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ABSTRACT 

This paper describes an ontology-driven framework for 
process-oriented applications.  The research described in 
this paper is motivated by the lack of information sharing 
mechanisms at the semantic level among process-oriented 
applications.  Our approach addresses this problem through 
the determination of inter-application information flow 
requirements via an analysis of (i) application method 
ontologies and (ii) application software tool ontologies.  
The tool describes the overall ontology driven approach 
and the inter-method ontology mappings that drive the 
inter-tool information flow requirements.  An example 
information integration scenario is outlined in order to 
illustrate the practical application of our approach. Lastly, 
we summarize the research and outline the benefits. 

1 MOTIVATION / PROBLEM DESCRIPTION 

The complexity of managing process-oriented applications 
in large organizations requires that work be distributed to 
different functional areas and managed by smaller and 
more versatile cross-functional teams within the larger 
organization.  Recent years have seen the development of 
sophisticated software tools that support decision, design, 
analysis, and other activities among these cross functional 
teams, and these tools have greatly enhanced the 
effectiveness of these activities.  However, the distribution 
of work in such a fashion generates a new problem: the 
necessity of sharing information among the different 
application contexts within the different functional areas 
managed by these teams, and among the different tools 
supporting the activities performed by those teams.  Hence, 
the usefulness of such tools in the sort of distributed 
environment required by a complex system is a function of 
the degree to which those tools (and the agents that use 
them) can share information across their different contexts.  
Typically, however, the data produced by software of this 
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kind is maintained in closed architecture databases.  In the 
overwhelming majority of cases, each software tool has its 
own private data repository. 

A complex representation (e.g., a simulation model or 
a finite capacity scheduling model) carries the information 
it does by virtue of some established, systematic 
connection between the components of the representation 
and the real world.  It is this connection that determines the 
semantic content of the data being represented.  Typically, 
however, the semantic rules of a representation system for 
a given application and the semantic intentions of the 
application designers are not advertised or in any way 
accessible to other agents in the organization.  This makes 
it difficult, even impossible, for such agents to determine 
the semantic content of a database.  We refer to this as the 
problem of semantic inaccessibility.   

This problem manifests itself superficially in the forms 
of unresolved ambiguity (as when the same term is used in 
different contexts with different meanings) and 
unidentified redundancy (as when different terms are used 
in different contexts with the same meanings).  But these 
are just symptoms; the real problem is how to determine 
the presence of ambiguity and redundancy in the first 
place.  That is, more generally, how is it possible to access 
the semantics of process-oriented data across different 
contexts?  How is it possible to fix their semantics 
objectively in a way that permits accurate interpretation by 
agents outside the immediate context of this data?  Without 
this ability, the kind of coordination between multiple 
applications and sub-systems necessary for effective 
enterprise process management is not possible. 

Previous approaches to mitigating the problem of 
inter-operable simulations address syntactic 
interoperability.  Research attention has been focused on 
the larger problem of modeling and simulation 
composability (Davis and Anderson 2003; Petty and 
Weisel 2003).  A metadata approach to modeling and 
simulation information exchange for military simulation 
55



Benjamin, Akella, M
was described in (Morse, et al. 2003).  The Extensible 
Modeling and Simulation Framework (XMSF) adopts a 
standard language-based approach to facilitate simulation 
interoperability (Brutzman et. al 2002).  Missing are useful 
methods and tools for addressing simulation based 
application interoperability at the semantic level. 

In this paper, we describe an approach that addresses 
the above problem through the determination of inter-
application information flow requirements via an analysis 
of (i) application method ontologies and (ii) application 
software tool ontologies.  Our research focuses on the 
problem of information sharing between process-oriented 
applications: applications that depend significantly on the 
use and manipulation of enterprise process or behavioral 
information.  Process-oriented application method types 
that are within the scope of our research include finite 
capacity scheduling, discrete event simulation, activity 
costing, and project management. 

2 ONTOLOGY-DRIVEN FRAMEWORK 
SOLUTION APPROACH 

Key concepts that underlie our architecture are as follows. 

2.1 Inter-Application Ontology Mappings to 
Determine Information Integration Requirements 

The use of ontology mappings as the primary mechanism 
for discovering inter-application information flow 
23
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requirements.  Two types of ontology mappings were 
investigated: 

 
• Type I: Mappings between the process-oriented 

application methods (scheduling, simulation, and 
activity costing); and 

• Type II: Mappings between the application 
software tools that are used to implement the 
application methods.   

