
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

A DISTRIBUTED MULTI-FORMALISM SIMULATION
TO SUPPORT RAIL INFRASTRUCTURE CONTROL DESIGN

Elisangela Mieko Kanacilo
Alexander Verbraeck

Systems Engineering Group

Faculty of Technology, Policy and Management
Delft University of Technology

Jaffalaan, 5, 2628BX, Delft, THE NETHERLANDS

ABSTRACT

In this study we use simulation as a method of inquiry to
support rail infrastructure control designers in making
more effective decisions during the design process.
Limitations encountered in commercial simulation tools
when modeling rail system elements, are related to the
choice of just one formalism (discrete or continuous) to
model the element behavior. When supporting the design
of rail system control, rail controllers and rail control
designers might be in different locations. Therefore
distribution of the simulation model is a required feature
which is usually not possible in current simulation
environments. In order to more accurately represent rail
systems behavior and improve the effectiveness of control
design, we propose a simulation library where different
formalisms can be integrated in one single model and
where simulation components are accessible by users in
different locations.

1 INTRODUCTION

Designing rail infrastructure control is a challenging task.
Simply stated, rail control should be designed in such a
way that the system performance stays stable and at an
acceptable level for as long as possible, also when
disturbances occur. This also includes strategies that will
give flexibility to the controller to adjust the control during
operation.
 When designing control, requirements from different
stakeholders (rail company, local authorities, ministry of
transport, etc.) have to be satisfied. These requirements
might conflict to each other and control designers have to
find a balance among all of them and not just consider each
one independently.
 For example, the decision of placing a station just
before a crossing between tracks and a street, is more
convenient and safer for passengers (as they do not need to

25
cross the street to arrive at the station), if it is seen only
from the rail company side, which has passenger’s
satisfaction as one of the requirements. Considering the
situation where rail vehicles have priority over cars at
crossings, the traffic light would be red for car drivers
while the rail vehicle is still stopped at the station to collect
passengers. This would delay the car traffic in the
neighborhood and this scenario contradicts one of the
requirements of the municipality, which is to avoid traffic
jams. In this case, what might occur in reality is that car
drivers would cross the red light if the tram is still at the
station. This would increase the chances of accidents, what
would end in an unsafe and non desirable situation for both
sides: the company and municipality.
 In addition, these requirements have to be satisfied
taking into account the whole system conditions, like
infrastructure capacity, vehicle lines priorities, control
signs and etc. This is quite a complex system to design and
control designers need technological support in order to
understand the effects of their decisions on the
performance of the whole system to make effective
decisions.
 In the complex environment of rail systems,
simulation can play an important role in designing control
strategies. It offers the possibility to test different strategies
and to consider different scenarios only virtually, i.e., in a
safer, quicker and cheaper way than in real situation
experimentation (Versteegt and Verbraeck 2002; Bessey
2003). Simulation is therefore a useful instrument to test
innovative control policies as it prevents many mistakes
being made by assessing strategies first and apply only the
ones that will bring more benefit to the infrastructure.
Testing on beforehand is even more important because
infrastructure control systems are very expensive, and
because services might be disrupted during the
implementation of changed control systems.

The promises of modularity and reusability has made
Object Orientation very usual in simulation and modeling

46

Kanacilo an

field (Verbraeck 2004). The complex structure of a system
element1 can be “hidden” from the outside world through
encapsulation. Encapsulation (Sommerville, 2004) makes
the object models less complex, it makes the system more
modular and it increases the reusability of components in
different situations.

With encapsulation it will be easy (Szypersky et al.,
2002) to enable the interaction among rail system elements
which present different types of behavior. The element
behavior can be modeled in the formalism that best
represents it and then it is encapsulated. Objects
communicate with each other through interfaces, without
looking into the details of the formalism in which a certain
object was modeled. Rail infrastructures present many
elements with a different kind of behavior. For example,
vehicles movement continuously change its state while
traffic lights change state in discrete steps.

