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ABSTRACT

Simulation composability has been much more difficult to
realize than some initially imagined. We believe that suc-
cess lies in explicit considerations for the adaptability of
components. In this paper we show that the complexity
of optimal component selection for adaptable components
is NP-complete. However, our approach allows for the
efficient adaptation of components to construct a complex
simulation in the most flexible manner while allowing the
greatest opportunity to meet all requirements, all the while
reducing time and costs. We demonstrate that complexity
can vary from polynomial, to NP, and even to exponential
as a function of seemingly simple decisions made about
the nature of dependencies among components. We gener-
alize these results to show that regardless of the types or
reasons for dependencies in component selection, just their
mere existence makes this problem very difficult to solve
optimally.

1 INTRODUCTION

Recently there has been a flurry of activity in the modeling
and simulation (M&S) community regarding the complexity
of simulation composability—the cost of building federa-
tions of simulations from component simulations. Con-
structing complex systems from off-the-shelf components
has great appeal. It offers numerous benefits, not the least
of which is potential order of magnitude savings in feder-
ation development time. Additionally if there are several
components that meet the same set of requirements, then a
broader set of design alternatives can be explored, provid-
ing greater flexibility to system designers and implementers.
Dynamic Data Driven Application Systems (DDDAS) are a
new class of applications in which simulations dynamically
adapt to real-time, possibly streaming, data (Darema 2004).
The dynamic composition of models has been listed as a
key enabler for the DDDAS concept.
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When it is difficult or impossible to construct a feder-
ation from preexisting immutable component simulations,
we believe it is valuable to consider altering components so
they will satisfy new requirements. Our COERCE research
(Waziruddin, Brogan, and Reynolds 2003) reflects this per-
spective. For example we place emphasis on methods for
rapidly adapting component simulations to meet new re-
quirements as a substitute for any insistence that all desired
end results be achievable without any adaptation of compo-
nent simulations. The flexibility introduced by an efficient
adaptability assumption has a cost however, in terms of
the complexity of component selection. Exploration of that
cost is the topic of this paper.

In this paper we show that under desirable relaxed
assumptions, the complexity of optimal reuse of adaptable
components is NP-complete. Rather than insisting that
components are black boxes that must be used “as-is,” we
allow for adaptation, and even creation. (In this context,
component creation can be considered a special case of
adaptation, where creation is the adaptation of the null
component.) The goal is to construct a complex federation
in the most flexible manner while allowing the greatest
opportunity to meet all requirements, all the while benefiting
from the reduced time and costs of reusing components.
We demonstrate that the complexity of composing alterable
components can vary from polynomial, to NP, and even
to exponential as a function of seemingly simple decisions
made about the nature of dependencies among components.

2 COMPOSABILITY AND COMPONENT
SELECTION

Composition and component selection have been researched
comprehensively within the software engineering and simu-
lation communities. In this section, we address the distinct
contributions these two communities have made to the gen-
eral composability problem and the specific challenge of
selecting components.
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2.1 Software Composability

In his widely read text on component software,
Szyperski (2002) defines a composition as an “assembly
of parts (components) into a whole (a composite) without
modifying the parts.” (Most software engineers would use
the term “adapting” where Szyperski uses “modifying.” We
use “adapting” in keeping with established software engi-
neering terminology.) Prohibiting adaptation of components
is a recurring theme in software engineering literature. Many
software engineers consider composition strictly in terms of
functional composition, where each component possesses a
clearly defined interface and functional description. We do
not believe this restrictive approach suits the needs of the
simulation community.

In the software engineering community, composability
is typically discussed within the framework of component-
based software design (CBSD), sometimes referred to
as component-based software engineering. CBSD mod-
els include Microsoft’s Component Object Model Plus
(Microsoft 2005), the Object Management Group’s Com-
mon Object Request Broker Architecture (OMG 2005), and
Sun’s Enterprise JavaBeans (Sun 2005). These technolo-
gies are similar because they enforce a binary structure for
exposing public interfaces allowing components to provide
services to clients, which may or may not themselves be
components. The significant drawback to current CBSD
technologies is that while they provide the facilities to
communicate and provide services, they make no guaran-
tees about the meaning, reliability, or consistency of the
exchanged information.