 
This paper will describe the representative Type I 

mappings that we designed. 

2.2 Neutral Process Language for Inter-Application 
Translators 

The use of a vendor-neutral process language as the basis 
for building translators between process-oriented 
applications.  This approach has similar motivations as the 
Process Specification Language (PSL) standard under 
development by the National Institutes of Standards 
Technology (NIST) [http://www.mel.nist.gov/psl/].  In our 
research, we use the IDEF3 Process Modeling Language as 
the vendor-neutral process language [www.idef.com].   

The conceptual architecture of our ontology-driven 
framework from process-oriented applications is shown in 
Figure 1. 
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Figure 1: Ontology Driven Framework for Process-Oriented Applications 
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Translators enable the information flow between the 
different process-oriented application such as scheduling, 
simulation, activity costing, and project management to a 
“neutral” process language, IDEF3.  The advantage of 
using a neutral language to facilitate information flow 
between multiple languages is that it provides translation 
efficiency.  The efficiency gain in a generalized application 
integration situation involving ‘n’ applications is illustrated 
in Figure 1. 
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Figure 2: Using a Neutral Language to Increase 
Application Integration Efficiency  

 
Determining the information flow requirements for 

these inter-tool translators occurs through an analysis of 
the application (method and tool) ontologies shown at the 
bottom of Figure 1.  The IDEF3 “neutral” process language 
depicted at the center of the figure facilitates the efficient 
transfer of information between multiple (process-oriented) 
tools.  The absence of a neutral (i.e., vendor-independent) 
process language would require the design and 
development of pair-wise translators between the tools, 
leading to additional translator development and 
maintenance effort.  Once the neutral language has been 
designed, the translator design involves the development 
and analysis of the ontologies of (i) the different methods 
and (ii) the different tools.  A key step is to determine 
mappings between the different method and tool ontologies 
(a formal specification of their concepts).  The steps 
involved in implementing our ontology-driven approach 
are described in the following list. 

 
1. Determine Inter-Method Mappings: This activity 

involves (i) developing an ontology of the 
different application methods that are within the 
scope of the application integration effort and (ii) 
analyzing the ontologies to identify the mappings 
between the ontologies.  The method ontologies 
that are the focus of the mappings described in 
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this paper are (i) Process Modeling, (ii) Finite 
Capacity Scheduling, and (iii) Simulation. 

2. Determine Inter-Tool Mappings: This activity 
involves (i) developing an ontology of the specific 
software tools used to implement the application 
methods entailed by the integration effort and (ii) 
analyzing the tool ontologies to identify the 
mappings between the tool ontologies.     

3. Determine Inter-Tool Information Flow 
Requirements: In this activity, the results of the 
inter-method and inter-tool ontology mappings 
are used to derive the meaningful information 
flows among the applications that need to be 
integrated. 

4. Design Tool Translators: In this activity, the 
software translator between the different 
application tools is designed.  Each translator may 
be (i) one-way or (ii) two-way according to the 
specific needs of the target enterprise application 
scenario. 

5. Build and Test Translators: This activity involves 
(i) building the translators designed in step 4 and 
(ii) testing the application with test models and 
test data. 

6. Use the Translators in the Context of Process-
Oriented Integrated Enterprise Application 
Scenarios: This final activity refers to the 
operational use of the translators in the context of 
actual application executions. 

 
The next section describes a set of inter-method 

mappings and a strategy for determining the inter-tool 
mappings. 

3 PROCESS METHOD AND TOOL MAPPINGS 

This section summarizes the mappings between three 
(process-oriented) methods: (i) Process Modeling, (ii) 
Simulation Modeling, and (iii) Finite Capacity Scheduling.  
We also outline a strategy for determining mappings 
between the corresponding tools that provide automated 
support for these methods.  

3.1 Method Mappings 

Table 1 summarizes the concept (ontology) mappings 
between process modeling, simulation modeling, and finite 
capacity scheduling (for commonly re-occurring concept 
types).  
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Table 1: Inter-Method Mappings: Process Modeling, Simulation Modeling, and Finite Capacity Scheduling 
Process Concepts Simulation Concepts Scheduling Concepts Discussion 
Flow Object, 
Participant Object 

Entity Item, Part The inputs and outputs for activities are 
declared explicitly in process and simulation 
models; activity inputs and outputs are often 
implicit in a scheduling model. 

