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ABSTRACT 

The authors present the results of experiments performed 
to identify the pitfalls of performing ‘bad’ transient analy-
sis when estimating steady-state parameters via the method 
of independent replications. The intention was to demon-
strate to students that failure to delete transient data may 
lead to confidence intervals that underestimate steady-state 
parameters. Two types of systems are analyzed: 
M/M/1/GD/∞/∞ systems and an M/M/s/GD/∞/∞ optimiza-
tion problem. These systems are chosen since they are 
typically taught in an undergraduate stochastic operations 
research course where a closed-form solution of the steady-
state parameter exists. Surprisingly, the results prove to 
support the opposite of our original intention—regardless 
of run length, ignoring transient analysis often leads to the 
same level of coverage at greater precision, or provides no 
gain in coverage to justify the effort of performing tran-
sient analysis. Thus, we now pose the question—should 
transient analysis be taught? 

1 INTRODUCTION 

One of the most difficult topics for undergraduate students 
taking their first stochastic operations research or simula-
tion course is non-terminating systems analysis (Court 
2001). At issue is the student’s ability to understand that 
output data generated from a non-terminating system’s 
simulation will have both transient and steady-state data 
(i.e., the data are not iid—independently and identically 
distributed data). Additionally, they are uncomfortable or 
inexperienced with utilizing approximation tools (simula-
tion) that rely on ad-hoc methodologies (e.g., graphical 
techniques to distinguish between transient and steady-
state behavior) and statistical laws (e.g., the central limit 
theorem) for parameter estimation. This is understandable, 
since more often than not, undergraduate students have 
only used mathematical modeling techniques that are 
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‘guaranteed’ (as long as the underlying assumptions of the 
technique are not violated) to generate ‘one-and-only’ (or 
hopefully, the optimal) solution to a problem. In contrast, 
simulation output analysis for non-terminating systems 
may generate several different ‘approximations’ for the 
unknown parameter of interest. 

Complicating the issue is the inability of the students 
to validate their results. In general, these students are not 
comfortable with the amount of judgment/skill/experience 
required to evaluate their findings (e.g., confidence inter-
vals about the parameters of interest). Simulation analysis 
(particularly simulation output analysis of non-terminating 
systems) tends to be ‘too ad-hoc’ for the ‘typical’ under-
graduate student; while non-terminating output analysis is 
too important a topic to ignore when teaching simulation 
modeling courses. In our opinion, ignoring this topic when 
teaching simulation modeling is equivalent to generating 
‘inadequate simulation practitioners’. 

We present a set of experiments to help identify the 
pitfalls of performing ‘bad’ transient analysis when esti-
mating steady-state parameters via the method of inde-
pendent replications. The intention of the experiments is to 
demonstrate to industrial engineering undergraduate stu-
dents that failure to delete transient data (or not enough 
transient data) will lead to ‘poorer’ confidence intervals 
than confidence intervals generated when the student takes 
the time to more accurately identify and discard transient 
data. In fact, our goal is to demonstrate that these confi-
dence intervals are more likely to not cover the true mean, 
or precision (half-width size) will be less (greater half-
width size) than the confidence intervals generated when 
transient data are discarded. Our experiments are designed 
for two cases of non-terminating systems where we will 
perform what we define as ‘perfect transient analysis’. 
While performing the experiments, we will also explore 
the impact on confidence interval generation when the ana-
lyst has run the simulation long enough to generate what 
we define as ‘perfect run length’ versus not running the 
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simulation long enough—‘insufficient run length’. The re-
sults are surprising: for the cases where transient analysis 
is done ‘badly’ (or even ignored), the confidence intervals 
provide coverage at greater precision than those cases 
where ‘perfect transient analysis’ is performed. 

The remaining sections of the paper are in the follow-
ing order: 

 
• The definitions section delineates what we mean 

by performing transient analysis ‘badly’ and pre-
sents our definitions of perfect transient point, 
worst-case transient analysis and perfect run 
length. 

• The methodology, results, and analysis section de-
fines the experiments we performed, how our 
definitions were put into practice and the resulting 
confidence intervals. 

• The conclusions and future research section is a 
discussion of the results, some questions we pose 
for educators and the avenues of future research 
we wish to explore. 