2.2 Simulation Composability

Following extensive simulation community efforts to iden-
tify an acceptable definition, simulation composability has
been defined as “the capability to select and assemble
simulation components in various combinations into valid
simulation systems to satisfy specific user requirements.”
(Petty and Weisel 2003) In contrast to Szyperski’s defini-
tion this one allows consideration of adaptation. However
Petty and Weisel reason that somewhere on the scale of in-
tegration effort, the problem changes from the composition
of components to one of component interoperability when
a “substantial effort” is required.

Within the simulation community both interoperabil-
ity and composability have been topics of intense study.
Composability is distinguished from interoperability in that
composability requires an ability to combine and recombine
components to meet different sets of requirements without
substantial integration efforts. Interoperability, on the other
hand, implies a one-time integration effort as is employed
in distributed simulation architectures such as Distributed
Interactive Simulation (IEEE a), Aggregate Level Simula-
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tion Protocol (Weatherly, Seidel, and Weissman 1991), and
the High Level Architecture (IEEE b). These architectures
have provided practical tools for federating simulations, but
with the same kind of drawbacks seen in current CBSD
technologies. Simply put, they provide little more than syn-
tactic interoperability—the ability to exchange information.
They make few if any guarantees about semantic interoper-
ability because there are no guarantees about the meaning
of exchanged data.

2.3 Software Reuse and Component Selection

The formal pursuit of software reuse has a history of nearly
forty years (McIlroy 1968). Reuse can take one of many
forms, ranging from functional composition as discussed in
Section 2.1 to scavenging, often called accidental reuse. The
forms of reuse are summarized in Krueger (1992). For our
purposes, reuse is more general than composability because
it allows for the adaptation of components as necessary,
either to adjust to changing requirements, or because the
set of components “as-is” do not completely satisfy all
requirements.

Reuse research as it relates to our view of com-
ponent selection generally takes one of three forms:
1) designing reuse metrics and models, 2) representing
components and 3) selecting the best set of components.
Reuse metrics and models are typically used to predict
the costs and benefits, given a reuse strategy. They
enable measurement of the tradeoffs associated with
using a specific component. Many reuse metrics and
models are summarized in Frakes and Terry (1996).
Component representations support the description of
components, and are necessary for mechanically mapping
components to requirements. Component representations
range from informal text-based descriptions, several of
which are summarized in Frakes and Pole (1994), to
formal descriptions (Mili, Mili, and Mittermeir 1994,
Penix and Alexander 1999), and more recently
to the use of ontologies and domain models
(Sugumaran and Storey 2003). Finally, there is a need
for a method to retrieve the best set of components given
metrics and descriptions. Methods which have been inves-
tigated include model checking (Xie and Browne 2003),
formal methods (Mili, Mili, and Mittermeir 1994,
Penix and Alexander 1999), decision and utility the-
ory (Alves et al. 2005, Kontio 1996), information
retrieval (Maarek, Berry, and Kaiser 1991), and artificial
neural networks (Merkl, Tjoa, and Kappel 1994).

2.4 Simulation Component Selection

Recent interest within the M&S community has focused on
the simulation composability component selection problem
(Page and Opper 1999, Petty, Weisel, and Mielke 2003,
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Fox, Brogan, and Reynolds 2004). Informally, the com-
ponent selection problem asks, given a set of simula-
tion components and a set of objectives, does a sub-
set of components of cardinality K or less exist that
meets all objectives. Even with the existence of an
oracle that can in one step determine which objectives
have been met by any component or set of components,
component selection has been shown to be NP-complete
(Petty, Weisel, and Mielke 2003). More recently, a polyno-
mial time approximation algorithm for component selection
was discovered (Fox, Brogan, and Reynolds 2004).

The component selection problem, as it has been framed
up to now, does not explicitly address changing objectives
(requirements); it assumes all objectives are known at se-
lection time. Also not explicitly considered are cost and
time to adapt components to meet requirements. We be-
lieve a more flexible approach, recognizing the reality of
requirements that can change and components that can be
adapted, is needed.

