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ABSTRACT

One of the missions of the Semantic Web is to put more
knowledge on the Web in an organized fashion and link it
to other information and data sources. Three successively
more capable languages are (or will soon be) provided
for this: RDF, OWL, and SWRL. This paper makes a
case for using all three for the domain of modeling and
simulation. Based on experience developing the Discrete-
event Modeling Ontology (DeMO) some observations on the
issues and challenges involved in creating such ontologies
are presented. An approach for decomposing models into
behavioral and observable parts, a la Hidden Markov Models,
which can make ontologies smaller and easier to understand,
is also discussed.

1 INTRODUCTION

Modeling and Simulation have focused on creating behav-
ioral models that are abstract in the sense that their meaning
is primarily in the mind of the analyst. The numbers pro-
duced and the graphs generated signify or predict properties
of an existing or proposed system. The modern trend toward
richer and more realistic animations is certainly a useful
way to inject meaning and enhance understandability. This
is particularly so as the animations lead toward immersive
or game environments. The question is how can we bet-
ter represent the real world in a meaningful way. Besides
better visuals, human understanding is guided by how new
results or information are related to existing knowledge.
Where does it fit in a semantic space? Although knowledge
representation and ontology creation have a long history in
Artificial Intelligence and have impacted simulation in the
past in the form Knowledge-Based Simulation (Fox et al.,
1989), the new impetus to create a Semantic Web (Berners-
Lee et al., 2001) should provide enough leverage to make
adding semantics useful for the modeling and simulation
community.
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Current research and development into what is called
the next generation Web, or the Semantic Web promises to
transform the Web by providing machine-processable and
meaningful descriptions of Web resources. This can improve
discovery, integration and use/reuse of Web resources, and
we believe it also holds significant promise for the Simulation
and Modeling community.

Much of this work involves the use of ontology (Gruber,
1995) to define terms or concepts in certain domains. For
a particular domain, types of things are defined as classes,
which have properties and relationships. The meaning of a
concept is captured via the concept’s/class’s position within
a taxonomy (subclass-of/is-a hierarchy) as well as its prop-
erties, relationships and restrictions.

Many fields have recently been creating ontologies and
making them available over the Web. In the biological
domain, several ontologies have been created. Creating
ontologies for modeling and simulation is harder for two
reasons: (1) It is not domain limited since models may
simulate biological, chemical, physical, clerical, transporta-
tion, military, services or manufacturing, etc. (2) Modeling
and simulation methodology is founded in mathematics,
probability and statistics and hence to be rigorous about it,
ontologies for these fields should serve as foundations (as
so called mid-level ontologies). The mid-level ontologies
should themselves be ideally based on broad, standardized
upper ontologies such as SUMO or SUO.

In this paper, we will address these obstacles, review the
DeMO ontology including recent additions and discuss the
benefits of such ontologies. In section 2, we discuss relevant
aspects of the Semantic Web. A case for using Semantic Web
technologies for modeling and simulation is made in section
3. Section 4 gives an overview of the DeMO ontology and
brings up some issues in its creation. Section 5 discusses
several benefits of having more semantics available from
the point of view of (1) discovering and (2) using resources
effectively. An approach for adding observable models as
a new part of DeMO is considered in section 6. Finally,
section 7 gives conclusions and discusses future work.
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2 ONTOLOGY AND THE SEMANTIC WEB

The World-Wide is undergoing a slow transformation from
HTML (statically or dynamically created) to XML and
XML-based languages. XML adds more structure and more
meaningful tags to documents on the Web. Furthermore,
there are schema languages for specifying the structure for
valid documents (e.g., DTD, XML Schema or Relax-NG).
In addition, there are other XML-based files being placed
on the Web to describe and link ordinary Web documents.
These can be thought of as meta-data, or data about the data
that is on the Web. Predominantly, the Resource Description
Framework (RDF) is used to hold this meta-data. RDF has
a simple approach to capture this information as subject-
predicate-object triples, which are akin to simple English
sentences. The subjects and objects may be treated as
nodes and the predicates as edges, so that RDF data may be
conceptualized as or stored as a labeled directed graph. The
labels for nodes and edges come from classes and properties
defined in an RDF Schema, respectively.

