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ABSTRACT 

In this study we use simulation as a method of inquiry to 
support rail infrastructure control designers in making 
more effective decisions during the design process. 
Limitations encountered in commercial simulation tools 
when modeling rail system elements, are related to the 
choice of just one formalism (discrete or continuous) to 
model the element behavior. When supporting the design 
of rail system control, rail controllers and rail control 
designers might be in different locations. Therefore 
distribution of the simulation model is a required feature 
which is usually not possible in current simulation 
environments. In order to more accurately represent rail 
systems behavior and improve the effectiveness of control 
design, we propose a simulation library where different 
formalisms can be integrated in one single model and 
where simulation components are accessible by users in 
different locations. 

1 INTRODUCTION 

Designing rail infrastructure control is a challenging task. 
Simply stated, rail control should be designed in such a 
way that the system performance stays stable and at an 
acceptable level for as long as possible, also when 
disturbances occur. This also includes strategies that will 
give flexibility to the controller to adjust the control during 
operation. 
 When designing control, requirements from different 
stakeholders (rail company, local authorities, ministry of 
transport, etc.) have to be satisfied. These requirements 
might conflict to each other and control designers have to 
find a balance among all of them and not just consider each 
one independently.  
 For example, the decision of placing a station just 
before a crossing between tracks and a street, is more 
convenient and safer for passengers (as they do not need to 
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cross the street to arrive at the station), if it is seen only 
from the rail company side, which has passenger’s 
satisfaction as one of the requirements. Considering the 
situation where rail vehicles have priority over cars at 
crossings, the traffic light would be red for car drivers 
while the rail vehicle is still stopped at the station to collect 
passengers. This would delay the car traffic in the 
neighborhood and this scenario contradicts one of the 
requirements of the municipality, which is to avoid traffic 
jams.  In this case, what might occur in reality is that car 
drivers would cross the red light if the tram is still at the 
station. This would increase the chances of accidents, what 
would end in an unsafe and non desirable situation for both  
sides: the company and municipality. 
 In addition, these requirements have to be satisfied 
taking into account the whole system conditions, like 
infrastructure capacity, vehicle lines priorities, control 
signs and etc. This is quite a complex system to design and 
control designers need technological support in order to 
understand the effects of their decisions on the 
performance of the whole system to make effective 
decisions.  
 In the complex environment of rail systems, 
simulation can play an important role in designing control 
strategies. It offers the possibility to test different strategies 
and to consider different scenarios only virtually, i.e., in a 
safer, quicker and cheaper way than in real situation 
experimentation (Versteegt and Verbraeck 2002; Bessey 
2003). Simulation is therefore a useful instrument to test 
innovative control policies as it prevents many mistakes 
being made by assessing strategies first and apply only the 
ones that will bring more benefit to the infrastructure. 
Testing on beforehand is even more important because  
infrastructure control systems are very expensive, and 
because services might be disrupted during the 
implementation of changed control systems. 

The promises of modularity and reusability has made 
Object Orientation very usual in simulation and modeling 
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field (Verbraeck 2004). The complex structure of a system 
element1 can be “hidden” from the outside world through 
encapsulation. Encapsulation  (Sommerville, 2004) makes 
the object models less complex, it makes the system more 
modular and it increases the reusability of components in 
different situations. 

With encapsulation it will be easy (Szypersky et al., 
2002) to enable the interaction among rail system elements 
which present different types of behavior. The element 
behavior can be modeled in the formalism that best 
represents it and then it is encapsulated. Objects 
communicate with each other through interfaces, without 
looking into the details of the formalism in which a certain 
object was modeled. Rail infrastructures present many 
elements with a different kind of behavior. For example, 
vehicles movement continuously change its state while 
traffic lights change state in discrete steps. 

Most commercial simulation tools, eg. eM-Plant or 
Automod, do not allow for the easy integration of multiple 
formalisms. Interoperability problems appear when mixing 
simulation components modeled in different formalisms in 
the same model. The modeler has to choose for instance 
for a continuous or a discrete representation, and one 
formalism within the discrete or continuous world.  

