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ABSTRACT 

This work explores performance issues of system-level in-
teractions by means of performance modeling. We focus 
on I/O performance in a storage area network (SAN), 
namely, the performance of I/O interactions of host servers 
and storage subsystems via the SAN fabric. We present a 
component-based simulation performance model, which 
supports a rich variety of both existing and future storage 
subsystems, allows for some basic network configurations, 
and addresses the major I/O aspects of the server operating 
system. The model's flexibility allows for easy parameter 
modifications, configuration adjustments, architecture ma-
nipulations, and experimentation. The experiments pre-
sented in this paper demonstrate some of the ways this 
model can be utilized, such as data placement, I/O manipu-
lation, and the evaluation of execution alternatives, and 
shows the types of performance insights that may be 
gained. 

1 INTRODUCTION 

 Large systems are made up of several major tiers that in-
teract with each other. For example, an application server 
(such as IBM WebSphere), working with a database server 
(such as IBM DB2 UDB), using the host’s operating sys-
tem (such as Unix) to communicate, via a storage area 
network (SAN) fabric, with a storage subsystem (such as 
IBM Enterprise Storage Subsystem—ESS). This is gener-
ally referred as an application stack. Much is usually in-
vested in improving the performance of each separate tier 
of the application stack. However, many performance 
problems occur, due to the poor knowledge and utilization 
of the I/O subsystem by the upper tiers of the application 
stack. By looking at the entire application stack, we can 
find more holistic solutions that take the interactions 
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among the tiers into account. Our work focuses on per-
formance aspects of the interaction between the applica-
tion-stack tiers, and in particular, of host and storage inter-
actions. The model captures a typical SAN environment 
which consists of several host servers communicating via a 
high-speed special-purpose network with different kinds of 
storage subsystems, as can be seen in  Figure 1. 
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Figure 1: An Example of the Modeled Environment 
 
Performance models are influential tools that may 

provide significant information for improving the interop-
erability of host servers and storage subsystems. We pre-
sent a prototype of a component-based performance model 
that is easily manageable and sufficiently flexible to sup-
port a rich variety of both existing and future storage sub-
systems. The model enables some basic network configura-
tions and addresses the major I/O aspects of the host 
operating system. The model is simulation-based and thus 
may express the effect on performance of unpredictable 
variations in business workloads. 

As shown in Figure 1, the entire system can comprise  
various types of host servers and storage subsystems. 
Therefore, a model of such an environment should support 
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a wide variety of architectures and provide the ability to 
deal with different types of system components. Thus, the 
proposed solution comprises a generic, component-based 
framework that captures the nature of various host servers, 
storage subsystems and network configurations. The 
framework includes generic resources, basic operations, 
algorithms and overheads, which are common to a wide 
range of architectures. On demand, the generic framework 
is refined for a desired architecture, by defining only the 
specific operations and algorithms, which will override the 
generic ones in the component-based environment. Some 
of them are embedded into the model at compile-time, and 
others at runtime, using a configuration mechanism. 

This work provides an environment for the perform-
ance evaluation of various architectures, and supports ex-
perimentation with different configuration policies and 
with a variety of workloads. The model can be fed concur-
rently by either existing real or synthetic I/O trace files, or 
I/O requests generated on the fly according to a given 
specification. We have conducted several experiments us-
ing the model to demonstrate its potential uses. Our ex-
perimentation with host and storage interactions provides 
insight on system-level tuning that may improve I/O per-
formance. In particular, some of the data-manipulation ex-
periments that improve I/O performance do not involve 
changes in the storage-subsystem architecture. 

The rest of the paper is organized as follows. Section 2 
presents related work. Section 3 introduces the generic 
component-based framework and the model scope. Section 
4 describes the model implementation, the software archi-
tecture, model flexibility, and some architecture specific 
considerations. Workload generation and analysis are also 
addressed in Section 4. Section 5 suggests experiments that 
utilize the model, and describes the workloads that were 
used. Future directions and concluding remarks are de-
picted in Section 6. 