2 DEFINITIONS 

The goal of the experiments is to demonstrate the impact 
on confidence intervals (generated via the method of inde-
pendent replications) when the analyst performs transient 
analysis ‘badly’. First, we need to agree on how ‘bad tran-
sient analysis’ should be defined; and to offset this defini-
tion, we need to agree on how ‘perfect transient analysis’ 
should be defined. Additionally, we need to develop defini-
tions that can be understood at the undergraduate level. 

We propose that a student is able to achieve ‘perfect 
transient analysis’ when s/he identifies the point in the 
output data such that from that point to the end of the simu-
lation run, the average of the remaining data equals the true 
mean of the unknown parameter of interest. For example, 
if the student wishes to obtain an estimate of the true aver-
age waiting time in queue, ‘perfect transient analysis’ 
equates to deleting enough of the initial data, such that the 
remaining data, when averaged (the sample mean from the 
data), equals the true mean.  

To investigate cases of performing transient analysis 
‘badly’, we agreed that the ‘worst-case-transient analysis’ 
is to have the student/practitioner ignore (either intention-
ally or unintentionally) transient analysis altogether. In 
other words, we need to investigate cases where the stu-
dent/practitioner does not delete any initial data from the 
simulation runs and hence, the method of independent rep-
lications would see its worst case of initialization bias.  

However, we also wish to explore cases where the stu-
dent/practitioner ‘just happens to’ overcome the initializa-
tion bias of the worst-case-transient analysis by generating 
‘enough’ steady-state data to offset the initialization bias. 
So, we will explore cases where even though the practitio-
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ner intentionally or unintentionally chose to ignore tran-
sient analysis, s/he still generated what we call the ‘perfect 
run length’. Then, ’perfect run length’ is defined as the 
ability of the analyst to intentionally or unintentionally ig-
nore transient analysis and yet, generate a simulation run 
whose data, when averaged across the entire run (the repli-
cation’s sample mean), equals that of the true mean. 

Note that while several transient analysis methods ex-
ist (see Law and Kelton 2000) we will use a pilot run for 
determining transient analysis and will apply that warm up 
period (perfect transient point) across all runs. Then, for 
the method of independent replications, transient deletion 
in the remaining runs (replications) will be treated as a 
constant (perfect transient point of the pilot run). 

Utilizing a pilot run is also the approach we will take 
for analyzing perfect run length. In practice, the run length 
is highly influenced by the objectives of the simulation 
study and is typically determined via a pilot run of the 
simulation (and usually after transient analysis has been 
concluded). So again, as with the ad-hoc methodologies of 
transient analysis, run length selection is dependent on the 
analyst’s ability to ‘judge’ how long the simulation should 
be run. However, once run length is determined, it is fixed 
to uphold the method of independent replications require-
ment of fixed run lengths for all runs. Thus, for our perfect 
run length cases, we will generate a pilot run of the model 
to determine the time of perfect run length and then, run 
the remaining simulations with the perfect run length time 
invoked as the stopping rule for all runs. 

3 METHODOLOGY, RESULTS, AND ANALYSIS 

Two queuing systems cases are analyzed: 
 
• Case 1:  M/M/1/GD/∞/∞ systems at three levels 

of ρ (=0.50, 0.75, 0.90). 
• Case 2:  An M/M/s/GD/∞/∞ optimization prob-

lem with λ=2/minute, µ=0.5/minute, a per server 
cost of $9/hour and a delay cost to the customer of 
$0.05/minute, at s=5 and s=6 (see Winston 2004). 

 
The cases are chosen since well-known queuing theory 

results exist, and these systems are typically introduced in 
an undergraduate stochastic operations research course. 
The parameter of interest for Case 1 is the average waiting 
time in queue. The Case 2 system types are characteristi-
cally used to introduce the formulation required to solve 
queuing optimization problems. Here, the objective is to 
minimize the total expected cost in terms of the expected 
delay cost to the customer as a function of the service level 
(the number of servers, s). In queuing analysis, the formu-
lation is straight-forward (see Winston 2004) and a closed-
form solution exists for the minimum expected total cost. 
For the given values of our Case 2 system, the minimum 
total expected cost occurs when s=5. Since the waiting cost 
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to the customer and the per server costs are fixed, to solve 
the problem through simulation analysis is equivalent to 
determining a parameter estimate for the average waiting 
time in queue (Wq—the only unknown parameter). All 
cases were simulated via the Arena 7.01 software (Kelton 
et al. 2004) and analyzed via Arena 7.01 and Microsoft® 
Excel©. 

