
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

COMPONENT-BASED PERFORMANCE MODELING OF A STORAGE AREA NETWORK

Nava Aizikowitz
Alex Glikson
Ariel Landau

Bilha Mendelson
Tommy Sandbank

IBM Haifa Research Lab
Haifa University Campus

Mount Carmel
Haifa, 31905, ISRAEL

ABSTRACT

This work explores performance issues of system-level in-
teractions by means of performance modeling. We focus
on I/O performance in a storage area network (SAN),
namely, the performance of I/O interactions of host servers
and storage subsystems via the SAN fabric. We present a
component-based simulation performance model, which
supports a rich variety of both existing and future storage
subsystems, allows for some basic network configurations,
and addresses the major I/O aspects of the server operating
system. The model's flexibility allows for easy parameter
modifications, configuration adjustments, architecture ma-
nipulations, and experimentation. The experiments pre-
sented in this paper demonstrate some of the ways this
model can be utilized, such as data placement, I/O manipu-
lation, and the evaluation of execution alternatives, and
shows the types of performance insights that may be
gained.

1 INTRODUCTION

 Large systems are made up of several major tiers that in-
teract with each other. For example, an application server
(such as IBM WebSphere), working with a database server
(such as IBM DB2 UDB), using the host’s operating sys-
tem (such as Unix) to communicate, via a storage area
network (SAN) fabric, with a storage subsystem (such as
IBM Enterprise Storage Subsystem—ESS). This is gener-
ally referred as an application stack. Much is usually in-
vested in improving the performance of each separate tier
of the application stack. However, many performance
problems occur, due to the poor knowledge and utilization
of the I/O subsystem by the upper tiers of the application
stack. By looking at the entire application stack, we can
find more holistic solutions that take the interactions

24
among the tiers into account. Our work focuses on per-
formance aspects of the interaction between the applica-
tion-stack tiers, and in particular, of host and storage inter-
actions. The model captures a typical SAN environment
which consists of several host servers communicating via a
high-speed special-purpose network with different kinds of
storage subsystems, as can be seen in Figure 1.

S to ra g e S u b s y s te m s

S A N F a b ric

U N IX
W in d o w s

z S e rie s

H o s t S e rv e rs

D riv e s

D riv e C o n tro lle r

S V C
D S 4 0 0 0

D riv e s

D S 6 0 0 0

D riv e sD riv e s

E S S
F A S tT

Figure 1: An Example of the Modeled Environment

Performance models are influential tools that may

provide significant information for improving the interop-
erability of host servers and storage subsystems. We pre-
sent a prototype of a component-based performance model
that is easily manageable and sufficiently flexible to sup-
port a rich variety of both existing and future storage sub-
systems. The model enables some basic network configura-
tions and addresses the major I/O aspects of the host
operating system. The model is simulation-based and thus
may express the effect on performance of unpredictable
variations in business workloads.

As shown in Figure 1, the entire system can comprise
various types of host servers and storage subsystems.
Therefore, a model of such an environment should support

17

Aizikowitz, Glikson, Landau, Mendelson, and Sandbank

a wide variety of architectures and provide the ability to
deal with different types of system components. Thus, the
proposed solution comprises a generic, component-based
framework that captures the nature of various host servers,
storage subsystems and network configurations. The
framework includes generic resources, basic operations,
algorithms and overheads, which are common to a wide
range of architectures. On demand, the generic framework
is refined for a desired architecture, by defining only the
specific operations and algorithms, which will override the
generic ones in the component-based environment. Some
of them are embedded into the model at compile-time, and
others at runtime, using a configuration mechanism.

This work provides an environment for the perform-
ance evaluation of various architectures, and supports ex-
perimentation with different configuration policies and
with a variety of workloads. The model can be fed concur-
rently by either existing real or synthetic I/O trace files, or
I/O requests generated on the fly according to a given
specification. We have conducted several experiments us-
ing the model to demonstrate its potential uses. Our ex-
perimentation with host and storage interactions provides
insight on system-level tuning that may improve I/O per-
formance. In particular, some of the data-manipulation ex-
periments that improve I/O performance do not involve
changes in the storage-subsystem architecture.

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 introduces the generic
component-based framework and the model scope. Section
4 describes the model implementation, the software archi-
tecture, model flexibility, and some architecture specific
considerations. Workload generation and analysis are also
addressed in Section 4. Section 5 suggests experiments that
utilize the model, and describes the workloads that were
used. Future directions and concluding remarks are de-
picted in Section 6.