An RDF Schema may provide a simple domain model.
However, the current approach is to use a language that
is richer than RDF Schema and simpler than traditional
ontology languages such as the Knowledge Interchange
Format (KIF). The reasons are that RDF/RDF Schema may
be too spartan for effective domain modeling and not ide-
ally suited for automated reasoning (e.g., logical entail-
ment). Conversely, some believe that the use of KIF at
a Web scale is not feasible. Consequently, the Web On-
tology Language (OWL) was developed. Recognizing the
expressivity-complexity trade-off, OWL comes in three fla-
vors: OWL Lite, OWL DL and OWL Full, which fall into
the following complexity classes for automated reasoning
(e.g., subsumption and satisfiability), EXPTIME, NEXP-
TIME and Semi-decidable, respectively. OWL is based on
Description Logic (DL) and supports several useful con-
structs for defining classes, properties (data type properties
or object properties) and restrictions.

Description Logic is a subset of First Order Logic,
but lacks the ability to define rules as one might see in
Expert Systems or Prolog. Since rules are an effective way
to encode useful knowledge, there is a need to introduce
such a language. The proposed Semantic Web Rule Lan-
guage (SWRL) represents such an effort. Presently, rules in
SWRL are made up binary Horn clauses. There is ongoing
research to both weaken (for the sake of expressivity) and
strengthen (for the sake of complexity/computability) the
restrictions. Perhaps, the multi-language approach taken by
OWL is the best way to handle these conflicting goals.
The long term plan for the Semantic Web as depicted
in its Layer Cake Model (www.w3.org/2004/Talks/
0412-RDF-functions/slide4-0.html) includes
layers above the SWRL rules/logic layer which might in-
clude Higher Order Logic.
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Finding information in the new Semantic Web will likely
become some hybrid of information retrieval, navigation and
query processing. Along with the Semantic Web languages,
corresponding query languages are being developed: RQL,
RDQL, nRQL, OWL-QL, etc. As the query languages
become more powerful, the complexity and query processing
times go up. In (Zhang and Miller, 2005), it was found
that RDF based querying scales well as the size increases,
while OWL based and SWRL based querying does not. It
is still early in the R&D cycle, so progress on these may be
expected in the future. As an example of the complexity,
the paper uses the Vampire First Order Logic Theorem
Prover to process SWRL queries. Since the problem is
semi-decidable, the theorem prover must be given a time
limit, as there is no upper bound on the running time.

3 ADDING SEMANTICS TO SIMULATION

A skeptic might claim that modeling and simulation are
general purpose techniques that achieve their usefulness
through abstraction. In this way a bank and drive through
restaurant can be modeled in similar ways using abstract
queues with different parameter values for interarrival time
and service time. It is great to be able to abstract out
the essential features and discover fundamental similarities.
The modeling and simulation community has been doing
this successfully for decades. In our opinion, this paradigm
has three weaknesses: (1) The mapping from the real world
to the abstract model is largely in the mind of the simulation
analyst. (2) High fidelity, multifaceted modeling is difficult
to achieve. (3) Building models out of model components
is limited.

This paper hypotheses that adding semantics to mod-
eling and simulation will to some degree overcome these
weaknesses. Providing information about what things mean
is needed. This is done today using natural language, yet
to achieve the advantages of being machine processable
and searchable, a formal language should be used. This
is where the Semantic Web comes in. If the meaning of
models, model components, simulation results, simulation
studies, etc. can be given using a Semantic Web language,
then machine processing (including logical inferencing) and
effective search can be preformed on a Web scale.

Many scientific domains have been developing and
using ontologies. Biological sciences have demonstrated
the greatest success as can be evidenced by looking at the
Open Biomedical Ontologies (OBO) site (Open Biological
Ontologies, 2005), that lists 29 ontologies including the
most famous Gene Ontology (GO). Developing ontologies
for modeling and simulation presents a challenge in that
it is built on mathematics and statistics, so that if depth
and rigor are desired, more powerful languages are needed.
One approach is to define a minimal set of mathematical
and statistical terms (e.g., set, function, probability, etc.)
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in natural language and build the rest of the ontology on
top of these. This was the approach taken in the DeMO
ontology (Miller et al., 2004).