3 PROBLEM DEFINITION

Stated concisely, our challenge is to select from a set of
simulations a subset that can optimally (in terms of cost
and utility) meet a set of target requirements, given that the
component simulations are adaptable (at a cost). The novelty
in our statement of the challenge resides in the flexibility
introduced by assumptions of component adaptability.

3.1 Critical Assumptions

Consider R, the set of ρ requirements to be satisfied (“target
requirements”)

R = {r1, r2, . . . , rρ}

by a subset of X, the set of γ components available for
selection:

X = {x1, x2, . . . , xγ }
We assume a candidate subset of X does not have to meet all
target requirements fully. Given sufficient time and effort,
any component can be adapted to meet any requirement, so
all components are potential candidates to meet some or all
target requirements. Even the null component can meet a
requirement, which is equivalent to creating a component
anew. Since every component simulation can potentially
satisfy every requirement, choosing an optimal subset of
components creates an inherently intractable problem be-
cause the number of possible combinations of components
grows exponentially with the number of components (given
γ is the number of components, there are 2γ possible sub-
sets of components). Clearly, some components are better
candidates for satisfying a given requirement than others
24
and we assume this insight is available before composition
begins. We find it reasonable to consider an upper bound
on the number of requirements that can be satisfied by any
one component. Call this bound θ . Furthermore, for every
instance of component selection, it is known a priori which
of up to θ requirements a component is assumed to be able
to satisfy. We will show for constant values that θ prevents
our formulation of the component selection problem from
exhibiting exponential growth in complexity.

There is a utility associated with the pairing between
every component, xi , and the (up to) θ requirements, rj , it
satisfies. When performing component selection, the goal
is to maximize the aggregate utility of the selected set of
components. For a given set of components and a given
set of target requirements we assume an appropriate utility
function exists. Our formulation is consistent with formal
utility theory, where utility is a real-valued measure applied
to user preferences (von Neumann and Morgenstern 1947).
We consider utility to be a function of the time and cost
necessary to adapt a component to meet a requirement(s),
where cost represents all potential resources (excluding time)
necessary to adapt a simulation component. We know of
no universal utility function. We assume a utility function
can be defined for each instance of the component selection
problem as we define it. While we have defined utility as a
function of time and cost, it could just as easily be defined
in terms of algorithmic efficiency, or any other metric we
believe is important to capture.

We allow for the possibility that the utility of a com-
ponent xi satisfying requirement rj might be a function of
the number of other requirements xi also satisfies. Thus,
xi may have one utility if it is ultimately selected to satisfy
requirement rj only, and it may have another utility if in
addition to rj , xi is also chosen to satisfy another require-
ment. This is realistic, for example there can be benefit in
employing fewer simulation components to satisfy a set of
requirements.

Earlier we introduced θ , an upper bound on the number
of requirements that can be met by a single component in
a selected set of components. In the worst case, γ (2θ −
1) sets of utility values would need to be computed to
assign utilities to describe all possible ways γ components
can satisfy their θ requirements. This follows from there
being 2θ possible combinations of the θ requirements a
component can satisfy less one combination representing
the case when a component satisfies zero requirements. Each
of these sets of utility values represents a different scenario
for a given component usage, with one or more utility
computations necessary per scenario. The total number of
utility computations required to complete all possible sets
of utility values is γ θ(2θ−1).

In our formulation of the component selection problem
we have explored the use of a scaling factor, β, associated
with all components, where the utility of the component
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in satisfying multiple requirements scales by the factor
times the number of additional requirements satisfied. The
scaling factor captures the change in utility encountered
when a component satisfies multiple requirements. By
using a scaling factor to model the utility of a component’s
satisfaction of multiple requirements, we reduce the cost
of performing component selection considerably, and yet
retain a useful level of practicality.

Consider the practicality argument first. Using compo-
nent xi to satisfy requirement rj will realize utility u(xi, rj ).
If xi is used to satisfy any single additional requirement, the
utility of using xi to satisfy rj will now be β∗u(xi, rj ). The
β scaling factor reflects that the cost of the programmers’
learning about xi to satisfy rj is subsequently amortized
across the application of xi to the additional requirement.
The scaling factor can be applied in a similar fashion when
xi satisfies many additional requirements.