2 RELATED WORK 

There are at least two alternative approaches for addressing 
system-level interactions: benchmarking on an actual envi-
ronment or modeling. Building an actual environment for 
measurements might be an expensive approach. Moreover, 
a model is more flexible and amenable to modifications, 
and can more easily address future alternative directions. 
Analytic queuing models, like the ones used in Alvarez et 
al. (2001) and Uysal et al. (2001), and in the Disk Magic 
storage-configuration planning tool (Castets et al. 2003), 
are usually best suited for the investigation of steady-state 
behavior. A simulation model, on the other hand, captures 
the dynamic nature of real-life workloads. AMBIENCE 
(Wynter et al. 2004) is an automatic model building tool 
that integrates queuing network models with advanced in-
ference techniques. 
2

Some works (Alvarez et al. 2001, Anderson et al. 
2002, Uysal et al. 2001) address monitoring, tuning and 
autonomic management of storage subsystems, while not 
taking into account the interoperability with other tiers 
(e.g., databases) and its impact on performance. Automatic 
SAN fabric design, which provides given requirements at 
minimum-cost, is presented in Ward et al. (2002). EMC 
Control Center claims to provide (as a commercial prod-
uct) automatic monitoring and expert advice functions, that 
go beyond the storage subsystem tier (for details, see  
<http://www.emc.com/products/storage_ma
nagement/controlcenter.jsp>). Merging of SAN 
performance management tools into the host system is also 
explored in Kochut et al. (2004), where performance data 
is collected on hosts, fabric components, and storage de-
vices to establish baseline performance. Then, the SAN is 
monitored to determine all host volumes that may be trou-
bled by performance problems. Our solution can be inte-
grated with such an environment, to identify new and bet-
ter SAN configurations. As for input modeling, extensive 
characterizations of server and personal-computer work-
loads are provided in Hsu and Smith (2003). 

3 GENERIC MODELING FRAMEWORK 

We regard a generic framework as a set of resources and 
algorithms, configured in a certain way. I/O requests are 
generated by the host and processed. Every request travels 
between different resources (and layers) of the system, us-
ing some given connectivity between them (buses, chan-
nels, etc.), data and control commands are transferred, and 
a response to the host is eventually generated. The exact 
procedure and path are determined by the system architec-
ture, the specific configuration, and the request parameters. 

We have examined several architectures to find out 
what they have in common and what makes them unique. 
Figures 2, 3 and 4 present schematic diagrams of three 
storage subsystems: IBM Enterprise Storage Subsystem 
(ESS, Castets et al. 2001), IBM DS6000 (Warrick et al. 
2005), and IBM SAN Volume Controller (SVC, Mellish et 
al. 2004). All the storage subsystems that we have consid-
ered are composed of a pair of storage management units 
(for higher availability)—a node and its peer, e.g., ESS 
clusters, DS6000 complexes, and SVC nodes. All have 
processors, such as ESS Symmetric Multi-Processors (de-
noted SMP or MP) or DS6000 CPUs, that manage the stor-
age unit operations. All have adapters to control their inter-
faces: host adapters (denoted HA) that control the interface 
with hosts; and device adapters (DA) that control the inter-
face with the devices (disks). All manage a cache for better 
I/O performance and maintain a second copy of their writ-
ten data, in a non-volatile storage (NVS) of their peer, for 
reliability. And all use RAID functionality (explained be-
low). But, as shown in Figures 2 and 3, ESS and DS6000 
418
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differ in the connectivity between their storage units and in 
their device layout.  
 