2 RELATED WORK

There are at least two alternative approaches for addressing
system-level interactions: benchmarking on an actual envi-
ronment or modeling. Building an actual environment for
measurements might be an expensive approach. Moreover,
a model is more flexible and amenable to modifications,
and can more easily address future alternative directions.
Analytic queuing models, like the ones used in Alvarez et
al. (2001) and Uysal et al. (2001), and in the Disk Magic
storage-configuration planning tool (Castets et al. 2003),
are usually best suited for the investigation of steady-state
behavior. A simulation model, on the other hand, captures
the dynamic nature of real-life workloads. AMBIENCE
(Wynter et al. 2004) is an automatic model building tool
that integrates queuing network models with advanced in-
ference techniques.
2

Some works (Alvarez et al. 2001, Anderson et al.
2002, Uysal et al. 2001) address monitoring, tuning and
autonomic management of storage subsystems, while not
taking into account the interoperability with other tiers
(e.g., databases) and its impact on performance. Automatic
SAN fabric design, which provides given requirements at
minimum-cost, is presented in Ward et al. (2002). EMC
Control Center claims to provide (as a commercial prod-
uct) automatic monitoring and expert advice functions, that
go beyond the storage subsystem tier (for details, see
<http://www.emc.com/products/storage_ma
nagement/controlcenter.jsp>). Merging of SAN
performance management tools into the host system is also
explored in Kochut et al. (2004), where performance data
is collected on hosts, fabric components, and storage de-
vices to establish baseline performance. Then, the SAN is
monitored to determine all host volumes that may be trou-
bled by performance problems. Our solution can be inte-
grated with such an environment, to identify new and bet-
ter SAN configurations. As for input modeling, extensive
characterizations of server and personal-computer work-
loads are provided in Hsu and Smith (2003).

3 GENERIC MODELING FRAMEWORK

We regard a generic framework as a set of resources and
algorithms, configured in a certain way. I/O requests are
generated by the host and processed. Every request travels
between different resources (and layers) of the system, us-
ing some given connectivity between them (buses, chan-
nels, etc.), data and control commands are transferred, and
a response to the host is eventually generated. The exact
procedure and path are determined by the system architec-
ture, the specific configuration, and the request parameters.

We have examined several architectures to find out
what they have in common and what makes them unique.
Figures 2, 3 and 4 present schematic diagrams of three
storage subsystems: IBM Enterprise Storage Subsystem
(ESS, Castets et al. 2001), IBM DS6000 (Warrick et al.
2005), and IBM SAN Volume Controller (SVC, Mellish et
al. 2004). All the storage subsystems that we have consid-
ered are composed of a pair of storage management units
(for higher availability)—a node and its peer, e.g., ESS
clusters, DS6000 complexes, and SVC nodes. All have
processors, such as ESS Symmetric Multi-Processors (de-
noted SMP or MP) or DS6000 CPUs, that manage the stor-
age unit operations. All have adapters to control their inter-
faces: host adapters (denoted HA) that control the interface
with hosts; and device adapters (DA) that control the inter-
face with the devices (disks). All manage a cache for better
I/O performance and maintain a second copy of their writ-
ten data, in a non-volatile storage (NVS) of their peer, for
reliability. And all use RAID functionality (explained be-
low). But, as shown in Figures 2 and 3, ESS and DS6000
418

http://www.emc.com/products/storage_management/controlcenter.jsp
http://www.emc.com/products/storage_management/controlcenter.jsp

Aizikowitz, Glikson, Landau, Mendelson, and Sandbank

differ in the connectivity between their storage units and in
their device layout.

Figure 2: ESS Architecture Layout

Figure 3: DS6000 Architecture Layout

DS6000 uses a dedicated bus for the communication

between the storage complexes, while ESS utilizes the
same buses to connect between the storage clusters and be-
tween them and the host adapters. In addition, for ESS the
device is organized in Serial Storage Architecture (SSA)
loops, where DS6000 uses switched Fibre Channel Arbi-
trated Loops (FC-AL). SSA only uses the part of the loop
24
between adjacent disk drives, and thus allows for many si-
multaneous data transfers around a loop. Whereas, the
switched FC-AL technology provides for direct physical
paths to each disk drive.

As mentioned above, the storage subsystems that we
have considered use RAID functionality. RAID, short for
Redundant Array of Independent Disks, is a method
whereby information is spread across several disks, to
achieve redundancy, lower latency and/or higher I/O
bandwidth, and recoverability from hard-disk crashes. Dif-
ferent types of RAID configurations may be defined. For
example, RAID-5 stripes both data and parity information
across all the array drives, and RAID-10 combines data s-
triping and mirroring. ESS uses fixed-size RAID-5,
whereas DS6000 utilizes flexible-size (i.e., with a variable
number of disks) RAID-5 and RAID-10.

The SVC, depicted in Figure 4, has some special fea-
tures. In the SVC architecture, not only do the host and
storage communicate via a SAN fabric, but also the com-
munication between the storage nodes and between them
and the devices occurs via the (same or distinct) SAN fab-
ric.

