notice can be completed in constant
time.

(ii) Delete operation: The deletion of the current
event notice from the IP-tree structure can be im-
plemented in constant time as it only involves
deleting the current event notice from a P-tree
structure.

(iii) Merge operation: Suppose that the event notices
of the secondary queue have to be inserted into
a standard P-tree structure. To this end, for each
event notice the P-tree event set algorithm scans the
whole P-tree, starting each time from the root of
the tree, in order to determine its proper insertion
position. The IP-tree event set algorithm takes
advantage of the fact that the event notices in the
secondary list are sorted in decreasing order and
the I-list determines some specific subtrees of the
P-tree; recall that every subtree of a P-tree is a P-
tree itself. Thus, for each event notice the IP-tree
algorithm scans the I-list and determines the proper
insertion subtree. Then, it proceeds as the P-tree
algorithm and completes the insertion operation.
Thus, in order to insert the event notices of the
secondary list into the IP-tree there is no need to
scan the whole P-tree for each notice, meaning that
the P-insert operation, as it was described before,
is not necessary to start from the root of the P-tree.

In the merging process, some of the subtrees that are not
scanned during an insertion operation will not be scanned
by the next insertion operation either, as the time-value of
the event notice of the second operation is less or equal
than the time-value of the event notice of the first operation.
Taking advantage of this knowledge, the I-list is constructed
in order to make the merging operation more efficient. In
particular, if an event notice, say b, is the next event to be
inserted into the P-tree and the event notice which was last
inserted, say a, had a greater event time, we do not need to
check a notice, say c, that a was compared with and was
found to be less than c. Thus, we need to keep pointers to
the event notices of the P -tree that a was compared with
and then moved to a right subtree; see Figure 1. We shall
call these specific notices I-notices. In the IP-tree structure
the pointers which point into the I-notices are simply the
elements of the I-list. Note that the first I-notice is the root
27
ikolopoulos

of the P-tree and the last one is the current event notice;
that is, the leaf node on the leftmost path of the P-tree.

An example of an IP-tree structure is presented in
Figure 1. Let a be the last event notice which has been
inserted into the P-tree and let 14 be its event time. The
pointers of the I-list were pointed at notices with event
times 18 and 17. Let b be the next event notice which has
to be inserted into the P-tree and let 13 be its event time.
Then, the time of the notice b is compared only with the
times of the left children of the I-notices. Thus, a search
is performed on the I-list and the I-notice that its left child
has the greatest event time which is less than the time of b

is determined; let c be such an I-notice. Then, the IP-tree
algorithm P-inserts the notice b into the P-tree rooted at c.
Recall that every subtree of a P-tree is also a P-tree.

5 THE BLOCK P-TREE

The Block P-tree (or BP-tree) structure is a P-tree that
consists of nodes containing an array of an initially fixed
number of elements, say S, which we call supernodes. The
elements of every supernode are kept sorted in increasing
order and the P-tree property is applied on the event with
the earliest event time of each supernode. In other words,
the position of a supernode in the BP-tree is determined by
the earliest event time that it contains.

Inserting a new event notice is a very simple process.
As the BP-tree algorithm takes advantage of the event hori-
zon technique, the new event notice can be inserted in
constant time in the secondary priority queue which is a
static representation of the list structure.

The deletion of the event notice with the earliest event
time is quite simple as well. The current supernode, that is
the supernode containing the event notice with the earliest
event time, is easily tracked since there always exists a
pointer pointing to it, and also since the current event notice
can be located in constant time. After deleting the current
event notice, the BP-tree may need to be updated. Thus,
if the new minimum element that the current supernode
contains is the minimum of all notices of the BP-tree, the
deletion operation is completed. Otherwise, the supernode
does not contain the current event notice and thus it is
reinserted in the BP-tree according to the value of the
minimum element that it contains. After the completion of
this process, the new current supernode contains the current
event notice.