In hybrid systems like rail infrastructures where both 
types of behavior are present, an environment where more 
formalisms can be used would provide a more accurate 
representation and a more elegant way of implementing. 
Multi-formalism does not mean that only discrete and 
continuous formalisms are provided but it also offers the 
possibility to the modeler to use the formalism that better 
represents a certain system element.  For example, control 
designers could choose differential equations to model 
driving behavior and solve them using different solvers.  

Although there are some commercial simulation tools 
that allow the integration of multiple formalism, to 
distribute the use of model components is difficult due to 
interoperability problems. When supporting the design of 
rail control, distributing the use of simulation component is 
important, because users (rail controllers and rail control 
designers) are normally placed in different locations and 
they need to share the same understanding of the system to 
take consistent decisions.  

Based on that, we propose a simulation-based decision 
support environment for control design of rail 
infrastructures, where these issues are addressed. The 
belief is that the integration of multiple formalism will 
provide a more accurate and elegant way of modeling and 
the distribution will increase the effectiveness of the 
control design process. 

                                                           
1 Rail system elements are all elements encountered in a 
rail system whose behavior is relevant to the scenario 
being studied, for example, sensors, tracks, trams/trains, 
traffic lights, speed signs, etc 
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This paper is structured as follows: Section 2 gives an 
overview of simulation tools used to support control 
design; Section 3 describes a case performed at a Dutch 
transportation company, Section 4 describes the proposed 
solution and Section 5 we draw conclusions.  

2 EXISTING SIMULATION TOOLS TO SUPPORT 
CONTROL DESIGN CHALLENGES 

Simulation is an appropriate approach to help people in 
understanding how complex systems work, where many 
interaction among system elements occur and these 
interactions affect the overall system behavior. Examples 
of simulation applications for the control design of logistic 
systems can be found at (Meer 2000; Ebben 2001; 
Versteegt and Verbraeck, 2002) and for transportation 
systems at (Manivannan 1998; Janssen 2005).  

In the early years of simulation, simulation was 
already used to support the design of control system. 
Recent works, for instance (Harrel and Hicks 1998; Saanen 
2004), show that simulation can be used during the whole 
system life, extending the life cycle of simulation models. 
Developing simulation components which are accurate 
enough to give a realistic representation of the system 
elements, gives the possibility to extend the usage of these 
components to real time operation to support rail 
controllers in taking more effective operational decisions.  

Problems with accurate representation of models are 
related to the formalism used. As mentioned in 
(Neuendorffer 2004), control systems are usually designed 
using continuous formalism, following a set of ordinary 
differential equations and analytically solving these for 
continuous-time control signals. Unfortunately, not all 
systems are easy to describe using only differential 
equations.  On the other hand, describing a control system 
using only discrete techniques is not a good approach, as 
many continuous aspects are neglected, making the system 
representation expensive and hard to understand as many 
states are required to abstract the dynamics  with enough 
level of details. 

A hybrid approach combining both discrete and 
continuous techniques captures the important aspects of the 
system and have been developed for the analysis and 
system control (Lygeros 2004). 
 Several papers describe the use of a hybrid system 
formalism. Liu et al. (1999) and Elker et al. (2001) applied 
a hybrid formalism to model embedded systems, Ludvig et 
al. (2002) applied this to high performance data acquisition 
systems  and Liu (1998) applied a hybrid system formalism 
to modeling heterogeneous electronic systems containing 
analog and digital components.  
 Applying a multi-formalism approach to rail control 
design would improve the representation accuracy of 
simulation components, as distinct rail system elements 
present a different type of behavior. For instance, the tram 
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driving moves continuously, while traffic lights change 
state in a discrete way.  
 Another requirement to better support the design of 
rail control is enabling the simulation to be distributed over 
different locations.  
 In rail infrastructures, control decisions are made 
based on a combination of requirements and constraints 
coming from departments responsible for the control of 
different parts of the system, such as physical 
infrastructure department, vehicles department, vehicle 
schedule department, etc.. Therefore, enabling the 
distribution of the use of simulation components among 
these departments would be appropriate for the control 
design process in this multi-actor environment.  
 The challenge in using a distributed multi-formalism 
approach is related to interoperability problems. Elements 
represented in different formalisms do not have a standard 
interface and therefore they cannot interact with each other.  
 In the next section we describe a case performed at a 
Dutch Transport Company and the problems encountered 
in a real rail setting.  