Most commercial simulation tools, eg. eM-Plant or
Automod, do not allow for the easy integration of multiple
formalisms. Interoperability problems appear when mixing
simulation components modeled in different formalisms in
the same model. The modeler has to choose for instance
for a continuous or a discrete representation, and one
formalism within the discrete or continuous world.

In hybrid systems like rail infrastructures where both
types of behavior are present, an environment where more
formalisms can be used would provide a more accurate
representation and a more elegant way of implementing.
Multi-formalism does not mean that only discrete and
continuous formalisms are provided but it also offers the
possibility to the modeler to use the formalism that better
represents a certain system element. For example, control
designers could choose differential equations to model
driving behavior and solve them using different solvers.

Although there are some commercial simulation tools
that allow the integration of multiple formalism, to
distribute the use of model components is difficult due to
interoperability problems. When supporting the design of
rail control, distributing the use of simulation component is
important, because users (rail controllers and rail control
designers) are normally placed in different locations and
they need to share the same understanding of the system to
take consistent decisions.

Based on that, we propose a simulation-based decision
support environment for control design of rail
infrastructures, where these issues are addressed. The
belief is that the integration of multiple formalism will
provide a more accurate and elegant way of modeling and
the distribution will increase the effectiveness of the
control design process.

1 Rail system elements are all elements encountered in a
rail system whose behavior is relevant to the scenario
being studied, for example, sensors, tracks, trams/trains,
traffic lights, speed signs, etc
25
d Verbraeck

This paper is structured as follows: Section 2 gives an
overview of simulation tools used to support control
design; Section 3 describes a case performed at a Dutch
transportation company, Section 4 describes the proposed
solution and Section 5 we draw conclusions.

2 EXISTING SIMULATION TOOLS TO SUPPORT
CONTROL DESIGN CHALLENGES

Simulation is an appropriate approach to help people in
understanding how complex systems work, where many
interaction among system elements occur and these
interactions affect the overall system behavior. Examples
of simulation applications for the control design of logistic
systems can be found at (Meer 2000; Ebben 2001;
Versteegt and Verbraeck, 2002) and for transportation
systems at (Manivannan 1998; Janssen 2005).

In the early years of simulation, simulation was
already used to support the design of control system.
Recent works, for instance (Harrel and Hicks 1998; Saanen
2004), show that simulation can be used during the whole
system life, extending the life cycle of simulation models.
Developing simulation components which are accurate
enough to give a realistic representation of the system
elements, gives the possibility to extend the usage of these
components to real time operation to support rail
controllers in taking more effective operational decisions.

Problems with accurate representation of models are
related to the formalism used. As mentioned in
(Neuendorffer 2004), control systems are usually designed
using continuous formalism, following a set of ordinary
differential equations and analytically solving these for
continuous-time control signals. Unfortunately, not all
systems are easy to describe using only differential
equations. On the other hand, describing a control system
using only discrete techniques is not a good approach, as
many continuous aspects are neglected, making the system
representation expensive and hard to understand as many
states are required to abstract the dynamics with enough
level of details.

A hybrid approach combining both discrete and
continuous techniques captures the important aspects of the
system and have been developed for the analysis and
system control (Lygeros 2004).
 Several papers describe the use of a hybrid system
formalism. Liu et al. (1999) and Elker et al. (2001) applied
a hybrid formalism to model embedded systems, Ludvig et
al. (2002) applied this to high performance data acquisition
systems and Liu (1998) applied a hybrid system formalism
to modeling heterogeneous electronic systems containing
analog and digital components.
 Applying a multi-formalism approach to rail control
design would improve the representation accuracy of
simulation components, as distinct rail system elements
present a different type of behavior. For instance, the tram
47

Kanacilo an

driving moves continuously, while traffic lights change
state in a discrete way.
 Another requirement to better support the design of
rail control is enabling the simulation to be distributed over
different locations.
 In rail infrastructures, control decisions are made
based on a combination of requirements and constraints
coming from departments responsible for the control of
different parts of the system, such as physical
infrastructure department, vehicles department, vehicle
schedule department, etc.. Therefore, enabling the
distribution of the use of simulation components among
these departments would be appropriate for the control
design process in this multi-actor environment.
 The challenge in using a distributed multi-formalism
approach is related to interoperability problems. Elements
represented in different formalisms do not have a standard
interface and therefore they cannot interact with each other.
 In the next section we describe a case performed at a
Dutch Transport Company and the problems encountered
in a real rail setting.