For the systems of Case 1, the methodology is as fol-
lows: 

 
1. A pilot run of the model is made for the waiting 

time in queue where the stopping rule for the pilot 
run is invoked when the average waiting time 
across the run equals the theoretical value. At this 
point the simulation is terminated and the simula-
tion’s run length is noted as the perfect run 
length. Then, 20 independent replications of the 
simulation model are generated with the perfect 
transient’s run length time utilized as the stopping 
condition for each of the 20 runs. The mean from 
each of the replications is then used to generate a 
95% confidence interval about the average wait-
ing time in queue. See Table 1 for a list of the per-
fect run lengths identified in the experiment. 

2. Run lengths of 6,000; 20,000; 50,000; and 
100,000 time units are utilized for all cases to 
identify the perfect transient point at various run 
lengths and to allow the worst-case transient 
analysis (no deletion of transient) at various run 
lengths to be explored. Since the perfect run 
length determined for ρ=0.90 was found to be 
greater than 100,000 time units, an additional case 
is utilized at a run length of 1,000,000 time units 
(see Table 2). 

3. For all run lengths of 2 above, (except perfect run 
length), perfect transient analysis is invoked to de-
termine where in that particular run length the av-
erage of the data equals the theoretical value (per-
fect transient point). The process is to export the 
output  data  of  the  simulation’s  pilot  run  into a 
Microsoft®   Excel©   spreadsheet   and   perform 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 1:  Worst-Case Transient Analysis Run Lengths and 
Perfect Run Lengths for Case 1 Systems 

Run 
Length 

ρ=0.50 ρ=0.75 ρ=0.90 

Perfect 
Run 

Length 

62,314.95 16,709.11 965,052.03 

6,000 6,000 6,000 
20,000 20,000 20,000 
50,000 50,000 50,000 

100,000 100,000 100,000 

Worst- 
Case 

Transient 
Analysis 

  1,000,000 
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what one might call a ‘reverse cumulative aver-
age’. For example, with a run length of 20,000 
time units, the first average obtained is of all of 
the output responses generated over the 20,000 
time units. If this average equals the true mean, 
the entire run is considered in steady-state. If not, 
the first observation is dropped and the remaining 
data are averaged. If the remaining data’s sample 
mean equals that of the true mean, then the simu-
lation time for the second observation is noted as 
the perfect transient point. If not, the second ob-
servation is dropped from the data set and the 
process of dropping each successive observation 
is repeated until the perfect transient point is 
found. See Table 2 for a list of the perfect tran-
sient points. Note, that for some run lengths, per-
fect transient can not be found. For the run lengths 
of 20,000 time units and 50,000 time units, the 
perfect transient points for ρ=0.50 are considera-
bly greater than the perfect transient points for 
ρ=0.75. Also note that for the run length of 
100,000 time units, the perfect transient point is 
0.00 for ρ=0.50 and 81,009.49 for ρ=0.75. At first 
this may seem to contradict the trend expected for 
longer run lengths within a particular ρ or for the 
same run length across different ρ’s. However, an 
explanation can be found by the fact that only a 
pilot run of the simulation is used to determine the 
perfect transient point; transient itself is stochastic 
and thus, the perfect transient point is also sto-
chastic. So while we would expect to see the per-
fect transient point increase as run lengths in-
crease, since it is stochastic, it will ‘move’ within 
a ρ at various run lengths and ‘move’ for run 
lengths at various ρ’s. 

4. If a perfect transient point can be found for a par-
ticular run length, two more confidence intervals 
are generated via the method of independent rep-
lications: 
(a) First, when the replications have the perfect 

transient deleted but the total run length is 
terminated at the original run length’s time 
unit. For example, if the run length is 20,000 
time  units  and  the  perfect transient point  is 

Table 2:  Perfect Transient Point of Run Lengths for Case 
1 Systems (-- indicates not found) 

Run Length ρ=0.50 ρ=0.75 ρ=0.90 
6,000 -- -- --
20,000 12,210.40 868.93 --
50,000 28,675.29 672.31 --

100,000 0.00 81,009.49 --
1,000,000 250,537.13
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found to occur at 12,210 time units, each rep-
lication will have a total of 7,790 time units 
worth of data available to calculate each rep-
lication’s sample mean. 