3 HTM CASE  

HTM Personenvervoer NV is a Dutch company which 
offers collective passenger transportation services through 
buses, trams and light rail vehicles. It is located in The 
Hague and it is responsible for part of the public transport 
in the city and surrounding regions. In 2003, 126 million 
passengers used the transportation services of HTM2.  
 The case focuses on the rail network of the company 
and the objective is to study a real rail setting, to 
understand how the control is designed, to identify 
bottlenecks and to propose a solution. In this paper, we 
narrow down the focus of the case to study how tram 
schedules are made and assessed before commissioning 
them. 
 Currently, trams schedules are made with the help of 
analytical tools and people expertise. Timetables are 
mainly made based on employee’s experiences and based 
on historical data gathered during vehicle journeys. These 
data are studied with the help of analytical tools, eg.  
TRITAPT (Verweij, 1991), and the outcomes of this 
analysis are used to make adjustments to timetables. After 
that, the adjusted timetables are applied within the rail 
network again. In this process, changes take long to be 
applied and it requires many (or endless) iterations.  

To support HTM’s control designers in accelerating 
this process and increase the effectiveness of the control 
decisions, we started developing a library of simulation 
components that can be used as a decision support system 
to help HTM in designing control, including the 
assessment of tram timetables.  

                                                           
2 Source http://www.htm.net, accessed July, 10th, 2005. 
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In the course of the case, we identified the fact that in 
the rail environment many objects interact with each other. 
Looking at the dynamics of these objects, it was observed 
that they have their own particular behavior, but that the 
behavior could be classified in two main groups: discrete 
and continuous. From the modeling perspective, inside 
each group, many options to formally represent the 
behavior are available. For example, different types of 
vehicles could be modeled using different equation solvers. 
The communication among these objects should not be a 
problem as they can be part of the same model.  

Another important factor that was identified is that due 
to the distributed nature of rail systems, control designers 
and rail controllers might be located in different places and 
therefore the simulation library should be accessible by 
many users placed in different locations. 

Summarizing, the three main requirements for the 
domain-specific simulation library to be useful to rail 
companies are: 

 
• Possibility to integrate multiple formalisms in one 

model 
• Possibility to distribute the use of simulation 

components over different geographical locations. 
• Possibility to link to other information systems, as 

some decisions need to taken based on the 
analysis of historical data. 

4 DISTRIBUTED MULTI-FORMALISM 
SIMULATION  

As already mentioned in a previous section, most 
commercial simulation tools present limitations when used 
to support the design of rail infrastructure control. Reasons 
can be cited as most available tools do not support the use 
of multiple formalism in the same model and the ones that 
do support this, do not allow the distribution of simulation 
components.  
 We chose to develop the library of components using 
DSOL – Distributed Simulation Object Language (Jacobs 
et al. 2002), a Java-based simulation suite that offers 
simulation services for the development of a fully 
distributed simulation model.  
 Features of a fully distributed simulation environment 
can be described as in (Jacobs et al. 2002): possibility to 
link with information systems (e.g., database) to 
automatically and more accurately specify simulation 
models; separation of simulation and visualization (this 
allows the simulation to be deployed on a more powerful 
computer (server) and to distribute the visualization among 
clients);  and separation of the core simulation services 
from the model components that use it. With these 
features, the three requirements set for the proposed 
solution are fulfilled.  
48
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Using the simulation services provided by DSOL, a 
library of components representing rail system elements 
has been developed. 

The control logic of each element is also implemented 
in a package that is embedded in the library of 
components. In this way, system elements can have 
different types of control logic, for example, traffic lights 
may be of different types, and they can be modeled using a 
different formalism, usually  a discrete one. 

Using the advantages of Object Oriented modeling, 
interoperability problems among objects can be overcome. 
The structure of each component is encapsulated and it 
communicates with other components through an interface 
where all public functionalities of this component are 
listed.  