We believe that in the course of performing a component
selection, a user is much more likely to be comfortable
estimating a scaling factor than describing context dependent
functions. While the existence of a scaling factor is not
essential to our complexity analysis, it represents the sort of
relaxed assumption we find reasonable. It does have some
cost benefits as we discuss next.

Using the scaling factor dramatically reduces the num-
ber of utility values that must be generated for most problem
instances. Earlier in this section, we stated that γ θ(2θ−1)

utility values must be computed in the worst case when
the scaling factor is not used. Consider a component xi ,
a utility function u that evaluates the utility of using xi to
satisfy any requirement rj , and a scaling factor that specifies
the utility of using xi to satisfy more than one requirement.
For any one of the γ components xi in a problem instance,
a utility must be computed for each of the θ individual re-
quirements xi could satisfy. Additionally, for each of the θ

requirements that xi satisfies it is required to compute the θ

utilities for ways xi can satisfy that specific requirement and
θ − 1 additional requirements. The total number of utilities
that must be computed is γ θ2, which becomes significantly
smaller (for θ > 2) than the number of utilities that must
be computed when the scaling factor is not utilized.

3.2 Informal Problem Description

We refer to our formulation of the component selection
problem as “Applied Simulation Component Selection” (CS-
ASCS). An instance of CS-ASCS is graphically depicted
in Figure 1.

In this figure, there are seven labeled bins, with each bin
corresponding to requirements r1 through r7. Each item
within a bin corresponds to a uniquely computed utility
value uijq corresponding to the ith component satisfying
requirement j while also satisfying q−1 other requirements.
In this problem instance we are using four components, 1
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Figure 1: Example Instance of CS-ASCS

through 4. We set θ , the upper bound on how many
requirements a given component can be adapted to meet, to
3. Because θ is assumed to be 3, no q for any of the uijq is
greater than 3. In Figure 1, x1 is a candidate for satisfying
r1 and r7. Note that the scaling factor, β, allows us to
compute u113 and u173 even though x1 was only chosen to
satisfy two requirements and these two utility values will
never be utilized.

Given a problem instance, our goal is to select the set of
components that meets all requirements while maximizing
the total utility value. For the example problem instance,
one entry should be selected from each bin. For any selected
entry, uijq , where q > 1, there must be q−1 entries selected
from q − 1 other bins possessing the same values for i and
q as the original selected entry. That is, for any component,
xi whose utility, uijq , is selected from the j th bin, q − 1
other utilities for component xi must be chosen from q − 1
other bins.

In Figure 2, we show an equivalent view of the problem
depicted in Figure 1. This equivalent view can be constructed
for any problem instance.

The view in Figure 2 lends itself better to reasoning
about the time complexity of component selection given
our formulation of the problem.

In support of the problem representation in figure 2, R,
ρ, X, γ and θ remain as we have defined them above. The
set U corresponds to all possible computed utility values
for a given problem instance (e.g. every item appearing in
a bin in Figure 1). The set C is a collection of collections,
where each Ck for k in the range 1..γ , is a collection of
subsets of U . Note that these subsets and collections are not
constructed arbitrarily. Each Ck corresponds to all possible
uses of a given component for the problem instance. For
the example given in Figure 2, every possible usage of
component x2 is described by a subset in C2. In a solution
to this problem instance, we can either choose not to use x2
5
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Figure 2: Set View Instance of CS-ASCS
at all (choose none of the subsets in C2), or we can choose
exactly one subset from C2. More generally, we can choose
no more than one subset from each Ck because each subset
represents a different scenario for satisfying a requirement,
and the computed utility values for each subset member are
dependent on this chosen scenario. The utility value for
a given component scenario (subset) is simply the sum of
the subset members, and will be described in the formal
definition of CS-ASCS as the function f .