As the Semantic Web begins to provide more expres-
sive languages, it becomes of more use to the Simulation
and Modeling Community. For example, more complex
concepts can be defined using SWRL. As of the Summer
of 2005, the leading ontology editor, Protege, will support
many of SWRL’s built-in operations, such as lessT han. In
SWRL, properties of probability, such as sub-addivity, can
be stated as follows:

lessT han(P (union(A, B)), add(P (A), P (B)))

The Mathematics on the Net (MONET) project
(monet.nag.co.uk) is making progress toward putting
mathematics on the Semantic Web. Much of this work in-
volves translating the OpenMath (www.openmath.org)
Content Dictionaries (CDs) into a Semantic Web language,
OWL for now. There exist CDs for Calculus, Combi-
natorics, Differential Equations, Geometry, Linear Algebra,
Logic, Permutations, Physical Constants, Polynomials, Sets,
Special Functions, Transcendental Functions and Units &
Dimensions. This work will also include translations to
common markup languages used for mathematics such as
MathML (www.w3c.org/Math) and LATEX.

4 OVERVIEW OF THE DeMO ONTOLOGY

Work on the Discrete-Event Modeling Ontology (DeMO)
began in 2003 (Miller et al., 2004; Fishwick and Miller,
2004) to explore issues and challenges in developing on-
tologies for simulation and modeling. As its name sug-
gests, it is focused on discrete events models, in which
state changes discretely over time due to the occurrence
of events. It used the OWL language to define over 60
classes and many properties. Figure 1 is a screenshot
from OWLViz (one of several popular visualization plug-
ins for Protege) showing the DeMO class hierarchy. The
ontology consists of four main parts: ModelConcept,
DeModel, ModelComponent and ModelMechanism.
DeModel is itself divided into four parts based on
the three simulation world views plus a fourth repre-
senting state models, namely, StateOrientedModel,
ActivityOrientedModel, EventOrientedModel
and ProcessOrientedModel. Note, the screen-
shot shows DeMO version 1.8, which is missing the
ProcessOrientedModel subtree, which is going into
version 1.9.

As illustrated by the OBO site, it is better to have sev-
eral (but not too many) interrelated ontologies, rather than
one huge monolithic ontology. Along these lines, DeMO
as it is extended, could be divided into more than one on-
tology. In addition, DeMO ignores much of the simulation
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domain such as continuous models, statistical modeling, out-
put analysis, random variates, etc. Also, DeMO at present
has few instances. One could attempt to populate the ontol-
ogy (or knowledge-base) with information about simulation
engines, available simulation models, model components,
etc. This could be done by writing extractors for scanning
the Web for information or by providing a mechanism for
publication. Alternatively, one could simply use the ontolo-
gies for annotation of simulation artifacts (as is done in the
proposed WSDL-S (Akkiraju et al., 2005) standard). Then
special semantic search engines could precisely retrieve the
information requested.

Models may or may not be used for running a simula-
tion. Simulation may or may not require input and output
functions. There can be several ways to approach the
descriptions of different modeling formalisms (formalism
specification).

One way is to consider each model separately and
define them from scratch. This may be called a “problem
in hand" approach - given a problem, define a modeling
formalism that “fits" the problem well. Such an approach
is a popular one and helps explain the great assortment
of modeling formalisms existing in scientific literature and
used in practice by the simulation community. This is
also a most natural approach from a practical point of view:
different modeling formalisms “fit" differently into different
problems; some are more fitting for one purpose, some for
another. The user is usually not particularly interested in
how a model she/he employs is related to other modeling
formalisms as long as it satisfies her/his design goals.

Another way is to define some very general formalism
and consider all other models to be some sort of sub-
formalisms - restrictions on a general framework such as
DEVS. This view is logical and natural as well, because
most of the existing modeling approaches easily subject
themselves to formal description and it is only a question of
finding a general enough framework that encompasses all
the existing formalisms and from which new sub-formalisms
can be derived. However, if this philosophy is taken to the
extreme, it can lead to unecessary complexity and awkward
notions.

DeMO utilizes a middle ground approach: several gen-
eral (upper-level) formalisms are defined independently of
each other. (Of course they do not have to be completely
independent of each other and may themselves be derived
from some even more general formal framework.) These
upper-level formalisms can be viewed as root classes for a
taxonomic tree for the discrete-event modeling and simu-
lation domain. All other modeling formalisms are defined
as restrictions on one of the root classes.