Using the event horizon technique, when the event
horizon is crossed, the secondary priority queue, which
is a static representation of the list structure, is sorted in
increasing order. Then, the secondary queue forms a single
supernode which is then reinserted back into the main priority
queue (BP-tree). The advantage of this implementation is
that only one supernode has to be inserted into the BP-tree.
Note that, the number of the elements of each supernode
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can exceed the value of S, as the secondary queue can
consist of more than S elements when the event horizon is
crossed.

6 THE INDEXED BLOCK P-TREE

The Indexed-block P-tree (or IBP-tree) structure is based on
the IP-tree and the BP-tree structures; it consists of an I-list
and a BP-tree. Recall that the I-list is a static representation
of the list structure and its elements point into specific event
notices of the BP-tree; see Figure 2.
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Figure 2: An IBP-tree structure; it consists of an I-list, and
a BP-tree with S = 3.

The insertion operation is a very simple process, since
the IBP-tree algorithm takes advantage of the event horizon
technique; that is, the new event notice can be inserted in
constant time in the secondary priority queue which is a
static representation of the list structure.

The deletion of the event notice with the earliest event
time is quite simple as well and similar to the deletion
operation of the BP-tree algorithm. The current supernode
is tracked in constant time as there is a pointer variable
pointing to it. Since the elements of the supernodes are
sorted, the current event notice can be located in constant
time. After extracting it, the BP-tree may need to be
updated. This operation is similar to that performed by
the BP-tree algorithm. Note that, despite the fact that the
deletion operation may result to supernodes having less than
S elements, it is essential that the supernodes cannot consist
of more than S elements.

Using the event horizon technique, when the event
horizon is crossed, the secondary priority queue, which is a
static representation of a list structure, is sorted in increasing
order and then it is merged back into the main priority queue
(BP-tree).

Let us describe the merging process of the BP-tree
structure and the secondary queue in the event horizon
27
technique. The event notices of the secondary queue, after
being sorted, form arrays (supernodes) that contain S ele-
ments. Thus, if the secondary queue contains M elements,
M/S supernodes have to be reinserted at the BP-tree; each
supernode contains S event notices, except probably from
the last one. Recall that the proper insertion position of
each supernode is determined according to the value of the
earliest event time that it contains, say tmin. In order to
complete the merging process, we take advantage of the
IP-tree algorithm and the I-list. Thus, for each supernode,
the IBP-tree algorithm scans the I-list and determines the
proper insertion subtree. Then the algorithm proceeds as
the P-tree algorithm and completes the insertion operation.
Note that the supernodes are inserted in the BP-tree in de-
creasing order according to the value of the earliest event
time that each supernode contains.

An example of a IBP-tree structure is presented in
Figure 2. After deleting the current event notice, which
in our example has value equal to 0, the BP-tree is not
updated since the last supernode of the leftmost path of the
tree still contains the current event notice, which has now
value equal to 1.

7 AN EXPERIMENTAL EVALUATION OF THE
ALGORITHMS

The main motivation for the empirical studies performed
so far comes from the fact that most of the theoretical
performance bounds associated with the different event set
algorithms hide significant constant factors. In addition,
these results are usually expressed using different concepts
such as expected case, worst case and amortized case bounds.
Given the number of alternatives for implementing the event
set and the need for solutions that are efficient in practice,
the empirical studies have then arisen as an effective tool
to evaluate the performance of an event set algorithm.

7.1 Test Conditions

Most of the research performed to date uses the Hold
procedure to estimate the average time complexity of an
event set algorithm. The time needed for the execution of the
Hold operations is the measure for estimating the average
time complexity. Obviously, the data structure chosen to
simulate the event set as well as the size of the event set
affect the processor time required for the Hold operations
(insertion and deletion). Tests were performed for N = 2k ,
k = 6, 7, …, 18, where N is the size of the event set; that
is, the number of event notices in the event set.