Selecting subsets in C to satisfy the requirements in R

is equivalent to searching for an exact cover of R. The goal
is an exact cover because CS-ASCS allows only one compo-
nent to meet any given requirement. There is no emergence
(Page and Opper 1999) or duplication of requirement satis-
faction among components. Intuitively, identifying an exact
cover of R ensures each requirement is satisfied by exactly
one component. Since the elements of U and R are not of
the same type, we must construct a mapping from elements
in U to elements in R in order to cover R. This mapping is
simply a projection of the second subscript of each element
of U to the corresponding unique requirement in R (e.g.
u123 is mapped to requirement r2).
24
3.3 Formal Problem Definition

Informally, the problem description in the set view is to
choose no more than one subset from each Ck to exactly
cover R while maximizing aggregate utility. More formally
the problem is:

CS-ASCS
INSTANCE: Set R = {r1, r2, . . . , rρ} of requirements, set
X = {x1, x2, . . . , xγ } of components, set U of utility val-
ues where each uijq ∈ U corresponds to the ith component
satisfying requirement j while also satisfying q−1 other re-
quirements (with an arbitrary upper bound θ on q), collection
C constructed from U (per the construction in Section 3.2)
where each Ck is a collection of subsets of U , function
f : 2U → � that sums utility values, sum ∈ �.
QUESTION: Is there an exact cover S of R constructed by
choosing no more than one element zk from each Ck such
that S = ⋃

k zk and
∑

s∈S f (s) ≥ sum?
We have posed this as a decision problem (yes or no

answer required). Alternatively, we could have asked the
following optimization question:
QUESTION: What is the maximum utility of an exact cover
76
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of R with no more than one element chosen from each Ck?
In general, a given problem is more difficult to solve as an
optimization problem than as a decision problem. In this
instance, we will consider the complexity of the decision
problem first.

First we show that a user can build an instance of
CS-ASCS in polynomial time given a set of components
and a set of requirements. Recall that γ is the cardinality
of the set of components, and θ is an upper bound on the
number of requirements a component can satisfy. To build
an instance of CS-ASCS:

1. Iterate through each component, deciding for each
component which requirements it can satisfy (not
exceeding θ ). In the worst case, every compo-
nent is considered as a candidate for satisfying
every requirement; this worst case requires time
∈ O(γρ).

2. Compute utilities. In the worst case this activity
requires time ∈ O(γ θ2)(using the scaling factor
as shown in Section 3.1).

3. Form the collection C: γ collections of subsets.
In the worst case the time required to form the
subsets is ∈ O(γ (2θ − 1) = O(γ 2θ ). Recall that
θ is bounded. Therefore the time required to form
the subsets in the worst case is ∈ O(γ ).

From steps 1-3 we conclude that the overall time complexity
to build an instance of CS-ASCS is ∈ O(γ θ2), which is
polynomial in the length of the input.

4 COMPUTATIONAL COMPLEXITY OF CS-ASCS

We prove that CS-ASCS is NP-complete, thus arguing
its intractability. To do so, we use the EXACT COVER
BY 3-SETS problem which is known to be NP-complete
(Garey and Johnson 1979, Karp 1972). This problem is
defined as follows:

EXACT COVER BY 3-SETS (X3C)
INSTANCE: Set X with |X| = 3q and a collection C of
3-element subsets of X.
QUESTION: Does C contain an exact cover for X, i.e.,
a sub-collection C′ ⊆ C such that every element of X

occurs in exactly one member of C′?

X3C asks the following question: Given a set X where
|X| mod 3 = 0, and a collection of subsets of X, where
each subset has exactly three members, can X be exactly
covered by some or all of the subsets? By definition, an
exact cover requires a one-to-one correspondence between
the members of the subsets forming the exact cover and the
elements of X. The subsets forming the exact cover will
24
contain no elements that are “left over”, and no element in
X will be covered more than once.

We restate our original problem for convenience:

CS-ASCS
INSTANCE: Set R = {r1, r2, . . . , rρ} of requirements, set
X = {x1, x2, . . . , xγ } of components, set U of utility val-
ues where each uijq ∈ U corresponds to the ith component
satisfying requirement j while also satisfying q−1 other re-
quirements (with an arbitrary upper bound θ on q), collection
C constructed from U (per the construction in Section 3.2)
where each Ck is a collection of subsets of U , function
f : 2U → � that sums utility values, sum ∈ �.
QUESTION: Is there an exact cover S of R constructed by
choosing no more than one element zk from each Ck such
that S = ⋃

k zk and
∑

s∈S f (s) ≥ sum?