Importantly, DeMO uses a uniform approach to a de-
scription process of a modeling formalism. Each DeModel
is considered as having Model Components and Model
Mechanisms (syntax and semantics of the model), which in
73



Miller and
turn are defined using fundamental Model Concepts. This
approach allows for great flexibility and straightforwardness
in constructing an ontology and defining new formalisms.
Another (and most important) unifying feature of DeMO
is that it represents knowledge using an XML-based, Web-
oriented language (OWL) which opens up an abundance of
possibilities for its use in the field of Web-based simulation
and modeling.

5 APPLICATIONS AND BENEFITS

Ontologies like DeMO ultimately should be judged by the
benefits they bring. We envisage several possible benefits
or usages for such ontologies. Many have been listed in
the other DeMO papers (Miller et al., 2004; Fishwick and
Miller, 2004). In this paper, we highlight three related to
discovery and three related to usage.

• Browsing. Using an ontology editor, such as Pro-
tege, one can browse through the ontology looking
for classes or properties. One could look for certain
concepts in the ontology and navigate to related
concepts. This easily can be done with Protege by
expanding/contracting the class hierarchy tree.

• Querying. As ontologies become large, browsing
can become tedious. For ontologies with a huge
number of instances (tens of thousands), browsing
is nearly infeasible. Query languages have been
developed by the database community for just this
purpose, conveniently accessing large amounts of
data. In addition, the information retrieval commu-
nity has been developing search engines for years
that utilize keyword lookup among other things.
Query languages for ontologies or the Semantic
Web in general combine elements of each. The
paper by (Zhang and Miller, 2005) provides an
evaluation of several of these languages.

• Visualization. Browsing is useful when the ontol-
ogy is small or for localized access. Querying is
good, when you have a good idea of what you
want. Suppose you would like an overall view
of the ontology or parts of it as a starting point
for browsing. This is where visualization of on-
tologies comes in. Since the schema part of an
ontology (class and properties) is usually not ex-
tremely large, viewers that display the ontology as
a zoomable and panable graph can be effective.
Currently, there are several viz tools that work
as Protege plugins, including EzOWL, Jambalaya,
OntoViz, TGVizTab and OWLViz.

• Components. The three items mentioned above
allow elements (classes, properties and instances)
to be found. In some cases, the retrieval of this in-
formation or knowledge is an end in itself. In other
237
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cases, it is the first step in a simulation study that
includes model building, scenario creation, model
execution, output analysis and saving/interpreting
results. Ontologies can be useful during all of
these phases. During model building, one could
search for appropriate simulation engines to exe-
cute models. If using an extensible engine (e.g.,
support customization, plugins or a service oriented
architecture), then components can be found and
added in. For example, code implementations of
random variate generators for specific probability
distribution functions may be linked to an ontology.

• Multi-modeling. At a more coarse level of granu-
larity, models relevant to the system under study
may be found. One or more of these models may
be run to generate results. In some cases, the ever
increasing complexity of modeling and simulation
problems gives rise to the need to combine mul-
tiple models. Multi-modeling and meta-modeling
(Vangheluwe et al., 2002) techniques allow differ-
ent models as well as different model formalisms
to be coupled or combined together to model com-
plex systems. An existence of a unifying ontology
can simplify both the design of the multi-models
and their implementation.

• Multi-faceted Reasoning. Beyond modeling build-
ing, there is the issue of generating and interpreting
results. Possibilities exist for combining inductive
and deductive reasoning with simulations generat-
ing data, statistics and data mining adding rules
which interact with the logic and rules given in
OWL and SWRL.

6 OBSERVABLE MODELS

A recent direction taken in the development of the DeMO
ontology is decoupling the model dynamics (what is really
happening as the model executes over time) from how
it is observed. Since many models can be observed in
many ways, this decoupling has the potential to reduce the
size of the ontology with no loss of information. Simple
examples of this are the Mealy and Moore machines for
observing the outputs of Finite State Machines. In some
cases, observable parameters can be measured, while the
underlying parameters driving the behavior are hidden and
can only be indirectly estimated.

In DeMO, one may think of models/formalisms as
entities disconnected from the observer. In other words,
DeMO defines how the model can run, but does not say
anything about what it outputs. We consider the output
function as a separate entity. It is not a fixed part of the
model, but rather an observation device that can be applied
to the model. In other words, a given model/formalism can
4
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be observed through the actions of different output functions
that fit this formalism.