Process Process, Activity Activity, Task  Differences between the process, simulation, 
and schedule models are observed in the types 
of attributes that are relevant for each method 
and in the level of abstraction that is typically 
adequate to address the modeling goals. 

Waiting Space Queue, Buffer N/A Because simulation is often used for the 
analysis of queue behaviors, waiting spaces 
are often modeled in greater detail in 
simulation than in process modeling.  It is not 
common to explicitly model queues in 
schedule models. 

Agent, Resource 
Resources are often 
classified in different 
ways: (i) Dedicated vs. 
Shared; (ii) 
Consumable vs. Non-
Consumable; (iii) 
Human, Equipment, 
Facilities, etc. 

Resource Resource Differences in how resources are modeled in 
process, simulation, and schedule models are 
observed in the types of attributes that are 
relevant for each method and the level of 
abstraction that is typically adequate. 

Intra-Activity 
Constraints (Resource, 
Timing, etc.) 

Intra-Activity 
Constraints are often 
expressed as Resource 
- Activity 
Dependencies and 
Activity Time 
Specifications (Often 
Stochastic) 

Intra-Activity 
Constraints are often 
expressed as Resource 
- Activity 
Dependencies, Activity 
Time Specifications 
(Usually 
Deterministic), and 
Calendar Constraints 

Differences occur in both the constraint types 
and in the level of constraint specification 
detail. 

Inter-Activity Logical 
Constraints 
(a) Input – Output 
Dependencies 
(b) Convergence (Fan-
In) and Divergence 
(Fan-Out) 
Dependencies 

Inter-activity logical 
Constraints 
(a) Push and Pull 
Interactivity Flow 
Dependencies 
(b) Convergence often 
manifests as 
Assembly constraints 
and Divergence often 
manifests as 
Disassembly 
Constraints  

Inter-Activity Logical 
Constraints 
(a) Task Input and 
Task Output 
Specifications 
(b) Convergence often 
manifests as Logical 
“AND” convergence 
constraints and 
Divergence often 
manifests as Task 
Parallelism (divergent 
“AND”) Constraints 

Differences occur based on whether the 
representation of a flow object (“entity”) is 
implicit or explicit.  We have observed that 
flow objects are often implicit in schedule 
models and almost always implicit in 
simulation models. The modeling of the 
assembly and dis-assembly of physical 
systems is often common in simulation 
models and less common in schedule models.  

Inter-Activity 
Temporal Constraints 
(Precedence 
Constraints) 

Inter-Activity 
Temporal Constraints 
(Precedence 
Constraints) 

Inter-Activity 
Temporal Constraints 
(Precedence 
Constraints) 

Differences occur in both the constraint types 
and in the level of constraint specification 
detail. 
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3.2 Inter-Tool Mapping Development Strategy 

Once the inter-method ontology mappings have been 
developed, an important next step is to determine 
mappings between the tools that support these methods.  
We will summarize our strategy for developing these 
mappings based on an ongoing research and development  
project called TEAMS (Toolkit for Enabling Adaptive 
Modeling and Simulation) (Benjamin, Graul, and 
Erraguntla 2002).  TEAMS facilitates space transportation 
system operations process analysis using multiple analysis 
methods including simulation, scheduling, and cost 
analysis.  The use of a standard and expressively rich 
process modeling language, IDEF3, provides the basis for 
the rapid generation of analysis models.  The PROSIM® 
commercial tool provides automated support for IDEF3-
based process modeling.  Automated support for 
generating different types of analysis and execution 
support models has been implemented: (i) discrete event 
simulation (Arena and Witness) models, (ii) scheduling 
models (WorkSim and MSProject) models, and (iii) cost 
(SMARTABC® and SMARTCOST®) models.  Additional 
analysis tool interfaces are under development to facilitate 
rapid and cost effective space transportation system 
operations analysis.  The TEAMS process-oriented, re-
configurable, plug-and-play analysis framework solution 
concept is illustrated in Figure 3 (Benjamin, Graul, and 
Erraguntla 2002). 

Suppose that tools T1 and T2 need to exchange 
information and that their ontologies are TO1 and TO2, 
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respectively.  Further, we’ll refer to the IDEF3 Neutral 
Process Representation Language as NPRL.  The strategy 
for determining the information flow requirements between 
T1 and T2 is summarized in the following steps.  