 
Figure 2: ESS Architecture Layout 

 
 

 
Figure 3: DS6000 Architecture Layout 

 
DS6000 uses a dedicated bus for the communication 

between the storage complexes, while ESS utilizes the 
same buses to connect between the storage clusters and be-
tween them and the host adapters. In addition, for ESS the 
device is organized in Serial Storage Architecture (SSA) 
loops, where DS6000 uses switched Fibre Channel Arbi-
trated Loops (FC-AL). SSA only uses the part of the loop 
24
between adjacent disk drives, and thus allows for many si-
multaneous data transfers around a loop. Whereas, the 
switched FC-AL technology provides for direct physical 
paths to each disk drive.  

As mentioned above, the storage subsystems that we 
have considered use RAID functionality. RAID, short for 
Redundant Array of Independent Disks, is a method 
whereby information is spread across several disks, to 
achieve redundancy, lower latency and/or higher I/O 
bandwidth, and recoverability from hard-disk crashes. Dif-
ferent types of RAID configurations may be defined. For 
example, RAID-5 stripes both data and parity information 
across all the array drives, and RAID-10 combines data s-
triping and mirroring. ESS uses fixed-size RAID-5, 
whereas DS6000 utilizes flexible-size (i.e., with a variable 
number of disks) RAID-5 and RAID-10. 

The SVC, depicted in Figure 4, has some special fea-
tures. In the SVC architecture, not only do the host and 
storage communicate via a SAN fabric, but also the com-
munication between the storage nodes and between them 
and the devices occurs via the (same or distinct) SAN fab-
ric. 

 

 
Figure 4: SVC Architecture Layout 

 
Studying different environments and understanding 

their basic nature led us to define generic components that 
support a wide variety of platforms. Our component-based 
approach captures the components that are common to 
most of the architectures, and enables easy handling of the 
components that are unique. 

3.1 Generic Layout 

The system architecture can be divided into following ge-
neric layers: 
19
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1. Host: a server or a workstation that is connected, 

possibly via a SAN fabric, to the channels of a 
storage subsystem, and consumes the logical disks 
provided by the storage. The host operating sys-
tem includes the following layers: 
(a) Logical Volume Manager (LVM): maps the 

application's logical view of storage space to 
the physical view exported by the storage 
subsystem. 

(b) Disk Driver (DD): translates commands be-
tween the LVM and the physical adapter. 

(c) Storage Adapter (SA): an appliance respon-
sible for sending the hosts' requests to stor-
age, and routing responses back to the host. 

2. SAN Fabric: a storage area network fabric com-
posed of: 
(a) Switch: a device that filters and forwards 

packets between network segments. 
(b) Port: an interface on the switch connected to 

a host, a storage node, or a device. 
3. Storage Management Node: a storage unit com-

posed of: 
(a) Cache: a processing unit that maintains an in-

ternal cache, and uses (generic or specialized) 
adapters to interact, possibly via SAN(s), 
with the hosts, storage devices, and other 
storage nodes (peers). 

(b) Adapters 
(i) Host Adapter (HA): an appliance re-

sponsible for routing the host’s requests 
to the cache, and sending responses back 
to the host. 

(ii) Device Adapter (DA): an appliance that 
controls the access to a physical device 
and performs the actual read/write opera-
tions, as requested by the cache layer. 

(iii) Peer Adapter (PA): an appliance that 
handles the communication with the 
other storage management node (peer) 
that usually holds redundant copies of 
the written data. 

(c) Device: a controller of a physical storage de-
vice (typically with RAID functionality). 

 
As stated above, storage subsystems are usually com-

posed of a pair of storage management nodes. The pro-
posed model can be configured to represent several hosts 
and complex storage architectures comprising a larger 
number of (e.g., SVC) pairs, or a mixture of several storage 
subsystems. 
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3.2 Generic Resources 

For the generic layers described in Section 3.1, we have 
identified the following generic resources. Every such re-
source is considered a component in our framework. 

 
• LVM – transforms logical volume requests into 

physical volume requests. 
• DD – manages the communication between the 

LVM and the physical adapter. 
• SAN ports – control the interfaces of up to three 

different physical networks: between the host and 
the storage node, between the storage node and 
the device, or between the storage node and its 
peer. 