Figure 4: SVC Architecture Layout

Studying different environments and understanding

their basic nature led us to define generic components that
support a wide variety of platforms. Our component-based
approach captures the components that are common to
most of the architectures, and enables easy handling of the
components that are unique.

3.1 Generic Layout

The system architecture can be divided into following ge-
neric layers:
19

Aizikowitz, Glikson, Landau, Mendelson, and Sandbank

1. Host: a server or a workstation that is connected,

possibly via a SAN fabric, to the channels of a
storage subsystem, and consumes the logical disks
provided by the storage. The host operating sys-
tem includes the following layers:
(a) Logical Volume Manager (LVM): maps the

application's logical view of storage space to
the physical view exported by the storage
subsystem.

(b) Disk Driver (DD): translates commands be-
tween the LVM and the physical adapter.

(c) Storage Adapter (SA): an appliance respon-
sible for sending the hosts' requests to stor-
age, and routing responses back to the host.

2. SAN Fabric: a storage area network fabric com-
posed of:
(a) Switch: a device that filters and forwards

packets between network segments.
(b) Port: an interface on the switch connected to

a host, a storage node, or a device.
3. Storage Management Node: a storage unit com-

posed of:
(a) Cache: a processing unit that maintains an in-

ternal cache, and uses (generic or specialized)
adapters to interact, possibly via SAN(s),
with the hosts, storage devices, and other
storage nodes (peers).

(b) Adapters
(i) Host Adapter (HA): an appliance re-

sponsible for routing the host’s requests
to the cache, and sending responses back
to the host.

(ii) Device Adapter (DA): an appliance that
controls the access to a physical device
and performs the actual read/write opera-
tions, as requested by the cache layer.

(iii) Peer Adapter (PA): an appliance that
handles the communication with the
other storage management node (peer)
that usually holds redundant copies of
the written data.

(c) Device: a controller of a physical storage de-
vice (typically with RAID functionality).

As stated above, storage subsystems are usually com-

posed of a pair of storage management nodes. The pro-
posed model can be configured to represent several hosts
and complex storage architectures comprising a larger
number of (e.g., SVC) pairs, or a mixture of several storage
subsystems.
242
3.2 Generic Resources

For the generic layers described in Section 3.1, we have
identified the following generic resources. Every such re-
source is considered a component in our framework.

• LVM – transforms logical volume requests into

physical volume requests.
• DD – manages the communication between the

LVM and the physical adapter.
• SAN ports – control the interfaces of up to three

different physical networks: between the host and
the storage node, between the storage node and
the device, or between the storage node and its
peer.

• Channels (SAN attachments) – connect the host
to the storage node, the storage node to the device,
or the storage node to its peer.

• Adapters – control the host's interface with stor-
age (SA) and the storage node interface with the
host (HA), the device (DA), and its peer (PA).

• Processors – manage the storage operations (e.g.,
ESS SMP or SVC CPU).

• NVS – non-volatile memory for the peer-written
data.

• Device – RAID controller of the managed disks.
• RAID ranks – RAID arrays.
• Buses – internal buses (e.g., HA-bus connecting

the host adapter and the cache, PA-bus connecting
the peer adapter and the cache, RR-bus connect-
ing the device and the RAID ranks, etc.).

• Disks – disk drives.

Figure 5 depicts the layout of the generic system.

bus
SAN port
channel / SAN attachment

HOST

LVM

SA

HOST_SAN

DEV_SAN

PEER_SAN

NODE PEER

CACHE /
NVS

CACHE /
NVS

HA HA

DA DA

PA PA

RAID ranksDEVICE

Figure 5: Generic System Architecture

0

, Mendelson, and Sandbank
Aizikowitz, Glikson, Landau

Note that for a specific architecture:

• A logical resource may be a void (or null) appli-

ance. For example, ESS has no fabric between the
storage node and the device layer. So in this case,
for example, there are no device ports.

• Different logical resources may be mapped to the
same physical appliance. For example, in ESS, the
logical functions of both the HA and the PA are
done by the host adapter. Also, in ESS, both the
generic DA and the generic Device are part of the
same physical appliance, which is called a device
adapter and is denoted by DA.

3.3 Generic Parameters

The model relies on a set of generic parameters. These pa-
rameters fall into two main categories: fixed overheads and
overheads that depend on the size of the transferred data
(typically expressed by the bandwidth of the connection).
For example, for a specific channel, there is one parameter
that represents the fixed service time of using the channel,
and another parameter, the channel bandwidth, that infers
the variable data transfer time (the division of the amount
of transferred data by the channel bandwidth).