4.1 CS-ASCS is NP-complete
Theorem 1 CS-ASCS is NP-complete.

Proof By reduction from X3C. We first show that CS-
ASCS is in NP. Then a function is constructed to transform
an instance of X3C to an instance of CS-ASCS. We show
this transformation is in P. Lastly, we show that a problem
instance is an element of X3C if and only if the transformed
instance is an element of CS-ASCS.

Given any set S, we can verify in polynomial time
whether S ∈ CS-ASCS. Recall that the members of S

are subsets. We iterate through each of these subsets and
verify which requirement is met by each subset member
(second subscript in our notation). Additionally we keep a
cumulative utility value using f , so for each member we
add the utility to this running total. After we iterate through
all subsets, we verify that each requirement was met once
and only once, in addition to verifying that the result of f

(cumulative utility) is ≥ sum. In the worst case there are γ

subsets, each with θ members. Therefore, this verification
process is ∈ O(γ θ) and CS-ASCS ∈ NP.

Next we define a transformation function g that trans-
forms any instance I of X3C to an instance g(I) of CS-ASCS.
The transformation function g is defined as follows:

1. For every ci ∈ CX3C , form a new collection, di ,
that has one element, a set that also has only one el-
ement, the utility value 1 mapped to ci , labeled 1ci

.
The result is a new collection DX3C = {d1, d2, . . .}
where each element of DX3C is a collection con-
taining one set, with that set containing a single
utility value mapped to a member of C. Copy
DX3C to CCS−ASCS . Add each 1ci

to UCS−ASCS .
2. Assign sum = |XX3C |

3 .
3. Copy XX3C to RCS−ASCS .

Let r = |CX3C | and s = |XX3C |. Step 1 of the transfor-
mation requires time ∈ O(r). Step 2 ∈ O(s) assuming the
77
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number of items in XX3C must be counted. Step 3 ∈ O(s).
Therefore, the overall time complexity of the transformation
g is polynomial in the length of the input.

Next we show that I ∈ ZX3C if and only if g(I) ∈
ZCS−ASCS .

−→: Assume I ∈ ZX3C . Then there exists a subset
C′

X3C ⊆ CX3C that exactly covers XX3C . By g, there
exists a one-to-one correspondence between C′

X3C and a set
C′

CS−ASCS ⊆ CCS−ASCS . If C′
X3C exactly covers XX3C ,

then by g, C′
CS−ASCS will exactly cover RCS−ASCS . Since

through g, there is only one element in each CiCS−ASCS
∈

CCS−ASCS , then no more than one element from each
CiCS−ASCS

could have been chosen to form the exact cover.
By g, sum = |XX3C |

3 = |C′
X3C |. Since there is a one-to-one

correspondence between C′
X3C and C′

CS−ASCS , and each
element of C′

CS−ASCS possesses a utility of 1 in the exact
cover, the total utility of the exact cover in g(I) equals
|C′

CS−ASCS | = sum. Therefore, g(I) ∈ ZCS−ASCS .
←−: Assume g(I) ∈ ZCS−ASCS . Then there ex-

ists a subset C′
CS−ASCS ⊆ CCS−ASCS that exactly covers

RCS−ASCS . By g, there exists a one-to-one correspon-
dence between C′

CS−ASCS and a set C′
X3C ⊆ CX3C , and a

one-to-one correspondence between RCS−ASCS and XX3C .
If C′

CS−ASCS exactly covers RCS−ASCS , then by g, C′
X3C

exactly covers XX3C . Therefore, I ∈ ZX3C .
We have shown that I ∈ ZX3C if and only if g(I) ∈

ZCS−ASCS . This completes the proof of Theorem 1. �

4.2 The Optimization Problem

We can informally restate an instance of the decision
problem for CS-ASCS as an optimization problem as
follows:

CS-ASCS-OPT
QUESTION: What is the maximum utility of an exact cover
of R with no more than one element chosen from each Ci?