• Channels (SAN attachments) – connect the host 
to the storage node, the storage node to the device, 
or the storage node to its peer. 

• Adapters – control the host's interface with stor-
age (SA) and the storage node interface with the 
host (HA), the device (DA), and its peer (PA). 

• Processors – manage the storage operations (e.g., 
ESS SMP or SVC CPU). 

• NVS – non-volatile memory for the peer-written 
data. 

• Device – RAID controller of the managed disks. 
• RAID ranks – RAID arrays. 
• Buses – internal buses (e.g., HA-bus connecting 

the host adapter and the cache, PA-bus connecting 
the peer adapter and the cache, RR-bus connect-
ing the device and the RAID ranks, etc.). 

• Disks – disk drives. 
 
Figure 5 depicts the layout of the generic system.  
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Figure 5: Generic System Architecture 
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Note that for a specific architecture: 
 
• A logical resource may be a void (or null) appli-

ance. For example, ESS has no fabric between the 
storage node and the device layer. So in this case, 
for example, there are no device ports. 

• Different logical resources may be mapped to the 
same physical appliance. For example, in ESS, the 
logical functions of both the HA and the PA are 
done by the host adapter. Also, in ESS, both the 
generic DA and the generic Device are part of the 
same physical appliance, which is called a device 
adapter and is denoted by DA. 

3.3 Generic Parameters 

The model relies on a set of generic parameters. These pa-
rameters fall into two main categories: fixed overheads and 
overheads that depend on the size of the transferred data 
(typically expressed by the bandwidth of the connection). 
For example, for a specific channel, there is one parameter 
that represents the fixed service time of using the channel, 
and another parameter, the channel bandwidth, that infers 
the variable data transfer time (the division of the amount 
of transferred data by the channel bandwidth). 

Our model relies on the provision of the specific over-
heads for each of the modeled architectures. When dealing 
with a specific architecture, some of the overheads can be 
non-relevant, or zero. A specific configuration will deter-
mine the values that can cause the model to ignore some 
overheads, or to unify several overheads into a single one. 

3.4 Generic Algorithms and Basic Operations 

The transaction-flow modeling is divided into four main 
algorithms that are common to most environments: read 
and write (also called fast write) for requests that originate 
from hosts, and prestage and destage for background asyn-
chronous operations that are generated by the storage sub-
system. The read algorithm deals with the processing of 
read requests, including both cache hits and data staging 
due to cache misses. The (fast) write algorithm deals with 
the writing of data into storage node cache and into the 
peer’s non-volatile storage. The prestage algorithm takes 
care of the prefetching of data from a device into storage 
cache—triggered by known patterns (e.g., the number of 
address-sequential reads in a row). The destage algorithm 
handles the flushing of cached-written data to storage de-
vices—triggered by cache (or non-volatile storage) thresh-
olds. 

We have developed these four basic algorithms in 
terms of generic, basic operations, whose implementations 
might be exchangeable in different architectures or con-
figurations. Actually, every such implementation of a ge-
neric basic operation can be viewed as a component of the 
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model, within the framework of our component-based ap-
proach. The generic basic operations are implemented in 
terms of the manipulation of resources. The specific archi-
tecture, the configuration, and the request parameters de-
termine the specific sequence of resources to utilize. 

In a similar manner, the cache-management algorithm 
is actually an interface that consists of generic cache opera-
tions, such as cache-query, which rely on the architecture's 
cache-residency and cache-replacement policies. 

Most of the generic basic operations are common to a 
wide variety of systems (e.g., "use node processor to allo-
cate a cache entry", "transfer 32 KB data between device 
and RAID rank", etc.), but some need to be refined accord-
ing to the specific architecture. For example, as mentioned 
before, saving a copy of written data in the storage peer is 
done via the general HA-bus in ESS, a dedicated PA-bus in 
DS6000, and the SAN fabric in SVC. So, several unique 
implementations are provided for this basic operation. 