DeMO defines a model as a set of components and
mechanisms (its syntax and semantics). This is enough
to construct a simulation kernel for the model capable of
running a simulation. We can interpret the simulation as
observing the state-trajectory of the model (in this case
a sequence of states, but more generally this includes all
parameters of the model: states, which events were activated
and when, which transitions were triggered and when and
so on). That is, we assume that the observer can view all
aspects of model behavior and moreover he/she can view
it directly (perfect translation).

In a more general setting, however, we may want to
restrict the observation window of our formalism to fit
certain aspects of a modeled system. In the case of the
Markov Chain formalism the observer, for example, may
not be able to directly observe the states as the simulation
runs. Instead she/he may only be able to see an imperfect
translation of the sequence of states. For instance, each
state may with a certain probability emit some symbol that
the observer can see.

This is the case in Hidden Markov Models (Rabiner,
1989), a popular statistical model used in many different
fields from bioinformatics to linguistics. The model has
hidden states S = s1, s2, ..., sn and observable outputs V =
v1, v2, ..., vm. It is based on the Markov chain in that the
state transition is a stochastic function of the current state.
This means that the next state is only dependent on the
preceding state, not on any past states. In a sequence of
hidden states, each state qi takes a value from S. Each
output oi in the observable sequence takes a value from V .

This model is usually interpreted as a Markov model
with unknown parameters. Generally speaking, this can
be handled in several different ways. One, for example,
is to add properties observable and hidden to states in
Markov Chain formalism and define an Emission Function
concept in addition to a Transition Function. Alternatively,
one can consider a Hidden Markov Model to be defined
as a restriction on the Semi-Markov Process class, where
we have two types of events: transition events (that result
in hidden state transitions) and emission events (these are
only allowed to result in hidden state to observable state
transitions).

We, however, prefer another approach. To give any
meaning to this formalism we must attach a notion of output
function to DeMO. We, therefore, view it as the Markov
Chain with a stochastic output function. More precisely,
the output function is defined as probabilistically mapping
a current state of the system to one of the output symbols.
In general, an output function needs to define its domain
(normally one or more of Model Components) and range
(usually a finite set of symbols, an output alphabet) as well
as the mapping rules. We think that it is more advantageous
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to define an output function in a separate part of the DeMO
ontology, emphasizing the fact that it is not inherently part
of a model, but more of an attachment to the model. This
fifth part of the DeMO ontology is to be included in the
next release, DeMO 1.9.

We believe that there are good reasons to follow such
an approach. This separation of models and their (output)
interfaces provides for greater flexibility and modularity in
defining observable models. Indeed, given a model defined
in DeMO, we can attach different output functions to it to
produce new observable models. Moreover, different model
formalisms may use the same output functions (if they fit
properly). The alternative would have been defining each
of these formalisms separately in DeMO, thus, substantially
increasing the size and complexity of the ontology.

Conceptually as well, models (modeling formalisms)
may be viewed to be independent of the results of simulating
these models. It is hoped, however, that a well designed
ontology will allow capturing of different points of view on
the knowledge domain without explicitly categorizing each
one of them. For example, it is hoped that an automatic
reasoner should be able to deduce that a Hidden Markov
Model defined as above is in essence equivalent to a restricted
Semi-Markov model with direct translation.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have looked at reasons that emerging
Semantic Web technology can be useful in modeling and
simulation. Although not as natural a candidate as the
Biological Sciences, recent developments, such as OWL and
SWRL and the ability to use them in ontology editors such as
Protege, make the time ripe for the development of ontologies
for modeling and simulation. Experience in developing the
DeMO ontology has lead to some fundamental questions that
are difficult to solve. There are many modeling formalisms
and many of them are similar, so what is the best way to
make a hierarchy of model classes (one very general model
class as root, several roots or the approach taken by us of
picking four based on simulation world views)? What steps
can be taken to reduce the size of the ontology without
(1) losing knowledge or (2) making the knowledge appear
convoluted (or difficult) to understand?

Future work includes the following: (1) Since in the
Summer of 2005, Protege will support built-in operations in
SWRL, adding rules to DeMO would be useful. (2) Greater
understanding of the similarities and differences between
the model formalisms within the DeModel hierarchy, can
be achieved by providing morphisms. It is worthwhile to
investigate whether this can be done within the ontology
itself, for example, using SWRL. (3) Populate the ontology
and develop more specific usage scenarios.
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Figure 1: DeMO Class Hierarchy shown using OWLViz
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