3 HTM CASE

HTM Personenvervoer NV is a Dutch company which
offers collective passenger transportation services through
buses, trams and light rail vehicles. It is located in The
Hague and it is responsible for part of the public transport
in the city and surrounding regions. In 2003, 126 million
passengers used the transportation services of HTM2.
 The case focuses on the rail network of the company
and the objective is to study a real rail setting, to
understand how the control is designed, to identify
bottlenecks and to propose a solution. In this paper, we
narrow down the focus of the case to study how tram
schedules are made and assessed before commissioning
them.
 Currently, trams schedules are made with the help of
analytical tools and people expertise. Timetables are
mainly made based on employee’s experiences and based
on historical data gathered during vehicle journeys. These
data are studied with the help of analytical tools, eg.
TRITAPT (Verweij, 1991), and the outcomes of this
analysis are used to make adjustments to timetables. After
that, the adjusted timetables are applied within the rail
network again. In this process, changes take long to be
applied and it requires many (or endless) iterations.

To support HTM’s control designers in accelerating
this process and increase the effectiveness of the control
decisions, we started developing a library of simulation
components that can be used as a decision support system
to help HTM in designing control, including the
assessment of tram timetables.

2 Source http://www.htm.net, accessed July, 10th, 2005.
25
d Verbraeck

In the course of the case, we identified the fact that in
the rail environment many objects interact with each other.
Looking at the dynamics of these objects, it was observed
that they have their own particular behavior, but that the
behavior could be classified in two main groups: discrete
and continuous. From the modeling perspective, inside
each group, many options to formally represent the
behavior are available. For example, different types of
vehicles could be modeled using different equation solvers.
The communication among these objects should not be a
problem as they can be part of the same model.

Another important factor that was identified is that due
to the distributed nature of rail systems, control designers
and rail controllers might be located in different places and
therefore the simulation library should be accessible by
many users placed in different locations.

Summarizing, the three main requirements for the
domain-specific simulation library to be useful to rail
companies are:

• Possibility to integrate multiple formalisms in one

model
• Possibility to distribute the use of simulation

components over different geographical locations.
• Possibility to link to other information systems, as

some decisions need to taken based on the
analysis of historical data.

4 DISTRIBUTED MULTI-FORMALISM
SIMULATION

As already mentioned in a previous section, most
commercial simulation tools present limitations when used
to support the design of rail infrastructure control. Reasons
can be cited as most available tools do not support the use
of multiple formalism in the same model and the ones that
do support this, do not allow the distribution of simulation
components.
 We chose to develop the library of components using
DSOL – Distributed Simulation Object Language (Jacobs
et al. 2002), a Java-based simulation suite that offers
simulation services for the development of a fully
distributed simulation model.
 Features of a fully distributed simulation environment
can be described as in (Jacobs et al. 2002): possibility to
link with information systems (e.g., database) to
automatically and more accurately specify simulation
models; separation of simulation and visualization (this
allows the simulation to be deployed on a more powerful
computer (server) and to distribute the visualization among
clients); and separation of the core simulation services
from the model components that use it. With these
features, the three requirements set for the proposed
solution are fulfilled.
48

Kanacilo and Verbraeck
Using the simulation services provided by DSOL, a
library of components representing rail system elements
has been developed.

The control logic of each element is also implemented
in a package that is embedded in the library of
components. In this way, system elements can have
different types of control logic, for example, traffic lights
may be of different types, and they can be modeled using a
different formalism, usually a discrete one.