(b) Secondly, when perfect transient is deleted 
from each of the replications and the total run 
length is modified to equal that of the perfect 
transient’s time units plus the original run 
length’s time units. Following the same ex-
ample in (a), the new run length is 32,210 
time units for each of the replications, where 
the first 12,210 time units are specified as 
‘warm-up’ (amount of simulation time de-
leted as transient) and the remaining 20,000 
time units of data are available for calculating 
each replication’s sample mean. 

 
For Case 2, the methodology for Case 1 is invoked for 

two realizations of s=5 and s=6. Table 3 contains the pre-
fect run length and worst-case transient analysis run 
lengths for the Case 2 systems. Note, an additional run 
length of 500,000 time units is required when s=6 since 
perfect run length is found at 310,498.33 time units. Table 
4 contains the perfect transient point of the run lengths, and 
as with some of the Case 1 systems, some run lengths for 
the Case 2 systems contain no perfect transient point. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5 reveals the 95% confidence intervals gener-

ated for the worst-case transient analysis and perfect run 
lengths (as defined in Table 1) of the Case 1 systems. A 
shaded box indicates a run length that does not apply for 
that ρ. For each ρ, the confidence interval generated at per-
fect run length is indicated by a double-border cell.  Of  the  

Table 4:  Perfect Transient Point of Run Lengths for Case 
2 Systems (-- indicates not found) 
Run Length s=5 s=6 

6,000 -- 1251.18 
20,000 -- 14,400.08 
50,000 47,917.48 48,129.71 

100,000 76,131.37 33,915.82 
500,000  315,533.26 

Table 3:  Worst-Case Transient Analysis Run Lengths and 
Perfect Run Lengths for Case 2 Systems 

Run Length s=5 s=6 
Perfect Run 

Length 11,218.90 310,498.33 

6,000 6,000 
20,000 20,000 
50,000 50,000 

100,000 100,000 

Worst- 
Case 

Transient 
Analysis 

 500,000 
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16 confidence intervals generated, only one failed to con-
tain the true mean (Wq). This occurs at the 6,000 run length 
for ρ=0.75. Note, this is the only confidence interval gen-
erated by a run length below perfect run length that does 
not contain Wq. Recall that for all of the run lengths, no 
transient is deleted; yet, 15 of the 16  confidence intervals 
contain the true mean. For ρ=0.50 and ρ=0.75, the best 
precision for the confidence interval is attained at the 
100,000 run length; while for ρ=0.90 it is attained at the 
1,000,000 run length. These results indicate that there is no 
advantage to attaining perfect run length in terms of gener-
ating a confidence interval that contains Wq. However, the 
analysis does show that as the run length increases, the pre-
cision of the confidence interval improves. 
 Table 6 contains the 95% confidence intervals gener-
ated from the perfect transient analysis runs of the Case 1 
systems. Recall from the methodology section that two 
types of run lengths are performed after the perfect tran-
sient point is identified. The first, (a), is run at the original 
run length with a warm-up period set at the perfect tran-
sient point. Thus, the total simulated time is the original 
run length, but the output data collected from each replica-
tion have the transient data deleted from the run. The sec-
ond, (b), is run with the total simulated time equal to the 
original run length plus the perfect transient point. The net 
effect is that (b) will have ‘steady-state’ data collected for 
the original run length’s time units while (a) will have less 
‘steady-state’ data collected. A ‘--’ symbol indicates that a 
perfect transient point could not be found for the run length 
of (a) (see Table 2).  A  shaded  box  indicates a run  length 
that  does  not  apply  for  that  ρ.  All  confidence intervals  

Table 5:  95% Confidence Intervals of Worst-Case Tran-
sient Analysis Run Lengths and Perfect Run Lengths for 
Case 1 Systems 

ρ=0.50 ρ=0.75 ρ=0.90  M/M/1 
Wq 

Run Length 0.500 2.250 8.100 

6,000 0.507+/-
0.019 

2.363+/-
0.095 

8.136+/-
0.810 

16,709.11  2.280+/-
0.056 

 

20,000 0.499+/-
0.008 

2.262+/-
0.050 

8.229+/-
0.446 

50,000 0.500+/-
0.007 

2.260+/-
0.042 

7.962+/-
0.230 

62,314.95 0.500+/-
0.004 

  

100,000 0.501+/-
0.003 

2.277+/-
0.028 

8.109+/-
0.176 

965,052.03   8.077+/-
0.070 

1,000,000   8.083+/-
0.069 
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generated contain Wq; and, except for two sets of confi-
dence intervals (i.e., ρ=0.75 with original run length at 
100,000 and ρ=0.90 with original run length at 1,000,000), 
the precision of the (a) confidence intervals is the same or 
better than the precision of the confidence intervals of (b). 
Then, there seems to be no advantage to increasing the run 
length for ‘steady-state’ data collection once perfect tran-
sient is deleted. And, as with the previous results of Table 
5, precision improves as run length increases. 