A crucial step in designing the tests lies in the selec-
tion of the stochastic distribution which provides the event
time T ; that is, the parameter for the Hold procedure that
determines how long an event notice remains in the event
set. Six distributions have been chosen because they dif-
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Table 1: The Six Distributions

(A) Unimodal
EXP: Negative exponential (mean 1).
U02: Uniform distribution over the interval [0, 2].
U09: Uniform distribution over [0.9, 1.1].

(B) Bimodal
BIM: 0.9 probability - uniform over [0, S],

0.1 probability - uniform over the interval
[100S, 101S], where S is chosen to give
the mixed distribution an average of unity.

(C) Discrete
D1: T is constant with value of unity.
D012: T is assigned the values 0, 1 or 2 with equal

probabilities.

fer in their characteristics and reveal the advantages and
the disadvantages of an algorithm; see Table 1. Each test
includes the following operations:

(1) generate N event notices with each one having
event time that is generated by the distribution F

and insert them into the event set.
(2) without counting time, execute 1.6×106 times the

Hold procedure with the distribution F .
(3) execute 1.6 × 106 Hold operations and count the

total processor time (CPU time) needed to complete
them.

Operation (1) initializes the system while operation (2)
allows it to reach a steady state. Operation (3) yields a
measure of the complexity of the tested algorithms. The
algorithms were coded in C programming language and
the experimental results were taken from Sun-Blade-1000,
2×750 MHz Ultrasparc-III processors (8MB cache), 512MB
RAM.

The IP-tree, the BP-tree and the BIP-tree algorithms
were coded and run to collect evidence of their performance
under realistic conditions. For comparison reasons, well-
known event set algorithms were also coded and run under
the same conditions; that is, the Dynamic-heap and the P-
tree algorithms. To gain insight into the performance of the
proposed algorithms and allow comparisons with the other
event set algorithms, they were tested under a wide variety
of conditions in an experimental way. The experimental
results for each algorithm (that is the time in seconds needed
to complete each algorithm) are represented in the form of
tables and graphs; see, Tables 2–6 and Figures 3–8.

7.2 Dynamic-heap and P-tree: Hold model

As expected, the Dynamic-heap algorithm provides a very
good time performance. The performance results are given
270
kolopoulos

in Table 2. What is observed is the expected logarithmic
behavior of a heap data structure and the fact that the time
performance of the event set algorithm is almost the same
with all the distributions. We note that the Static-heap
algorithm has the same performance.

Table 2: Dynamic-heap Algorithm: Test Results

N U02 U91 EXP BIM D1 D012

64 5.11 5.13 5.42 6.68 5.10 5.13
256 5.85 5.90 6.20 7.42 5.83 5.87

1024 6.60 6.58 6.88 8.14 6.51 6.57
4096 7.41 7.42 7.71 8.95 7.29 7.37

16384 8.36 8.35 8.76 9.95 8.03 8.11
65536 9.35 9.33 9.62 10.93 8.83 8.94

262144 10.53 10.54 10.89 12.12 9.54 9.74

One can easily observe (see Table 3), that the perfor-
mance of the P-tree is not as good as the performance of the
heap algorithm. Its CPU times increase with the variance of
the scheduling distribution. It is remarkable that the P-tree
is efficient under constant values (D1 distribution). This
performance was expected because each new event notice
becomes the new root of the P-tree, which in this case
is a sorted linked list, and thus the new event is inserted
in constant time. Its performance is extremely worst with
the discrete D012 distribution. Furthermore, the P-tree al-
gorithm becomes even more inefficient as the size of the
event set increases. The experimental results showed that
the performance of the P-tree algorithm cannot be improved
by applying the event horizon technique.