Using the advantages of Object Oriented modeling,
interoperability problems among objects can be overcome.
The structure of each component is encapsulated and it
communicates with other components through an interface
where all public functionalities of this component are
listed.

With the idea of encapsulation, elements can be
modeled using any formalism and easily communicate
with other elements. It is worth to mention here that this is
possible, because the DSOL simulator (Jacobs et al., 2002)
follows the idea of (Sol, 1982; Zeigler, 1976; Zeigler et al,
2000) where the DSOL simulation environment gives the
freedom to modelers to use any formalism to conceptualize
and specify a system.

DSOL simulator allows to simulate the DEVDESS
formalism (Ziegler, 2002), a combined discrete-continuous
formalism.

Figure 1 describes an interaction of elements modeled
in different formalisms that commonly occurs in a rail
system.

Continuous movement:
Set of

differential
equations

Tram

Sensor: state-
based, discrete

modeling

State-based:
discrete modeling

Traffic Light

Figure 1: interaction among elements of different nature

In Figure 1, it is shown that trams move continuously

and an appropriate representation would be a set of
differential equations. Traffic lights, as well as sensors, are
state-based and a discrete representation would be
preferable.

This example shows that objects modeled in different
formalisms can and need to interact with each other, to
produce the actual system dynamics. In this situation, the
tram movement depends on the state of the traffic light,
i.e., if a green light is given the driver can keep on driving.
On the other hand, if a red light is shown, the tram should
25
stop. More detailed explanation about how this interaction
occurs is given in sub-section 4.1.

If necessary, different formalisms can also be
combined to model the structure of only one object. For
example, to model a tram, we created a class named
VehiclePhysical (see Figure 2 for the class diagram). It
contains all required operations to represent a rail vehicle.
VehiclePositioner class, invoked by VehiclePhysical,
models only the movement of the tram. In
VehiclePositioner is where the differential equations and
the correspondent solver is set. It extends
DifferentialEquation class from DSOL, which is an
implementation of DESS formalism (Differential
Equations System Specification).

Methods like getCurrentSpeedandProgression and
getCurrentAcceleration in VehiclePhysical class are
examples of discrete operations of a rail vehicle. Therefore,
as VehiclePhysical needs to deal with discrete and
continuous implementations, a DEVDESS (Ziegler, 2002)
simulator becomes necessary.

In next sub-section, the publish-subscribe mechanism
used to enable the interaction between a continuous and a
discrete element is explained in more details.

4.1 Publish-Subscribe Mechanism

The publish-subscribe mechanism is an asynchronous
communication method implemented in DSOL, which is
based on generic publish-subscribe methods present in
programming languages like Java. With this mechanism
(Jacobs, 2005) the disproportionate communication traffic
between objects is avoided and it makes the components
loosely coupled. This feature will be of a big value for the
distribution of components over a network when necessary.
 The mechanism works as follows. Some objects are
event producers. Event-producer objects trigger events that
are relevant for the action of other objects. Objects
interested in a certain event can add themselves to the
subscribe list of an event-producer object and when the
event occurs, all objects in the list will be notified.

Human behavior modeling is out of the scope of this
project, but components were developed in such a way that
the influence of humans action can easily be considered.
This can be viewed by the situation illustrated in Figure 1.
Some meters before each control element, like a traffic
light, a speed sign, etc, there is a sensor to indicate that
from that point on, the control element is visible to the
driver. The publish-subscribe mechanism is used to
communicate a relevant state change within the system
(e.g. a traffic light change) to the driver, who can react on
this state change.