3.5 Model Scope 

Using generic resources and basic operations as building 
blocks, our component-based approach enables the compo-
sition of various environments. In the subsections below, 
we describe the scope of the host servers, fabric and stor-
age architectures, and configurations that are currently 
covered by our model. 

3.5.1 Storage Subsystem Modeling 

The generic components of our model capture a variety of 
storage configurations: several models of the established 
ESS (model F and model 800), a prototype of the more re-
cent DS6000 architecture, and the essence of the SVC 
unique design. Currently, the model handles different lay-
outs of storage devices (e.g., SSA loops and switched FC-
AL enclosures), and copes with different RAID levels 
(e.g., RAID-5 and RAID-10). 

3.5.2 Fabric Modeling 

The model can be configured to transfer requests through a 
SAN or via direct attachments. The SAN is modeled as a 
set of SAN ports and Fibre Channel Protocol (FCP) at-
tachments (Meggyesi 1994). Each port is attached to a 
host, to a storage node, or to a device. The model currently 
copes with SAN configurations with a single layer of 
switches. Every time a request is transferred through the 
SAN, the source and the destination ports, as well as the 
corresponding channels, are held until a packet is trans-
ferred. Note that the bandwidth of the SAN fabric is as-
sumed to be large enough, and thus is not taken into ac-
count, and that the SAN latency is ignored. 
1
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3.5.3 Host Server Modeling Aspects 

The model assumes Open System hosts. The host operating 
system is modeled by LVM, i.e., an entity that translates 
the application logical view to the physical view exported 
by the storage subsystem (e.g., IBM AIX’s LVM), a disk–
driver layer, and a physical-adapter layer. The assumption 
is that the LVM translation may involve the manipulation 
of I/O requests; namely, the splitting of I/O transactions 
and routing of I/O requests via different paths. On the other 
hand, disk-driver operations may involve I/O coalescing. 
The physical adapters control the host interface with the 
storage subsystem and are called storage adapters (SA). 

4 COMPONENT-BASED MODEL 
IMPLEMENTATION 

The model is a simulation-based queuing model, written in 
C++, and built on top of  the CSIM18 simulation engine 
(<http://www.mesquite.com/>). The model sup-
ports multiple storage subsystems and multiple hosts that 
compete for the fabric resources to transfer I/O requests 
and responses. The model is trace driven. The trace can be 
either an existing static real or synthetic I/O trace file, or a 
dynamic I/O stream generated on the fly. Each I/O request 
holds the following attributes: request type (i.e., read or 
write), target address (logical disk and logical block ad-
dress), data amount, and timestamp. The model output in-
cludes detailed per-resource statistics (utilization, inter-
arrival time, service time, queue length, etc.), and config-
urable statistical output such as transaction response time, 
data throughput, and cache-hit rates. 

4.1 Model Software Architecture 

The model consists of the following main software compo-
nents (modules) as presented in Figure 6. 

 
• Configuration Reader – reads model parameters 

from configuration files. 
• Configuration – manages the runtime configura-

tion parameters. 
• Trace Reader – reads requests from existing 

trace files. 
• Trace Generator – generates requests on the fly. 
• Input – retrieves requests from either the Trace 

Reader (static trace files) or the Trace Generator 
(dynamically generated I/O). 

• Architecture – contains the architecture charac-
teristics per model (storages, fabric, and hosts). 

• Request – handles the request with the appropri-
ate algorithm (e.g., read hit, write miss, etc.). 

• Topology – determines the specific resources to 
be used in the processing of the current request 
(e.g., which host adapter to use). 
2422
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• Operations – handles basic operations; uses To-
pology to determine the relevant set of resources. 