Theorem 2 CS-ASCS-OPT is NP-hard.
Proof (informal) We argue that all problems in NP

reduce to CS-ASCS-OPT. As stated in the proof for The-
orem 1, X3C is NP-complete, therefore all problems in
NP can be reduced to X3C. X3C can be reduced to CS-
ASCS-OPT as follows. Run a transformed instance of X3C
through a machine that solves CS-ASCS-OPT. If the max-
imum utility returned is zero, then the answer to the X3C
decision problem is NO because an exact cover does not
exist. Any other answer from the CS-ASCS-OPT machine
implies an exact cover exists, and therefore the answer to
the decision problem is YES. This completes the proof of
Theorem 2. �

We have now shown that all instances of X3C can be
reduced to CS-ASCS-OPT, and therefore CS-ASCS-OPT
is NP-hard. However, note that CS-ASCS-OPT cannot
be proven NP-complete because there is no known way
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to verify in polynomial time the maximum utility for any
given problem instance.

4.3 Dealing with Complexity

Proving a problem to be NP-complete provides convincing
evidence that an optimal polynomial-time algorithm is un-
likely to be found. However, alternatives exist. First, if the
input size is sufficiently small and remains small, then the
problem could be approached using brute force. Second,
while the worst case may be NP-complete, the average case
may be shown to be much less complex. Lastly, approx-
imation algorithms and heuristics are a class of solutions
that can give very good, reasonably close to optimal, results
in a reasonable amount of time.

Since most simulations are of reasonable complex-
ity, we believe that those built from components, es-
pecially small and simple components as advocated in
(Bartholet et al. 2004), will have enough requirements and
components from which to choose that brute force will not
be an option for component selection. It is most likely
that success will be found in a semi-automated approach,
where a combination of heuristics and subject matter expert
insight find a reasonable first approximation that can be
further refined if necessary.

4.4 The Effect of One Assumption on the Problem
Complexity Class

The constant θ is critical in the definition of CS-ASCS.
Recall θ is an arbitrary bound on the maximum number of
requirements a given component can meet, and is applied
before the component selection process is carried out (i.e.
no component appears in the ρ bins for requirements more
than θ times. The nature of CS-ASCS changes considerably
as θ takes on values of 1, 2, 3 or greater than 3. We discuss
how this range of values for θ affects the complexity of the
problem.

For θ = 1 (CS-ASCS-1), this is a problem instance
where each component can satisfy at most one requirement.
A trivial algorithm for optimally solving CS-ASCS-1 is to
place all components that meet the same requirement into
a bin, sort the bin in order of decreasing utility value, and
select the first component in each bin. Clearly this is an
optimal polynomial time algorithm for CS-ASCS-1.

For θ = 2 (CS-ASCS-2) the problem complexity is
unknown. Many, but not all, problems have polynomial
time solutions when independent variables associated with
the problem have a value of two. To show that CS-ASCS-2
is of polynomial time complexity, we must either show a
reduction of CS-ASCS-2 to a problem such as Exact-Cover-
by-2-Sets (X2C), which is known to be of polynomial
time complexity (Garey and Johnson 1979), or we must
construct a polynomial time algorithm directly. A procedure
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for reducing to X2C is not obvious, mainly because the
weights in CS-ASCS-2 have no equivalent in X2C. We will
continue to explore this question.

For θ ≥ 3 (in effect, bounding the number of require-
ments any component can satisfy), this is an NP-complete
problem because when x ≥ 3 an X3C to CS-ASCS reduc-
tion as shown in Section 4.1 is possible. However, if θ is
unbounded, i.e. there is no limit on the number of require-
ments a given component can meet, then CS-ASCS requires
an exponential time algorithm. This conclusion is derived
from the analysis in Section 3.3 where we showed the need
to consider O(γ 2θ ) subsets in the problem solution. In this
case θ is growing unbounded making CS-ASCS a problem
of exponential time complexity.

A second independent variable we consider in our for-
mulation of the component selection problem is the scaling
factor (β). Recall β is used in determining the utility of
a component for satisfying a requirement when that com-
ponent is also used to satisfy other requirements. The
component’s final utility would be its utility for satisfying
the first requirement times the scaling factor raised to the
power of the remaining number of requirements the com-
ponent satisfies. There would be one scaling factor for each
component, requirement pair. If we assume that all scaling
factors are equal to one, then our formulation of the compo-
nent selection problem has a polynomial time complexity
independent of the value of θ . This result is important
because it means there is an interesting class of component
selection formulations for which there is a polynomial time
solution. We intend to explore this insight further.