In Figure 3a, 80m before the traffic light TL1, there is
a visible_sensor to represent the fact that in that location,
TL1 becomes visible to the tram driver. As there is not a
driver class in our library, the tram T1 subscribes to the
change_state event list of TL1 (Figure 3b). This list is
49

nd Verbraeck
Kanacilo a

called the subscribe list and when TL1 changes its state, all
objects in the list will be notified. According to the new
state, all interested objects will perform an action
independently. For example, if TL1 changes its state to
green, the tram will increase speed or keep it constant to
25
pass through the traffic light, respecting always the
maximum allowed speed. On the other hand, if the new
state of TL1 is red, then the tram might start braking and
stop before the traffic light and wait until TL1 shows a
green light again.
Figure 2: class diagram of a continuous element

 It is important to mention that if the tram does not
have enough distance to brake, the simulation library can
provide some warnings to the control designer that some
measurements needs to be taken: control the tram speed
by placing a speed sign with lower value for maximum
allowed speed in that region or increase the distance
before the traffic light to place the visible_sensor. This
last choice is not always possible, as in reality the traffic
light is visible from a certain point onward and this is
hardly ever changed. There might be some high buildings
blocking it, and the rail company cannot do anything in
this sense. In case a speed limit needs to be changed, the
simulation model supports the choice for the appropriate
one.
After tram T1 passes the traffic light, it removes itself
from the subscribe list of TL1 and as soon as it becomes
necessary, it adds itself to the subscribe list of other
objects.

To enable this interaction, VehiclePhysical class
implements the EventListenerInterface from DSOL,
and the TrafficLight class implements the
EventProducerInterface from DSOL. Figure 4 shows
the class diagram.

As an event producer, the TrafficLight class can
add and remove listeners to its subscribe list.
VehiclePhysical, as event listener, may overwrite the
method notify with the code implementing the required
action when the target object (traffic light, in this case)
trigger the event of interest (change state, in this case).
50

Kanacilo and Verbraeck
Figure 3: Subscription-notification mechanism

 The publish-subscribe mechanism does not only add
value in enabling the interaction among components
modeled using different modeling formalisms, but it also
enables the interaction among distributed objects. When
simulation is run in a distributed setting, objects can keep
track of other objects’ dynamics, even they are run in
remote computers. The asynchronous type of
communication avoids the disproportionate traffic
through the network.

4.2 Triggering Sensors in Multi-formalism Simulation

As described in the previous sub-section, using additional
sensors helps in modeling relevant human behavior and
produces good results. But triggering a sensor, which
presents a discrete behavior, by a tram that has continuous
dynamic shows some problems.

If we consider discrete steps in time to update the
tram position (the time step of the differential equation is
solved), the actual triggering sensor time will always be
between a certain simulator time interval. No matter in
255
which part of the interval the triggering sensor time is
(whether it is at the beginning or at the end of the
interval), the sensor will be effectively triggered only at
the end of this interval as this is the time when the
differential equation will be aware of the discrete space
change. This will cause a delay in the action of triggering
a sensor. Considering the sensor an event-producer object,
this delay is propagated throughout the system, as many
other actions are dependent on that.

We used a set of differential equations which are
solved by a Runge-Kutta-4 method. For the application to
a rail system control, the problem is solved. But we
identified that for control systems that requires more
accurate control, in terms of milliseconds, this method
still present a problem. Even if it is a continuous
formalism, the actual solving of each iteration on a
computer occurs in very tiny discrete time intervals.

We conclude that for rail control where the time
accuracy does not need to be so precise, this formalism is
applicable and produces good results. In other cases, the
time step to evaluate the differential equations should be
decreased to give a more precise result or choose for
another solver method.

5 CONCLUSIONS

In this paper we describe a distributed multi-formalism
simulation approach to support the design of rail system
control. Integration of multiple formalism in the same
model provides a more accurate and more intuitive way of
modeling because the representation is more similar to the
real behavior. Allowing the simulation components to be
used in a distributed setting adds value to the design of
rail control in a multi actor environment.

Having a more realistic scenario reflects on the
accuracy of the results and in the models acceptance.
Changing the tram’s behavior from discrete to continuous
made the coding more clear and more concise. Code was
reduced in hundreds of lines.

With a more realistic representation of rail system
elements, there is an expectation to extend the usage of
the simulation components to real time operation. As rail
infrastructures are often influenced by disturbances (bad
weather, accidents, machines breakdown, etc.), supporting
operators to take decisions in real time would add value to
the system control.