• Cache – manages the cache. 
• Raid Rank – performs low-level RAID access. 
• Statistics – gathers performance information (us-

ing CSIM simulation tool mechanisms). 
 

Configuration
Reader

Architecture

Cache

Configuration

RequestOperationsTopology

CSIM Trace
 Reader

InputStatistics

RAID Rank

Trace
 Gen

 
Figure 6: Model Software Architecture Overview 
 
As mentioned before, some particular aspects of a spe-

cific architecture may require a special treatment that re-
fines the general framework. In these cases, the generic ba-
sic operations will be replaced by a specific version of 
corresponding component. For example: 

 
• The basic operation of saving a copy of written 

data in the peer storage node is done via the HA-
bus in ESS, via a dedicated bus—PA-bus—in 
DS6000, and via the SAN fabric attachments in 
the SVC architecture. 

• Differences in disks layouts, e.g., ESS SSA loops 
vs. DS6000 switched FC-AL enclosures. 

• ESS fixed-size RAID-5 arrays vs. DS6000 flexi-
ble-size RAID-5 and RAID-10 arrays. 

4.2 Model Flexibility 

The model flexibility allows for: 
 
• Trivial parameter modification (e.g., the setting of 

operation overheads, number of host adapters, 
cache size, etc.). 

• Flexible configuration adjustment (e.g., RAID-5 
and RAID-10 combinations, mapping of logical 
disks to RAID ranks, etc.). 

• Easy architecture manipulation (e.g., NVS access 
via different paths—ESS vs. DS6000, variety of 
drives' connectivity—SSA vs. FC-AL, etc.). 

• Ease of experimentation. 
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Note that no compilation is required when manipulat-
ing existing components and parameters, and that a new 
component requires only its specific modeling. 

4.3 Workload Generation and Analysis 

Obtaining typical I/O workloads is not trivial. Moreover, 
there is a need for workloads that stress the storage subsys-
tem, for custom-made I/O traces for specific experiments, 
and for I/O traces that anticipate future workloads. There-
fore, a tool for generating a variety of synthetic I/O trace 
files is essential for experimenting with our storage-
performance model. 

Our framework includes trace-generation and trace-
analysis tools. The trace generator creates an I/O stream 
according to a set of workload parameters, while the ana-
lyzer extracts the parameters that characterize a given 
trace. The trace parameters hold general values (e.g., the 
total number of logical disks) and per-logical-disk values 
(e.g., read/write ratio, sequentiality attributes, and inter-
arrival distribution functions). Note that the trace generator 
may use parameters inferred by the trace analyzer to pro-
duce I/O traces with the same workload characteristics. 

5 EXPERIMENTATION 

We have conducted several experiments to demonstrate the 
model’s ease of use, and a variety of ways in which the 
model can be utilized. Presented below are the workloads 
that were used, and experiments with several configuration 
policies—data placement of logical disks, manipulation of 
I/O requests, and evaluation of different execution alterna-
tives. 

5.1 Workloads 

The model input workload can be any mixture of existing 
(real or synthetic) trace files and trace streams generated on 
the fly. We have experimented with I/O trace files avail-
able from the Storage Performance Council (SPC) 
(<http://www.storageperformance.org>), and 
with trace files (collected by the AIX trace facility) of DB2 
UDB and Oracle database servers, running the TPC-C and 
TPC-H benchmarks. 

5.2 Experiments 

A trivial way to experiment with the model is to “play” 
with the model parameters and evaluate the impact on I/O 
performance. For instance, setting the number of RAID 
ranks, decreasing channel bandwidth, modifying resource 
overheads, etc. For example, as expected, increasing the 
storage cache size improved the I/O performance of read 
requests and had a minor effect on the writes (as a read 
miss implies accessing a relatively slow storage device, 
24
whereas a write miss is handled locally in the storage 
cache). More sophisticated ways to utilize the model are 
described in the experiments below. Some of the perform-
ance insights gained are illustrated in Section 5.3 below. 