Our model relies on the provision of the specific over-
heads for each of the modeled architectures. When dealing
with a specific architecture, some of the overheads can be
non-relevant, or zero. A specific configuration will deter-
mine the values that can cause the model to ignore some
overheads, or to unify several overheads into a single one.

3.4 Generic Algorithms and Basic Operations

The transaction-flow modeling is divided into four main
algorithms that are common to most environments: read
and write (also called fast write) for requests that originate
from hosts, and prestage and destage for background asyn-
chronous operations that are generated by the storage sub-
system. The read algorithm deals with the processing of
read requests, including both cache hits and data staging
due to cache misses. The (fast) write algorithm deals with
the writing of data into storage node cache and into the
peer’s non-volatile storage. The prestage algorithm takes
care of the prefetching of data from a device into storage
cache—triggered by known patterns (e.g., the number of
address-sequential reads in a row). The destage algorithm
handles the flushing of cached-written data to storage de-
vices—triggered by cache (or non-volatile storage) thresh-
olds.

We have developed these four basic algorithms in
terms of generic, basic operations, whose implementations
might be exchangeable in different architectures or con-
figurations. Actually, every such implementation of a ge-
neric basic operation can be viewed as a component of the
242
model, within the framework of our component-based ap-
proach. The generic basic operations are implemented in
terms of the manipulation of resources. The specific archi-
tecture, the configuration, and the request parameters de-
termine the specific sequence of resources to utilize.

In a similar manner, the cache-management algorithm
is actually an interface that consists of generic cache opera-
tions, such as cache-query, which rely on the architecture's
cache-residency and cache-replacement policies.

Most of the generic basic operations are common to a
wide variety of systems (e.g., "use node processor to allo-
cate a cache entry", "transfer 32 KB data between device
and RAID rank", etc.), but some need to be refined accord-
ing to the specific architecture. For example, as mentioned
before, saving a copy of written data in the storage peer is
done via the general HA-bus in ESS, a dedicated PA-bus in
DS6000, and the SAN fabric in SVC. So, several unique
implementations are provided for this basic operation.

3.5 Model Scope

Using generic resources and basic operations as building
blocks, our component-based approach enables the compo-
sition of various environments. In the subsections below,
we describe the scope of the host servers, fabric and stor-
age architectures, and configurations that are currently
covered by our model.

3.5.1 Storage Subsystem Modeling

The generic components of our model capture a variety of
storage configurations: several models of the established
ESS (model F and model 800), a prototype of the more re-
cent DS6000 architecture, and the essence of the SVC
unique design. Currently, the model handles different lay-
outs of storage devices (e.g., SSA loops and switched FC-
AL enclosures), and copes with different RAID levels
(e.g., RAID-5 and RAID-10).

3.5.2 Fabric Modeling

The model can be configured to transfer requests through a
SAN or via direct attachments. The SAN is modeled as a
set of SAN ports and Fibre Channel Protocol (FCP) at-
tachments (Meggyesi 1994). Each port is attached to a
host, to a storage node, or to a device. The model currently
copes with SAN configurations with a single layer of
switches. Every time a request is transferred through the
SAN, the source and the destination ports, as well as the
corresponding channels, are held until a packet is trans-
ferred. Note that the bandwidth of the SAN fabric is as-
sumed to be large enough, and thus is not taken into ac-
count, and that the SAN latency is ignored.
1

Aizikowitz, Glikson, Landau, M

3.5.3 Host Server Modeling Aspects

The model assumes Open System hosts. The host operating
system is modeled by LVM, i.e., an entity that translates
the application logical view to the physical view exported
by the storage subsystem (e.g., IBM AIX’s LVM), a disk–
driver layer, and a physical-adapter layer. The assumption
is that the LVM translation may involve the manipulation
of I/O requests; namely, the splitting of I/O transactions
and routing of I/O requests via different paths. On the other
hand, disk-driver operations may involve I/O coalescing.
The physical adapters control the host interface with the
storage subsystem and are called storage adapters (SA).

4 COMPONENT-BASED MODEL
IMPLEMENTATION

The model is a simulation-based queuing model, written in
C++, and built on top of the CSIM18 simulation engine
(<http://www.mesquite.com/>). The model sup-
ports multiple storage subsystems and multiple hosts that
compete for the fabric resources to transfer I/O requests
and responses. The model is trace driven. The trace can be
either an existing static real or synthetic I/O trace file, or a
dynamic I/O stream generated on the fly. Each I/O request
holds the following attributes: request type (i.e., read or
write), target address (logical disk and logical block ad-
dress), data amount, and timestamp. The model output in-
cludes detailed per-resource statistics (utilization, inter-
arrival time, service time, queue length, etc.), and config-
urable statistical output such as transaction response time,
data throughput, and cache-hit rates.