With the idea of encapsulation, elements can be 
modeled using any formalism and easily communicate 
with other elements. It is worth to mention here that this is 
possible, because the DSOL simulator (Jacobs et al., 2002) 
follows the idea of (Sol, 1982; Zeigler, 1976; Zeigler et al, 
2000) where the DSOL simulation environment gives the 
freedom to modelers to use any formalism to conceptualize 
and specify a system.  

DSOL simulator allows to simulate the DEVDESS 
formalism (Ziegler, 2002), a combined discrete-continuous 
formalism. 

Figure 1 describes an interaction of elements modeled 
in different formalisms that commonly occurs in a rail 
system.  

 

Continuous movement: 
Set of

differential
equations

Tram

Sensor: state-
based, discrete 

modeling

State-based: 
discrete modeling

Traffic Light

 
 

Figure 1: interaction among elements of different nature 
 
In Figure 1, it is shown that trams move continuously 

and an appropriate representation would be a set of 
differential equations. Traffic lights, as well as sensors, are 
state-based and a discrete representation would be 
preferable.  

This example shows that objects modeled in different 
formalisms can and need to interact with each other, to 
produce the actual system dynamics. In this situation, the 
tram movement depends on the state of the traffic light, 
i.e., if a green light is given the driver can keep on driving. 
On the other hand, if a red light is shown, the tram should 
25
stop. More detailed explanation about how this interaction 
occurs is given in sub-section 4.1. 

If necessary, different formalisms can also be 
combined to model the structure of only one object. For 
example, to model a tram, we created a class named 
VehiclePhysical (see Figure 2 for the class diagram). It 
contains all required operations to represent a rail vehicle. 
VehiclePositioner class, invoked by VehiclePhysical, 
models only the movement of the tram. In 
VehiclePositioner is where the differential equations and 
the correspondent solver is set. It extends 
DifferentialEquation class from DSOL, which is an 
implementation of DESS formalism (Differential 
Equations System Specification). 

Methods like getCurrentSpeedandProgression and 
getCurrentAcceleration in VehiclePhysical class are 
examples of discrete operations of a rail vehicle. Therefore, 
as VehiclePhysical needs to deal with discrete and 
continuous implementations, a DEVDESS (Ziegler, 2002) 
simulator becomes necessary. 

In next sub-section, the publish-subscribe mechanism 
used to enable the interaction between a continuous and a 
discrete element is explained in more details. 

4.1 Publish-Subscribe Mechanism 

The publish-subscribe mechanism is an asynchronous 
communication method implemented in DSOL, which is 
based on generic publish-subscribe methods present in 
programming languages like Java. With this mechanism 
(Jacobs, 2005) the disproportionate communication traffic 
between objects is avoided and it makes the components 
loosely coupled. This feature will be of a big value for the 
distribution of components over a network when necessary.  
 The mechanism works as follows. Some objects are 
event producers. Event-producer objects trigger events that 
are relevant for the action of other objects. Objects 
interested in a certain event can add themselves to the 
subscribe list of an event-producer object and when the 
event occurs, all objects in the list will be notified. 

Human behavior modeling is out of the scope of this 
project, but components were developed in such a way that 
the influence of humans action can easily be considered. 
This can be viewed by the situation illustrated in Figure 1. 
Some meters before each control element, like a traffic 
light, a speed sign, etc, there is a sensor to indicate that 
from that point on, the control element is visible to the 
driver. The publish-subscribe mechanism is used to 
communicate a relevant state change within the system 
(e.g. a traffic light change) to the driver, who can react on 
this state change. 

In Figure 3a,  80m before the traffic light TL1, there is 
a visible_sensor to represent the fact that in that location, 
TL1 becomes visible to the tram driver. As there is not a 
driver class in our library, the tram T1 subscribes to the 
change_state event list of TL1 (Figure 3b). This list is 
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called the subscribe list and when TL1 changes its state, all 
objects in the list will be notified. According to the new 
state, all interested objects will perform an action  
independently. For example, if TL1 changes its state to 
green, the tram will increase speed or keep it constant to 
25
pass through the traffic light, respecting always the 
maximum allowed speed. On the other hand, if the new 
state of TL1 is red, then the tram might start braking and 
stop before the traffic light and wait until TL1 shows  a 
green light again. 
Figure 2: class diagram of a continuous element 

 