5.2.1 Data Placement 

The placement of logical disks on storage devices has great 
impact on I/O performance. Although data placement 
changes are considered expensive and thus rare, it seems 
that storage virtualization will make data placement 
changes more feasible. Our model can be used to evaluate 
several data placement alternatives and choose the one 
with better I/O performance. 

We have experimented with several configurations of 
mapping logical disks to (ESS) RAID ranks to maximize 
the parallelism of I/O operations and improve I/O perform-
ance. For a given workload, we created a base placement 
of volumes, taking into consideration the total number of 
transactions per logical disk. Next, we did the distribution 
and balancing according to the total amount of data trans-
ferred per each logical disk. And finally, we split highly 
intensive logical disks and placed them across different 
RAID ranks. 

As expected, balancing the workload improved the I/O 
performance relative to the base data placement. Splitting 
the highly intensive volumes provided further performance 
improvements.  

5.2.2 I/O Manipulation 

As mentioned before, the operating system may manipulate 
I/O requests by splitting them (at the LVM) or coalescing 
them (at the DD). The question is whether those manipula-
tions result in I/O requests and amounts that are better for 
I/O performance. On one hand, coalescing may improve 
performance by reducing the overhead per I/O request. But 
on the other hand, waiting for requests to accumulate may 
cause delays that may degrade overall I/O performance. 
Experimenting with splitting and coalescing may provide 
some insight on these trade-offs. 

We defined a join policy that unites a sequence of I/O 
requests of the same type into a single one. The joined re-
quests should belong to the same operating system function 
call, must be “close in space” (the addresses they access 
must be within some predefined range, e.g., one track), 
must be “close in time” (their timestamps should be within 
some specified range, e.g., one millisecond), and their 
combined amount should not exceed some given threshold. 
The joint request has the target address of the first request 
and the timestamp of the last request; its amount is the sum 
of the amounts of the joint requests. We experimented with 
this join policy, applied it to I/O traces, and evaluated its 
impact on I/O performance. 
23
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Our experimentation shows that joining I/O requests 
may improve performance, especially if the join is done in 
multiples of the storage stripe size (i.e., the size of a disk 
track, times the number of disks in a RAID array). The re-
sults indicate that such system-level I/O-heuristics (which 
may be implemented by a hardware or a software “media-
tor”) can significantly improve the system performance.  

5.2.3 Execution Manipulation 

The model enables easy manipulation of generic algo-
rithms. As an example, the implementation and evaluation 
of different execution alternatives of certain copy-services 
functions, and in particular, one such function called flash 
copy, are discussed below. 

Flash copy provides an instantaneous (virtual) copy of 
what the logical-disk’s original data looked like at a spe-
cific point in time. When flash copy is invoked, only cer-
tain metadata is created at the target, and the source data is 
(optionally) copied in the background. Flash copy uses bit-
maps to keep track of write attempts into locations within 
the source. Write attempts to places that were not physi-
cally copied into the target yet are put on hold, so they 
won't destroy the source. Then, the original data at these 
source locations is copied into the target. Finally, the held 
write requests are resumed and new data is written into the 
source. 

In order to try to get a better understanding of the im-
pact of performing a flash copy (synchronously) in a 
switch vs. doing it (asynchronously) inside the storage sub-
system, these two scenarios were modeled. In the synchro-
nous case, write requests received special handling. Once a 
write-into-source request is identified, it is held and the 
flash copy is handled by the following sequence of basic 
operations: read original data from source; write original 
data to target; resume the original write. In the asynchro-
nous case, the destage algorithm was modified similarly. A 
destage-into-source is held while the following sequence of 
basic operations is executed: stage original data from 
source; destage original data to target; and resume the 
original destage. The component-based model enables easy 
tailoring of these new algorithms, based on the existing 
implementations of basic operations. 