4.1 Model Software Architecture

The model consists of the following main software compo-
nents (modules) as presented in Figure 6.

• Configuration Reader – reads model parameters

from configuration files.
• Configuration – manages the runtime configura-

tion parameters.
• Trace Reader – reads requests from existing

trace files.
• Trace Generator – generates requests on the fly.
• Input – retrieves requests from either the Trace

Reader (static trace files) or the Trace Generator
(dynamically generated I/O).

• Architecture – contains the architecture charac-
teristics per model (storages, fabric, and hosts).

• Request – handles the request with the appropri-
ate algorithm (e.g., read hit, write miss, etc.).

• Topology – determines the specific resources to
be used in the processing of the current request
(e.g., which host adapter to use).
2422
endelson, and Sandbank

• Operations – handles basic operations; uses To-
pology to determine the relevant set of resources.

• Cache – manages the cache.
• Raid Rank – performs low-level RAID access.
• Statistics – gathers performance information (us-

ing CSIM simulation tool mechanisms).

Configuration
Reader

Architecture

Cache

Configuration

RequestOperationsTopology

CSIM Trace
 Reader

InputStatistics

RAID Rank

Trace
 Gen

Figure 6: Model Software Architecture Overview

As mentioned before, some particular aspects of a spe-

cific architecture may require a special treatment that re-
fines the general framework. In these cases, the generic ba-
sic operations will be replaced by a specific version of
corresponding component. For example:

• The basic operation of saving a copy of written

data in the peer storage node is done via the HA-
bus in ESS, via a dedicated bus—PA-bus—in
DS6000, and via the SAN fabric attachments in
the SVC architecture.

• Differences in disks layouts, e.g., ESS SSA loops
vs. DS6000 switched FC-AL enclosures.

• ESS fixed-size RAID-5 arrays vs. DS6000 flexi-
ble-size RAID-5 and RAID-10 arrays.

4.2 Model Flexibility

The model flexibility allows for:

• Trivial parameter modification (e.g., the setting of

operation overheads, number of host adapters,
cache size, etc.).

• Flexible configuration adjustment (e.g., RAID-5
and RAID-10 combinations, mapping of logical
disks to RAID ranks, etc.).

• Easy architecture manipulation (e.g., NVS access
via different paths—ESS vs. DS6000, variety of
drives' connectivity—SSA vs. FC-AL, etc.).

• Ease of experimentation.

http://www.mesquite.com/

Aizikowitz, Glikson, Landau, Mendelson, and Sandbank

Note that no compilation is required when manipulat-
ing existing components and parameters, and that a new
component requires only its specific modeling.

4.3 Workload Generation and Analysis

Obtaining typical I/O workloads is not trivial. Moreover,
there is a need for workloads that stress the storage subsys-
tem, for custom-made I/O traces for specific experiments,
and for I/O traces that anticipate future workloads. There-
fore, a tool for generating a variety of synthetic I/O trace
files is essential for experimenting with our storage-
performance model.

Our framework includes trace-generation and trace-
analysis tools. The trace generator creates an I/O stream
according to a set of workload parameters, while the ana-
lyzer extracts the parameters that characterize a given
trace. The trace parameters hold general values (e.g., the
total number of logical disks) and per-logical-disk values
(e.g., read/write ratio, sequentiality attributes, and inter-
arrival distribution functions). Note that the trace generator
may use parameters inferred by the trace analyzer to pro-
duce I/O traces with the same workload characteristics.

5 EXPERIMENTATION

We have conducted several experiments to demonstrate the
model’s ease of use, and a variety of ways in which the
model can be utilized. Presented below are the workloads
that were used, and experiments with several configuration
policies—data placement of logical disks, manipulation of
I/O requests, and evaluation of different execution alterna-
tives.

5.1 Workloads

The model input workload can be any mixture of existing
(real or synthetic) trace files and trace streams generated on
the fly. We have experimented with I/O trace files avail-
able from the Storage Performance Council (SPC)
(<http://www.storageperformance.org>), and
with trace files (collected by the AIX trace facility) of DB2
UDB and Oracle database servers, running the TPC-C and
TPC-H benchmarks.

5.2 Experiments

A trivial way to experiment with the model is to “play”
with the model parameters and evaluate the impact on I/O
performance. For instance, setting the number of RAID
ranks, decreasing channel bandwidth, modifying resource
overheads, etc. For example, as expected, increasing the
storage cache size improved the I/O performance of read
requests and had a minor effect on the writes (as a read
miss implies accessing a relatively slow storage device,
24
whereas a write miss is handled locally in the storage
cache). More sophisticated ways to utilize the model are
described in the experiments below. Some of the perform-
ance insights gained are illustrated in Section 5.3 below.