Table 3: P-tree Algorithm: Test Results

N U02 U91 EXP BIM D1 D012

64 3.27 2.67 3.78 7.87 2.33 3.58
256 4.02 2.99 4.48 16.15 2.33 6.80

1024 5.33 3.50 5.42 31.42 2.33 17.77
4096 7.82 4.42 6.41 58.61 2.35 73.14

16384 12.66 6.10 7.83 102.90 2.36 308.95
65536 22.00 9.26 9.52 141.88 2.39 1253.46

262144 54.41 20.78 13.69 280.26 2.42 4995.45

7.3 IP-tree, BP-tree and IBP-tree: Event Horizon

The experimental results of the performance of the IP-
tree algorithm are presented in Table 4. These show the
superiority of the IP-tree compared to the P-tree algorithm
and its excellent performance with all the sizes of the event
set and all the stochastic distributions. Specifically, we
observe that the CPU time for the D012 distribution is
extremely decreased compared with the results taken by the
P-tree algorithm. In addition, one can observe that the CPU
times for all the distributions are almost the same.
5
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Table 4: IP-tree Algorithm: Test Results

N U02 U91 EXP BIM D1 D012

64 4.04 3.81 4.39 5.26 3.46 3.72
256 4.46 4.17 4.88 6.37 3.66 4.01

1024 4.89 4.52 5.36 7.00 3.88 4.32
4096 5.43 5.02 5.98 7.79 4.13 4.72

16384 6.12 5.65 6.76 8.36 4.48 5.28
65536 6.86 6.21 7.50 8.52 4.74 5.72

262144 9.08 8.50 9.97 9.96 5.15 7.78

The experimental results of the performance of the BP-
tree algorithm are presented in Table 5. The results show the
superiority of the algorithm compared to the heap algorithm,
and also to the P-tree and IP-tree algorithms. Furthermore,
its performance is slightly better than the performance of
the IBP-tree, apart from the Exponential and the discrete
D012 distributions when N > 65536. Note that the value
of the parameter S is equal to the size of the event set; that
is S = N . Recall that the parameter S determines only the
initial size of the supernodes because the size changes as
the secondary queue becomes a supernode every time the
event horizon is crossed. The experimental results showed
that the algorithm performs better when the BP-tree has
initially only one supernode which contains N elements;
that is when S = N .

Table 5: BP-tree Algorithm: Test Results

N U02 U91 EXP BIM D1 D012

64 3.92 3.45 4.38 4.75 3.26 3.42
256 4.44 3.78 4.96 5.29 3.47 3.67

1024 4.98 4.13 5.58 6.15 3.66 3.92
4096 5.60 4.55 6.30 6.86 3.95 4.23

16384 6.30 5.08 7.09 7.41 4.24 4.66
65536 7.10 5.57 8.02 7.99 4.46 5.03

262144 8.52 7.69 9.94 9.34 4.77 6.74

Table 6 presents the experimental results of the perfor-
mance of the IBP-tree algorithm. Its excellent performance,
regardless of the size of the event set or the stochastic dis-
tribution, show the superiority of the algorithm over the
IP-tree and the heap algorithms. The IBP-tree algorithm
outperforms the IP-tree algorithm because it takes advan-
tage of the properties of the latter and, in addition, the
size of the event set can be considered to be smaller as
the event notices form supernodes. Thus, if the size of the
event set is equal to N , the IP-tree algorithm produces a
P-tree containing N nodes, while the IBP-tree algorithm
can produce a BP-tree much smaller, having N/S nodes, if
the value of S is sufficiently large. The experimental results
show that the IBP-tree algorithm has the best performance
270
Table 6: IBP-tree Algorithm: Test Results

N U02 U91 EXP BIM D1 D012

64 4.07 3.50 4.58 5.76 3.41 3.54
256 4.52 3.81 5.08 6.59 3.58 3.73

1024 5.03 4.15 5.65 7.39 3.76 3.96
4096 5.65 4.59 6.33 7.84 4.04 4.25

16384 6.35 5.11 7.14 8.05 4.35 4.68
65536 7.14 5.59 8.06 8.25 4.56 5.01

262144 8.66 7.66 9.91 9.45 4.91 6.63

when S ≈ 3000. Consequently, when N < S the IBP-tree
algorithm behaves as the BP-tree algorithm.