The experimentation strengthened the straightforward 
intuition that doing flash copy asynchronously in the stor-
age system implies better I/O response times than doing it 
synchronously in the switch. For write requests, when flash 
copy was performed synchronously, we saw strong correla-
tion between response times and the ratio between the 
number of writes-into-source and the total number of write 
requests. Sometimes, read performance was better when 
the flash copy was performed synchronously in a switch. 
We believe  this is due to an increase in prestage opera-
tions.   
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5.3 Results 

The results of the data placement and request-join experi-
ments are presented in Figure 7. For this model configura-
tion, the five SPC traces WebSearch1, WebSearch2, Web-
Search3, Financial1 and Financial2 (which are available at 
<http://traces.cs.umass.edu/storage/>) 
represent the workloads of five hosts that are attached to an 
ESS model F storage subsystem, via a switch. A base data 
placement was created by some reasonable placement that 
took into account the number of transactions per logical 
disk. Careful balancing of the volumes according to their 
amount improved the read performance by 13% with re-
spect to the base data placement. The SPC traces Web-
Search1, WebSearch2 and WebSearch3 contain requests, 
originating at eighteen logical disks (most of them are read 
requests), though the great majority come from just nine of 
the disks. We have, furthermore, experimented with data 
placement by splitting these nine I/O-intensive volumes, 
and placing the splits on separate physical devices. This 
resulted in performance improvement of an additional 2%. 

Applying the join policy to the base data-placement 
above resulted in about 17% improvement in read response 
time. Applying the join together with the more sophisti-
cated data-placement policies (based on request amounts 
and request splits) resulted in an additional reduction of the 
read response times by 14% and 16% respectively. 

Note that in the experiment above, the simulation-
based model is much faster than real-life systems. Execut-
ing about 20 million SPC I/O transactions, which span over 
12 hours of actual recording, took the model about 30 min-
utes to simulate (on a 1 GHz 2-way Pentium III processor). 
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Figure 7: Data Placement and Join for SPC Trace Files 

 
In addition, we ran some experiments on a TPC-H I/O 

trace of DB2 UDB, taken both at the LVM and the DD 
levels. The workload was generated by an AIX host at-
tached directly to ESS model 800 storage subsystem. We 
found that the device driver typically “joins” (or coalesces) 
eight 32KB LVM requests into a single 256KB request. 
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The traces were obtained against RAID-5 disk arrays of six 
data disks (plus one parity disk and one spare disk) each. 

In experiments where twelve, sixteen, or twenty four 
requests were coalesced into a single request showed im-
provements, in total read response time, of 11.2%, 9.3%, 
and 15.1% respectively (compared to the original DD-level 
trace), as shown in Figure 8. Thus, according to our ex-
perimentation, joining requests in multiples of stripes ap-
pears to be beneficial. 
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Figure 8: Join of TPC-H Trace Files 

 

6 CONCLUDING REMARKS AND FUTURE 
DIRECTIONS 

The work presented in this paper provides an environment 
for performance evaluation of various architectures, and 
supports experimentation with different configuration poli-
cies and with a variety of workloads. The presented simu-
lation-based performance model copes with host server I/O 
aspects, addresses basic SAN-fabric issues, and captures 
major storage architectures and a rich variety of configura-
tions. A tool of this kind can aid in the evaluation of "what-
if" scenarios (e.g., what will be the effect of a new given 
data placement on the average read response time?), and 
later help in finding the best solution or configuration (e.g., 
the optimal data placement). 

The component-based approach enables easy exten-
sions of the model to cover new architectures and configu-
rations. For example, the extension of the host model to in-
clude I/O virtualization will enable the evaluation of the 
resulting impact on overall SAN performance. Further-
more, the inclusion of host-I/O aspects in the model en-
ables further research of new scenarios of host and storage 
collaboration, such as host and storage resource-sharing 
(e.g., sharing of processing power and/or caching-
memory). 
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