5.2.1 Data Placement

The placement of logical disks on storage devices has great
impact on I/O performance. Although data placement
changes are considered expensive and thus rare, it seems
that storage virtualization will make data placement
changes more feasible. Our model can be used to evaluate
several data placement alternatives and choose the one
with better I/O performance.

We have experimented with several configurations of
mapping logical disks to (ESS) RAID ranks to maximize
the parallelism of I/O operations and improve I/O perform-
ance. For a given workload, we created a base placement
of volumes, taking into consideration the total number of
transactions per logical disk. Next, we did the distribution
and balancing according to the total amount of data trans-
ferred per each logical disk. And finally, we split highly
intensive logical disks and placed them across different
RAID ranks.

As expected, balancing the workload improved the I/O
performance relative to the base data placement. Splitting
the highly intensive volumes provided further performance
improvements.

5.2.2 I/O Manipulation

As mentioned before, the operating system may manipulate
I/O requests by splitting them (at the LVM) or coalescing
them (at the DD). The question is whether those manipula-
tions result in I/O requests and amounts that are better for
I/O performance. On one hand, coalescing may improve
performance by reducing the overhead per I/O request. But
on the other hand, waiting for requests to accumulate may
cause delays that may degrade overall I/O performance.
Experimenting with splitting and coalescing may provide
some insight on these trade-offs.

We defined a join policy that unites a sequence of I/O
requests of the same type into a single one. The joined re-
quests should belong to the same operating system function
call, must be “close in space” (the addresses they access
must be within some predefined range, e.g., one track),
must be “close in time” (their timestamps should be within
some specified range, e.g., one millisecond), and their
combined amount should not exceed some given threshold.
The joint request has the target address of the first request
and the timestamp of the last request; its amount is the sum
of the amounts of the joint requests. We experimented with
this join policy, applied it to I/O traces, and evaluated its
impact on I/O performance.
23

http://www.storageperformance.org/

Aizikowitz, Glikson, Landau, Mendelson, and Sandbank

Our experimentation shows that joining I/O requests
may improve performance, especially if the join is done in
multiples of the storage stripe size (i.e., the size of a disk
track, times the number of disks in a RAID array). The re-
sults indicate that such system-level I/O-heuristics (which
may be implemented by a hardware or a software “media-
tor”) can significantly improve the system performance.

5.2.3 Execution Manipulation

The model enables easy manipulation of generic algo-
rithms. As an example, the implementation and evaluation
of different execution alternatives of certain copy-services
functions, and in particular, one such function called flash
copy, are discussed below.

Flash copy provides an instantaneous (virtual) copy of
what the logical-disk’s original data looked like at a spe-
cific point in time. When flash copy is invoked, only cer-
tain metadata is created at the target, and the source data is
(optionally) copied in the background. Flash copy uses bit-
maps to keep track of write attempts into locations within
the source. Write attempts to places that were not physi-
cally copied into the target yet are put on hold, so they
won't destroy the source. Then, the original data at these
source locations is copied into the target. Finally, the held
write requests are resumed and new data is written into the
source.

In order to try to get a better understanding of the im-
pact of performing a flash copy (synchronously) in a
switch vs. doing it (asynchronously) inside the storage sub-
system, these two scenarios were modeled. In the synchro-
nous case, write requests received special handling. Once a
write-into-source request is identified, it is held and the
flash copy is handled by the following sequence of basic
operations: read original data from source; write original
data to target; resume the original write. In the asynchro-
nous case, the destage algorithm was modified similarly. A
destage-into-source is held while the following sequence of
basic operations is executed: stage original data from
source; destage original data to target; and resume the
original destage. The component-based model enables easy
tailoring of these new algorithms, based on the existing
implementations of basic operations.

The experimentation strengthened the straightforward
intuition that doing flash copy asynchronously in the stor-
age system implies better I/O response times than doing it
synchronously in the switch. For write requests, when flash
copy was performed synchronously, we saw strong correla-
tion between response times and the ratio between the
number of writes-into-source and the total number of write
requests. Sometimes, read performance was better when
the flash copy was performed synchronously in a switch.
We believe this is due to an increase in prestage opera-
tions.
24
5.3 Results

The results of the data placement and request-join experi-
ments are presented in Figure 7. For this model configura-
tion, the five SPC traces WebSearch1, WebSearch2, Web-
Search3, Financial1 and Financial2 (which are available at
<http://traces.cs.umass.edu/storage/>)
represent the workloads of five hosts that are attached to an
ESS model F storage subsystem, via a switch. A base data
placement was created by some reasonable placement that
took into account the number of transactions per logical
disk. Careful balancing of the volumes according to their
amount improved the read performance by 13% with re-
spect to the base data placement. The SPC traces Web-
Search1, WebSearch2 and WebSearch3 contain requests,
originating at eighteen logical disks (most of them are read
requests), though the great majority come from just nine of
the disks. We have, furthermore, experimented with data
placement by splitting these nine I/O-intensive volumes,
and placing the splits on separate physical devices. This
resulted in performance improvement of an additional 2%.