4.5 Generalizing from CS-ASCS

We chose utility, computed as a function of the pair (xi, rj ),
as the measure of goodness in our search for an optimal
component selection method. We can generalize our results
to other metrics, and the problem remains NP-complete.

We further generalize our formulation as follows:
assume there are dependencies in the component selection
process such that component-requirement pairs are required
to be selected together in groups of size 1 or more.
A selection possesses an associated weight. As an
example, assume that component xi1 is selected to satisfy
requirement rj1. Owing to a dependence this selection
requires component xi1 to be selected to satisfy rj2,
component xi2 to satisfy requirements rj3 and rj4, and
component xi3 to satisfy requirement rj5. We assume this
set of component-requirement pairs possesses a weight
computed by a function not specified here. The weight
could be used for maximizing or minimizing an objective
(e.g. minimize if the weight is a cost, maximize if the
weight is a benefit). More formally:
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CS-ASCS-X
INSTANCE: Set R = {r1, r2, . . . , rρ} of requirements, set
X = {x1, x2, . . . , xγ } of components, set Y = X × R,
collection C where each Ci is a weighted subset of Y with
maximum cardinality of θ , function f : Ci → � that sums
subset weights, k ∈ �.
QUESTION: Is there an exact cover Z ⊆ C of R such
that

∑
z∈Z f (z) ≥ k? (Without loss of generality, in this

problem description the weight is maximized.)

From this problem description we state Corollary 1 to
Theorem 1:

Corollary 1 If θ ≥ 3, then CS-ASCS-X is at
least NP-complete.

Corollary 1 is proven by showing that X3C is a restricted
case of this problem in the same way that X3C was shown
to be a restricted case of CS-ASCS. The corollary is stated
“at least NP-complete” to account for those instances where
the number of dependencies is so large that the input to the
problem grows exponentially (e.g. the case where |C| =
|2Y |).

Informally, Corollary 1 is interpreted to mean that once
dependencies are considered in a weighted component selec-
tion problem, finding an optimal solution quickly becomes
intractable as the problem scales. However, as shown in
Section 4.4, there are cases where constraining dependencies
makes the problem tractable.

For a typical set of components, a typical set of
requirements, subject matter expert knowledge and ex-
perience and other factors as yet not considered in the
literature, the component selection problem may not be
as seriously constrained as theoretical treatment sug-
gests. While the results presented here are theoret-
ically similar to the results in (Page and Opper 1999,
Petty, Weisel, and Mielke 2003), the flexibility provided to
the component selection problem by adaptable components
gives encouragement for future progress toward acceptable
solutions. For a given metric that facilitates the selection of
components, the acceptable number of dependencies among
components that an efficient analysis can support is still not
determined. While the theoretical limit appears to be no
more than two, other factors may support a larger limit.
The nature of those other factors remains to be explored.

5 CONCLUSIONS

In this paper, we have shown that the complexity of optimal
reuse of adaptable components is NP-complete. We were
motivated to pursue this study of adaptable components be-
cause it is impossible to anticipate future requirements when
creating component sets and because the most efficient way
to construct a complex simulation may be to adapt existing
components. This work is unique in its formal treatment of
how components can be changed or adapted to satisfy multi-
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ple requirements. However, the ways in which a component
can be adapted are constrained according to inter-component
dependencies that permit precise analysis of multiple com-
ponent reuse scenarios. As a function of seemingly simple
decisions made about the nature of dependencies among
components, we demonstrated that the complexity of the
component selection problem can vary from polynomial, to
NP, and even to exponential. We generalized these results
to show that regardless of the types or reasons for depen-
dencies in component selection, just their mere existence
makes this problem very difficult to solve optimally. Our
future work will explore the existence of approximation
algorithms and heuristics that can achieve good, but not
necessarily optimal, results in component selection while
retaining the flexibility that component adaptation provides
to the practitioner.
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