 
1. Determine TO1 <-> NPRL mappings 
2. Determine TO2 <-> NPRL mappings 
3. Use (1) and (2) to determine TO1 to TO2 

mappings 
 

In addition to the translator efficiency gains described 
earlier in Section 2, the advantage of using NPRL in this 
process is that it effectively assists with the conceptual 
disambiguation.  The generic concept descriptions (NPRL) 
provide a reference point that is unaffected by 
terminological or implementation-specific ontology 
differences and similarities.  For example, the NTRL might 
use the term “Unit of Behavior (UOB)” to generically 
denote terminological variants of this concept such as 
“Activity,” “Task,” and “Operation.” 

The disambiguated inter-tool ontology mappings that 
result from step 3 (above) provide the foundation for 
developing the inter-tool (TO1 <-> TO2) information 
exchange requirements. 

In the TEAMS framework, we’ve established the 
technical viability and practical benefits of the above 
strategy by developing translators between the ARENA 
simulation tool and the WorkSim scheduling tool using 
IDEF3 as the intermediary NPRL (Benjamin, Graul, and 
Erraguntla 2002).
  
Figure 3: The TEAMS Process-Centric Operations Analysis Framework Solution Concept 
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4 EXAMPLE ONTOLOGY-ENABLED PROCESS 
INFORMATION INTERCHANGE 
APPLICATION  

This section describes an example application scenario to 
illustrate the working of the ontology driven application 
integration framework approach.  The example is based on 
a simulation-based application that was developed in 
(Benjamin, Graul, and Erraguntla 2002).   

4.1 Background 

The goal of the application was to answer the following 
types of questions:  (i) What is the estimated throughput of 
the current process (estimated number of items processed 
per year, estimated average processing time, and estimated 
processing time variability)?; (ii) What is a feasible 
schedule for executing this process given a predetermined 
(a) start date and (b) end date?  Simulation modeling is 
used to address questions of type (i) and finite capacity 
scheduling is used to address questions of type (ii). 

In our example application, we studied a space 
transportation system ground operations process.  The 
scope of the model encompasses the existing facilities, 
Ground-Support Equipment (GSE), and range 
infrastructure along with the flight hardware elements.  
The following activities were performed in order to answer 
the application questions. 
 

1. Develop IDEF3 Process Model 
2. Design and Generate Simulation Model  
3. Design and Generate Schedule Model 
4. Perform Simulation Experiments 
5. Analyze Simulation and Schedule Model Outputs 
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4.2 Example Ontology Mapping Descriptions 

The purpose of the example description is to illustrate the 
working of the ontology-driven approach for process 
application integration.   We will focus on explaining the 
inter-model and inter-tool ontology mappings.  The inter-
tool mappings are described relative to three tools:  the 
PROSIM® process modeling tool, the Arena simulation 
modeling tool, and the WorkSim scheduling tool. 

4.2.1 Flow Object Mappings 

 
Figure 4 represents a process flow network in PROSIM® 
with two flow objects / participants objects: ELV ET Barge 
and RLV ET Barge.  Flow objects are characterized by 
simulation-specific information such as inter-arrival time, 
batch size, and arrival point.  Active flow objects are 
introduced into the system and assigned to a process upon 
arrival.  

 
Figure 5 represents the “corresponding” process flow 

network in Arena with two flow objects (“entities”): ELV 
ET Barge and RLV ET Barge.  In addition to the process 
information specified in PROSIM®, Arena allows for the 
representation of additional information such as the 
maximum number of entities generated, the time when the 
first entity is generated, and time units.  Active entities are 
always generated at the system entry point, and these 
entities are removed from the system at the system exit 
point. 

 

 
 

RLV ET Barge

ELV ET Barge

Flow Object / 
Participant Object

ELV_ET_Barge:  Batch Size: 1, IAT: 8

RLV_ET_Barge:  Batch Size: 1, IAT: Expo(3)

RLV ET Barge

ELV ET Barge

Flow Object / 
Participant Object

ELV_ET_Barge:  Batch Size: 1, IAT: 8

RLV_ET_Barge:  Batch Size: 1, IAT: Expo(3)
 

 
Figure 4: Flow Object Representation in PROSIM® 
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Figure 5: Flow Object Representation in Arena 

 
Flow objects are represented as items (or parts) in 

WorkSim.  Some of the information related to simulation 
(and represented in PROSIM® and Arena) is irrelevant to 
scheduling and thus not represented in WorkSim.  Other 
information about the flow object (item) is relevant for 
scheduling / WorkSim such as the scheduled start date (for 
forward scheduling) or desired end date (for backward 
scheduling).  This type of information is often not 
represented in process and simulation models. 