The belief is that testing alternatives of control
strategies before applying them to the real infrastructure,
can improve the effectiveness of the system as controllers
can have the chance to choose for the strategies which
have bigger probability to increase the rail system
performance.
1

Kanacilo and Verbraeck

Figure 4: Event producer and Event listener objects

ACKNOWLEDGEMENTS

We acknowledge the support of the HTM
Personenvervoer NV for this research. Special thanks to
Mr. Willard Kamerling (email: w.kamerling@htm.net),
project leader on the side of HTM.
 The research project has been funded by the BSIK-
NGI program.

REFERENCES

Bessey, T. 2003. On-Line Simulation: Towards New
Statistical Approaches. In Proceedings of SCS’03
Summer Computer Simulation Conference, ed. A.
Buzzone, M. Itmi, 35 (3): 453-458, Society for
Computer Simulation, San Diego, CA, USA.

Ebben, M. 2001. Logistic Control in Automated
Transportation Networks. Doctoral Dissertation,
Twente University . Enschede, The Netherlands.

Elker, J., C. Fong, J. W. Janneck, and J. Liu. 2001. Design
and Simulation of Heterogeneous Control Systems
Using Ptolemy II. In Proceedings of the Conference
on New Technologies for Computer Control, n 1220
Elsevier.

Harrell, C. R. and D. A. Hicks. 1998. Simulation Software
Component Architecture for Simulation Based
Enterprise Applications. In Proceedings of Winter
Simulation Conference, ed. D. J. Medeiros, E. F.
Watson, J. S. Carson and M. S. Manivannan, 1717-
1721, IEEE Inc, Piscataway, NJ, USA. Available via
25
http://www.informs-
cs.org/wsc98papers/236.PDF [accessed
April, 15, 2005].

Jacobs, P. H. M. 2005. The DSOL Simulation Suite:
Enabling Multi-Formalism Simulation in a
Distributed Context. Doctoral Dissertation, Delft
University of Technology, Delft, The Netherlands
(forthcoming).

Jacobs, P. H. M., N. A. Lang and A. Verbraeck. 2002. D-
SOL: A Distributed Java Based Discrete Event
Simulation Architecture. In Proceedings of Winter
Simulation Conference, ed. E. Yucesan, C.-H. Chen,
J. L. Snowdon and J. M. Charnes, 793-800, IEEE
Inc., Psicataway, NJ, USA. Available via
<http://www.informs-
sim.org/wsc02papers/102.pdf> [accessed
April, 15, 2005].

Janssen, M. F. W. H. A., Verbraeck, A. 2005. Evaluating
the Information Architecture of an Electronic
Intermediary. Journal of Organizational Computing
and Electronic Commerce 15 (1), 35-60.

Liu, J. 1998. Continuous Time and Mixed-Signal
Simulation in Ptolemy II. Memo M98/74, UCB/ERL,
EECS UC Berkeley, CA, USA.

Liu, J., X. Liu, T. J. Koo, B. Sinopoli, S. Sastry, and E. A.
Lee, 1999. A Hierarchical Hybrid System Model and
its Simulation. In Proceedings of the Conference on
Decision and Control, 3508-3513, IEEE Inc.,
Psicataway, NJ, USA.
52

mailto:w.kamerling@htm.net
http://www.informs-cs.org/wsc98papers/236.PDF
http://www.informs-cs.org/wsc98papers/236.PDF
http://www.informs-sim.org/wsc02papers/102.pdf
http://www.informs-sim.org/wsc02papers/102.pdf

Kanacilo and Verbraeck
Ludvig, J., J. McCarthy, S. Neuendorffer, and S. R.
Sachs. 2002. Reprogrammable Platforms for High-
Speed Data Acquisition. Journal of Design
Automation fro Embedded Systems 7 (4): 341-364.

Lygeros, J. 2004. Lecture Notes on Hybrid Systems.
Patras, Greece, Department of Electrical and
Computer Engineering, University of Patras.