Applying the join policy to the base data-placement
above resulted in about 17% improvement in read response
time. Applying the join together with the more sophisti-
cated data-placement policies (based on request amounts
and request splits) resulted in an additional reduction of the
read response times by 14% and 16% respectively.

Note that in the experiment above, the simulation-
based model is much faster than real-life systems. Execut-
ing about 20 million SPC I/O transactions, which span over
12 hours of actual recording, took the model about 30 min-
utes to simulate (on a 1 GHz 2-way Pentium III processor).

1.000

0.8280.870

0.727

0.852

0.691

0.000

0.200

0.400

0.600

0.800

1.000

1.200

No Join Join

To
ta

l R
ea

d
R

es
po

ns
e

Ti
m

e
(N

or
m

al
iz

ed
)

Base Data Placement Data Placement + Split
Figure 7: Data Placement and Join for SPC Trace Files

In addition, we ran some experiments on a TPC-H I/O

trace of DB2 UDB, taken both at the LVM and the DD
levels. The workload was generated by an AIX host at-
tached directly to ESS model 800 storage subsystem. We
found that the device driver typically “joins” (or coalesces)
eight 32KB LVM requests into a single 256KB request.
24

http://traces.cs.umass.edu/storage

Aizikowitz, Glikson, Landau, Mendelson, and Sandbank

The traces were obtained against RAID-5 disk arrays of six
data disks (plus one parity disk and one spare disk) each.

In experiments where twelve, sixteen, or twenty four
requests were coalesced into a single request showed im-
provements, in total read response time, of 11.2%, 9.3%,
and 15.1% respectively (compared to the original DD-level
trace), as shown in Figure 8. Thus, according to our ex-
perimentation, joining requests in multiples of stripes ap-
pears to be beneficial.

1.000

0.888
0.907

0.849

0.750

0.800

0.850

0.900

0.950

1.000

1.050

8x32KB 12x32KB 16x32KB 24x32KB

Join Size

To
ta

l R
ea

d
R

es
po

ns
e

Ti
m

e
(N

or
m

al
iz

ed
)

Figure 8: Join of TPC-H Trace Files

6 CONCLUDING REMARKS AND FUTURE
DIRECTIONS

The work presented in this paper provides an environment
for performance evaluation of various architectures, and
supports experimentation with different configuration poli-
cies and with a variety of workloads. The presented simu-
lation-based performance model copes with host server I/O
aspects, addresses basic SAN-fabric issues, and captures
major storage architectures and a rich variety of configura-
tions. A tool of this kind can aid in the evaluation of "what-
if" scenarios (e.g., what will be the effect of a new given
data placement on the average read response time?), and
later help in finding the best solution or configuration (e.g.,
the optimal data placement).

The component-based approach enables easy exten-
sions of the model to cover new architectures and configu-
rations. For example, the extension of the host model to in-
clude I/O virtualization will enable the evaluation of the
resulting impact on overall SAN performance. Further-
more, the inclusion of host-I/O aspects in the model en-
ables further research of new scenarios of host and storage
collaboration, such as host and storage resource-sharing
(e.g., sharing of processing power and/or caching-
memory).

ACKNOWLEDGMENTS

We would like to thank the following IBM colleagues for
providing us with valuable data, information and insight:
24
Kwai Wong, John D. Ponder, Greg R. Mewhinney, John
G. Aschoff, Michael Factor, Danny Fishkov and Barak
Mandelovich.

REFERENCES

Alvarez, G. A., E. Borowsky, S. Go, T. H. Romer, R.
Becker-Szendy, R. Golding, A. Merchant, M. Spaso-
jevic, A. Veitch, J. Wilkes. 2001. Minerva: An auto-
mated resource provisioning tool for large-scale stor-
age systems, ACM Transactions on Computer Systems
19: 483-518.

Anderson, E., M. Hobbs, K. Keeton, S. Spence, M. Uysal,
A. Veitch. 2002. Hippodrome: Running circles around
storage administration. In Proceedings of the FAST '02
Conference on File and Storage Technologies, ed.
Darrell D. E. Long, 175-188. USENIX.

Castets, G. A., D. Leplaideur, J. A. Bras, J. Galang. 2001.
IBM Enterprise Storage Server. IBM Corporation.

Castets, G., S. C. Baquero, P. Clifton, D. Laing, J. My-
yryläinen. 2003. IBM TotalStorage Enterprise Storage
Server model 800 performance monitoring and tuning
guide. IBM Corporation.