4.3 Intra-Activity Constraint Mappings 

Figure 6 shows how resource rules and waiting spaces are 
assigned to activities in PROSIM®.  Resource rules are 
used to represent the restrictions on the use of resource 
objects with flow objects at an activity.  Waiting spaces, 
the physical areas where flow objects wait for resources, 
are assigned to the activity.  Multiple activities may be 
assigned to a single waiting space.  Different types of 
dispatching rules may be assigned to waiting spaces such 
as first-in-first-out, last-in-first-out, etc. 

Unlike PROSIM®, both resource rules and waiting 
spaces are assigned to processes in Arena.  Queues / 
buffers are inherently tied to processes, but the user has the 
option of assigning multiple processes to a single queue.  
The processing times are categorized as value added, 
transfer, wait, and non-value added.  Unlike PROSIM®,  
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Arena allows for the grouping of similar resources skill 
sets.  This feature is not available in PROSIM®. 

The concept of waiting spaces is not commonly used 
in scheduling (and not currently represented in WorkSim).  
However, WorkSim provides for the representation of 
different types of resource rules.  Unlike Arena, processing 
times in WorkSim are not tagged as value added, transfer, 
wait, etc. 

4.4  Agent / Resource Mappings 

PROSIM® allows for the specification of information such 
as system-wide capacity and per-hour resource use cost for 
agents / resources.  Arena and WorkSim allow for the 
representation of additional information such as calendar 
constraints, capacity and efficiency exceptions, categories 
based on skills/capabilities, etc.   

4.5  Inter-Activity Constraint Mappings 

Figure 7 illustrates the representation of inter-activity 
convergence (Fan-In) and divergence (Fan-Out) constraints 
in PROSIM®.  PROSIM® Fan-In and Fan-Out “Junction 
Boxes” are used to represent different logical inter-activity 
constraints such as “And (&),” “Exclusive Or (X),” and 
“Inclusive Or (O).”  The process flow diagram in Figure 7 
illustrates examples of Fan-In and Fan-Out “&” 
constraints. 
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Process:  Prepare Ret Vessel

Flow Object:  RLV ET Barge, Duration:  1, Resource Rule:  Retrieval Vessel # 1, Waiting Space: Object_61

Flow Object:  ELV ET Barge, Duration:  1, Resource Rule:  Retrieval Vessel # 1, Waiting Space: Object_61

Intra-
Process 

Constraints

Process:  Prepare Ret Vessel

Flow Object:  RLV ET Barge, Duration:  1, Resource Rule:  Retrieval Vessel # 1, Waiting Space: Object_61

Flow Object:  ELV ET Barge, Duration:  1, Resource Rule:  Retrieval Vessel # 1, Waiting Space: Object_61

Intra-
Process 

Constraints
 

 
Figure 6: Process, Waiting Space, and Resource Rule Representation in PROSIM® 
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Minor Ops
Major Ops

Model As:  Assembly Machine

Fan-Out Constraints Fan-In Constraints

Destination Activities:

Minor Ops
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Figure 7: Representing Fan-In and Fan-Out Constraints in PROSIM® 

 
Both convergence (Fan-In) and divergence (Fan-Out) 

constraints may be represented in Arena.  Arena also 
allows for the specification of additional details such as the 
cost associated with cloning and assembly based on user-
defined entity attributes (e.g., perform assembly operations 
on entities whose weight is less than 10 lbs, etc.). 

WorkSim allows for the representation of “And 
(&)”inter-activity constraints types.  “Exclusive Or (X)” 
constraints are not currently supported by WorkSim. 

5 SUMMARY 

This paper described an ontology driven approach to 
facilitating semantic information sharing among process-
oriented applications.  A key idea is the use of a Neutral 
Process Representation Language (NPRL) to increase the 
translation effectiveness among applications that must 
share information.  The role of domain and tool ontologies 
in determining translation information requirements was 
described.  Attention was focused on determining 
mappings between Process Modeling, Simulation 
Modeling, and Finite Capacity Scheduling method 
ontologies.  The practical benefits of the approach were 
illustrated through a space transportation system ground 
processing operations analysis example. 
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