7.4 A Comparison of the Algorithms

The experimental results show that the IP-tree algorithm has
an extremely better performance than the P-tree algorithm.
The latter becomes very inefficient as the size of the event
set increases, especially with the D012 distribution. The
BP-tree and IBP-tree algorithms are even more efficient
than the IP-tree as their performance is excellent regardless
of the size of the event set or the distribution used.

What is also remarkable is the fact that the BP-tree and
the IBP-tree algorithms provide results which are better even
than the results of the well known efficient Dynamic-heap
algorithm. The latter performs, as expected, better than
the P-tree algorithm regardless of the distribution which is
used. Furthermore, the BP-tree and the IBP-tree algorithms
outperform all the other algorithms and their superiority can
easily be concluded. Figures 3–8 present the performance
of each one of the algorithms under the six distributions.

We would like to comment on the logarithmic behaviour
of the BP-tree and the IBP-tree algorithms. One can easily
observe from Figures 3–8 that the two algorithms behave like
the Dynamic-heap algorithm. Furthermore, the performance
of the IP-tree algorithm resembles the performance of the
P-tree algorithm.

What should also be pointed out is that the event horizon
technique, when applied to the Dynamic-heap algorithm or
the P-tree algorithm, does not result to a better performance.
Applying the event horizon principle to the heap algorithm
involves using a heap structure (static representation) as a
main event set and a list data structure (unsorted array) as
a secondary event set. When the minimum event time is
found to be in the secondary list, its elements are merged
back into the main priority queue data structure (merge
operation). The array is kept unsorted because experimental
results showed that the performance of the Static-heap is
not improved in the case where the secondary list is sorted
either in increasing or decreasing order. Furthermore, it was
observed that the event horizon technique does not affect
the performance of the Dynamic-heap algorithm; that is,
6



i
Asdre and N

0

5

10

15

20

64 256 1024 4096 16384 65536 262144

Uniform(0.0,2.0)

"Dynamic-Heap"
"P-tree"

"IP-tree"
"BP-tree"

"IBP-tree"

Figure 3: Uniform(0.0,2.0) Distribution

0

5

10

15

20

64 256 1024 4096 16384 65536 262144

Exponential

"Dynamic-Heap"
"P-tree"

"IP-tree"
"BP-tree"

"IBP-tree"

Figure 4: Exponential Distribution

0

5

10

15

20

64 256 1024 4096 16384 65536 262144

Discrete(1)

"Dynamic-Heap"
"P-tree"

"IP-tree"
"BP-tree"

"IBP-tree"

Figure 5: Discrete(1) Distribution

the performance of the algorithm with the event horizon
technique is almost the same as without it.

In the P-tree algorithm the secondary data structure is
an unsorted linked list. When the next-event to be processed
(event notice with the minimum event time) happens to be
270
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in the secondary list, the latter is sorted in an increasing
order and its elements are placed back into the main event
set. The experimental results showed that when we apply
event horizon the CPU times taken by the P-tree algorithm
7
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are slightly increased for all the distributions except for the
D012 distribution.

8 CONCLUDING REMARKS

The P-tree structures proposed in this paper could use-
fully replace the classic P-tree structure, as well as the
heap structure, for the simulation event set in a general
purpose discrete event simulation system. The processor
time obtained with the IP-tree, the BP-tree and the IBP-
tree algorithms is relatively insensitive to variations in the
scheduling distributions or the number of event notices in
the event set, and points to their superiority over the P-tree
structure, and also over the Dynamic-heap. Our proposed
structures provide time efficiency, size flexibility and space
economy.

Future work might involve how the BP-tree or IBP-tree
algorithms can be efficiently parallelized. Furthermore, it
would be interesting to study the performance of algorithms
that use other tree-like data structures under the event horizon
technique and/or the I-list technique.

In closing, we point out that the results of this work
prompts us to suggest the BP-tree and the IBP-tree as
efficient data structures for the simulation event set in a
general purpose discrete event simulation system.
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