Hsu, W. W. and A. J. Smith. 2003. Characteristics of I/O
traffic in personal computer and server workloads,
IBM Systems Journal 42: 347-372.

Kochut, A., N. Bobroff, K. Beaty, G. Kar. 2004. Manage-
ment issues in storage area networks: Detection and
isolation of performance problems. In 10th IEEE/IFIP
Network Operations and Management Symposium 1:
453-466.

Meggyesi, Z. 1994. Fibre channel overview. CERN.
<http://hsi.web.cern.ch/HSI/fcs/spec
/overview.htm>.

Mellish, B., M. Amanat, A. Hiriyannappa, J. M. Leite.
2004. IBM TotalStorage SAN volume controller and
SAN integration server. IBM Corporation.

Uysal, M., G. A. Alvarez, A. Merchant. 2001. A modular,
analytical throughput model for modern disk arrays. In
9th International Workshop on Modeling, Analysis,
and Simulation of Computer and Telecommunication
Systems, 183-192. IEEE Computer Society.

Ward, J., M. O’Sullivan, T. Shahoumian, J. Wilkes. 2002.
Appia: Automatic storage area network fabric design.
In Proceedings of the FAST '02 Conference on File
and Storage Technologies, ed. Darrell D. E. Long,
203-217. USENIX

Warrick, C., O. Alluis, W. Bauer, H. Blaschek, A. Fourie,
J. A. Garay, T. Knobloch, D. Laing, C. O’Sullivan, T.
Rothenwaldt, T. Sano, J. N. Tang, A. Warmuth, R.
Wolf. 2005. The IBM TotalStorage DS6000 series:
Concepts and architecture. IBM Corporation.

Wynter, L., C. H. Xia, F. Zhang. 2004. Parameter inference
of queueing models for IT systems using end-to-end
measurements. In Proceedings of the International
25

http://hsi.web.cern.ch/HSI/fcs/spec/overview.htm
http://hsi.web.cern.ch/HSI/fcs/spec/overview.htm

Aizikowitz, Glikson, Landau, Mendelson, and Sandbank

Conference on Measurements and Modeling of Com-
puter Systems, SIGMETRICS 2004, ed. E. G. Coffman
Jr., Z. Liu, and A. Merchant, 408-409. Association for
Computing Machinery.

AUTHOR BIOGRAPHIES

NAVA AIZIKOWITZ is a research staff member in the
IBM Haifa Research Lab, Israel, since 1992. Her areas of
interest include performance modeling, code optimization
and job scheduling. She has a B.Sc. in Computer Science
and an M.Sc. and a D.Sc. in Operations Research from the
Technion, Israel Institute of Technology. She holds several
patents primarily in the area of code optimization. Her e-
mail address is <aizik@il.ibm.com>.

ALEX GLIKSON is a research staff member in the IBM
Haifa Research Lab, Israel. During last few years, he has
been working on performance modeling and systems man-
agement projects. He has an M.Sc. in Computer Science
from the Technion, Israel Institute of Technology (2003).
His e-mail address is <glikson@il.ibm.com>.

ARIEL LANDAU is a research staff member in the IBM
Haifa Research Lab, Israel. Since joining IBM in 1997, he
has been working on performance modeling, performance
monitoring, and dynamic instrumentation projects. He has
an M.Sc. in Mathematics from the Technion, Israel Insti-
tute of Technology (1997). His e-mail address is
<ariel@il.ibm.com>.
24
BILHA MENDELSON is the manager of the Code Opti-
mization Technology department in the IBM Haifa Re-
search Lab, Israel. Since joining IBM in 1990, she has
been developing optimizations for the DSP compiler and
for the AS/400 optimizing translator. She received a B.Sc.
and an M.Sc. in Computer Science from the Technion, Is-
rael Institute of Technology, and a Ph.D. in Computer En-
gineering from the University of Massachusetts at Am-
herst. She holds several patents primarily in the area of
code optimization. Her areas of interest include code opti-
mization algorithms, compiler technology, computer archi-
tecture, and performance improvement issues. Her e-mail
address is <bilha@il.ibm.com>.

TOMMY SANDBANK is a research staff member in the
IBM Haifa Research Lab, Israel. Since joining IBM in
2003, he has been working on performance modeling and
code optimization projects. He has a B.Sc. in Software En-
gineering from the Technion, Israel Institute of Technology
(2004). His e-mail address is <tommy@il.ibm.com>.

26

mailto:aizik@il.ibm.com
mailto:glikson@il.ibm.com
mailto:ariel@il.ibm.com
mailto:bilha@il.ibm.com
mailto:tommy@il.ibm.com

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