 It is important to mention that if the tram does not 
have enough distance to brake, the simulation library can 
provide some warnings to the control designer that some 
measurements needs to be taken: control the tram speed 
by placing a speed sign with lower value for maximum 
allowed speed in that region or increase the distance 
before the traffic light to place the visible_sensor.  This 
last choice is not always possible, as in reality the traffic 
light is visible from a certain point onward and this is 
hardly ever changed. There might be some high buildings 
blocking it, and the rail company cannot do anything in 
this sense. In case a speed limit needs to be changed, the 
simulation model supports the choice for the appropriate 
one. 
After tram T1 passes the traffic light, it removes itself 
from the subscribe list of TL1 and as soon as it becomes 
necessary, it adds itself to the subscribe list of other 
objects.  

To enable this interaction, VehiclePhysical class 
implements the EventListenerInterface from DSOL, 
and the TrafficLight class implements the 
EventProducerInterface from DSOL. Figure 4 shows 
the class diagram.   

As an event producer, the TrafficLight class can 
add and remove listeners to its subscribe list. 
VehiclePhysical, as event listener, may overwrite the 
method notify with the code implementing the required 
action when the target object (traffic light, in this case) 
trigger the event of interest (change state, in this case).  
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Figure 3: Subscription-notification mechanism 
 
 The publish-subscribe mechanism does not only add 
value in enabling the interaction among components 
modeled using different  modeling formalisms, but it also 
enables the interaction among distributed objects. When 
simulation is run in a distributed setting, objects can keep 
track of other objects’ dynamics, even they are run in 
remote computers. The asynchronous type of 
communication avoids the disproportionate traffic 
through the network.  

4.2 Triggering Sensors in Multi-formalism Simulation 

As described in the previous sub-section, using additional 
sensors helps in modeling relevant human behavior and 
produces good results. But triggering a sensor, which 
presents a discrete behavior, by a tram that has continuous 
dynamic shows some problems. 

If we consider discrete steps in time to update the 
tram position (the time step of the differential equation is 
solved), the actual triggering sensor time will always be 
between a certain simulator time interval. No matter in 
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which part of the interval the triggering sensor time is 
(whether it is at the beginning or at the end of the 
interval), the sensor will be effectively triggered only at 
the end of this interval as this is the time when the 
differential equation will be aware of the discrete space 
change. This will cause a delay in the action of triggering 
a sensor. Considering the sensor an event-producer object, 
this delay is propagated throughout the system, as many 
other actions are dependent on that.  

We used a set of differential equations which are 
solved by a Runge-Kutta-4 method. For the application to 
a rail system control, the problem is solved. But we 
identified that for control systems that requires more 
accurate control, in terms of milliseconds, this method 
still present a problem. Even if it is a continuous 
formalism, the actual solving of each iteration on a 
computer occurs in very tiny discrete time intervals.  

We conclude that for rail control where the time 
accuracy does not need to be so precise, this formalism is 
applicable and produces good results. In other cases, the 
time step to evaluate the differential equations should be 
decreased to give a more precise result or choose for 
another solver method.   

5 CONCLUSIONS 

In this paper we describe a distributed multi-formalism 
simulation approach to support the design of rail system 
control. Integration of multiple formalism in the same 
model provides a more accurate and more intuitive way of 
modeling because the representation is more similar to the 
real behavior. Allowing the simulation components to be 
used in a distributed setting adds value to the design of 
rail control in a  multi actor environment. 

Having a more realistic scenario reflects on the 
accuracy of the results and in the models acceptance. 
Changing the tram’s behavior from discrete to continuous 
made the coding more clear and more concise. Code was 
reduced in hundreds of lines.  

With a more realistic representation of rail system 
elements, there is an expectation to extend the usage of 
the simulation components to real time operation. As rail 
infrastructures are often influenced by disturbances (bad 
weather, accidents, machines breakdown, etc.), supporting 
operators to take decisions in real time would add value to 
the system control. 

The belief is that testing alternatives of control 
strategies before applying them to the real infrastructure, 
can improve the effectiveness of the system as controllers 
can have the chance to choose for the strategies which 
have bigger probability to increase the rail system 
performance.  
1
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Figure 4: Event producer and Event listener objects 
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