Manivannan, M. S. 1998. Simulation of Logistics and
Transportation Systems. In J. Banks (ed.), Handbook
of Simulation: principles, methodology, advances,
applications and practices. Wiley & Sons, New
York, USA.

Meer, R. v. d. 2000. Operational Control of Internal
Transport. Doctoral Dissertation, Delft University of
Technology, Delft, The Netherlands.

Neuendorffer, S. 2004. Modeling Real-World Control
Systems: Beyond Hybrid Systems. In Proceedings of
Winter Simulation Conference, ed. R. G. Ingalls, M.
D. Rossetti, J. S. Smith and B. A. Peters, 240-248,
Madison, OmniPress. Available via <
http://www.informs-
sim.org/wsc04papers/028.pdf> [accessed
April, 15, 2005]

Saanen, Y. 2004. An Approach for Designing Robotized
Marine Container Terminals. Doctoral Dissertation,
Delft University of Technology, Delft, The
Netherlands.

Sommerville, I. 2004, Software Engineering. 7th edition,
Pearson/Addison Wesley, Harlow, United Kingdom.

Szypersky, C., G. Dominik, S. Murer. 2002. Component
Software: Beyond Object Oriented Programming. 2nd
edition, Addison-Wesley, London, United Kingdom.

Verbraeck, A. 2004. Component-Based Distributed
Simulations. The Way Forward? In Proceeding of
18th Workshop on Parallel and Distributed
Simulation (PADS’04), eds. S. Kawada, 141-148,
IEEE Inc., Los Alamitos, California, USA.

Versteegt, C. and A. Verbraeck 2002. The Extended Use
of Simulation in Evaluating Real-Time Control
Systems of AGVs and Automated Material Handling
Systems. In Proceedings of 2002 Winter Simulation
Conference, ed. E. Yucesan, C.-H. Chen, J. L.
Snowdon and J. M. Charnes, 1659-1666, IEEE Inc.,
Psicataway, NJ, USA. Available via
http://www.informs-sim.org/
wsc02papers/227.pdf [accessed April, 15,
2005]

Verweij, C.A. 1991. Tritapt-Programmapakket.
Installatie, Gebruik en Werking. VK 4505.309, Delft,
The Netherlands (in Dutch).
2

AUTHORS BIOGRAPHIES

ELISANGELA M. KANACILO is a Ph.D. candidate at
Delft University of Technology. She got her Masters
degree in Software Engineering by Universidade Federal
de Uberlandia, in Brazil. Her PhD research is focused on
developing a simulation environment to support the
design of rail infrastructure control. Her email address is
<e.m.kanacilo@tbm.tudelft.nl> and her web
page is <www.tbm.tudelft.nl/webstaf/
elisangelak>.

ALEXANDER VERBRAECK is chair of the Systems
Engineering Group of the Faculty of Technology, Policy
and Management of Delft University of Technology, and
a part-time full professor in supply chain management at
the R.H. Smith School of Business of the University of
Maryland. He is a specialist in discrete event simulation
for real-time control of complex transportation systems
and for modeling business systems. His current research
focus is on development of generic libraries of object
oriented simulation building blocks in C++ and Java. His
e-mail address is <a.verbraeck@tbm.tudelft.nl>, and his
web page is <www.tbm.tudelft.nl/webstaf/
alexandv>.
553

http://www.informs-sim.org/wsc04papers/028.pdf
http://www.informs-sim.org/wsc04papers/028.pdf
http://www.informs-sim.org/wsc02papers/227.pdf
http://www.informs-sim.org/wsc02papers/227.pdf
mailto:e.m.kanacilo@tbm.tudelft.nl
http://www.tbm.tudelft.nl/webstaf/elisangelak
http://www.tbm.tudelft.nl/webstaf/elisangelak
http://www.tbm.tudelft.nl/webstaf/alexandv
http://www.tbm.tudelft.nl/webstaf/alexandv

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