Tables 7 and 8 reveal the results of the analysis for the 
Case 2 systems. As with the Case 1 systems, the same 
trends exist for the Case 2 systems’ confidence intervals: 
 

• For the worst-case scenario and perfect run 
lengths (see Table 7), there is no advantage to at-
taining perfect run length in terms of generating a 
confidence interval that contains Wq; and as the 
run length increases, the precision of the confi-
dence interval improves. 

• For the perfect transient runs (see Table 8), there 
seems to be no obvious advantage to increasing 
the run length for ‘steady-state’ data collection 
once perfect transient is deleted; and, as with all 
previous results, precision improves as run length 
increases. 

Table 6:  95% Confidence Intervals Generated via Perfect 
Transient Analysis at Two Run Lengths for Case 1 Sys-
tems: (a) Original Run Length and (b) Original Run 
Length + Perfect Transient Point 

ρ=0.50 ρ=0.75 ρ=0.90       M/M/1 
           Wq 

Original 
Run Length 

0.500 2.250 8.100 

6,000         (a) -- 
 

-- 
 

-- 
 

                  (b) -- 
 

-- 
 

-- 
 

20,000       (a) 0.488+/-
0.012 

2.264+/-
0.054 

-- 
 

                  (b) 0.496+/-
0.013 

2.266+/-
0.057 

-- 
 

50,000       (a) 0.500+/-
0.005 

2.261+/-
0.044 

-- 
 

                  (b) 0.511+/-
0.005 

2.257+/-
0.044 

-- 
 

100,000     (a) 0.501+/-
0.003 

2.289+/-
0.050 

-- 
 

                  (b) 0.501+/-
0.003 

2.269+/-
0.023 

-- 
 

1,000,000  (a)   8.087+/-
0.094 

                  (b)   8.112+/-
0.076 
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4 CONCLUSIONS AND FUTURE RESEARCH 

Granted, the confidence intervals generated are for only 
one set of 20 replications each, while coverage analysis re-
quires several sets of 20 replications to predict the accu-
racy of confidence intervals’ coverage (see Law and Kel-
ton 2000); but this is not the intention of the experiments. 
The experiments are to convey to undergraduate students 
the danger of not performing transient analysis when esti-
mating an unknown parameter for a non-terminating sys-
tem. We chose the method of independent replications 
since it tends to be more readily understood by under-
graduate students, then say, the batch means method (see 
Court 2004). Additionally, the method (independent repli-
cations) tends to suffer from initialization bias and thus, 
performing transient analysis should help to reduce the 
bias. 

Since transient analysis relies on ad-hoc techniques, 
students tend to have difficulty in applying the techniques 
and justifying/validating the results (see Court 2004). We 
chose two types of queuing systems that are typically 

Table 7:  95% Confidence Intervals of Worst-Case Tran-
sient Analysis Run Lengths and Perfect Run Lengths for 
Case 2 Systems 

s=5 s=6     M/M/s 
Wq 

Run Length 1.108 0.285 

6,000   1.140+/-0.092 0.294+/-0.026 
11,218.90 1.154+/-0.054  

20,000 1.138+/-0.041 0.298+/-0.013 
50,000 1.117+/-0.026 0.290+/-0.007 

100,000 1.114+/-0.018 0.286+/-0.005 
310,498.33  0.286+/-0.002 

500,000  0.286+/-0.002 

Table 8:  95% Confidence Intervals Generated via Perfect 
Transient Analysis at Two Run Lengths for Case 2 Sys-
tems: (a) Original Run Length and (b) Original Run 
Length + Perfect Transient Point 

s=5 s=6  M/M/1 
Original        Wq 
Run Length 1.108 0.285 

6,000         (a) -- 0.299+/-0.028 
                  (b) -- 0.299+/-0.026 
20,000       (a) -- 0.288+/-0.012 
                  (b) -- 0.288+/-0.015 
50,000       (a) 1.102+/-0.095 0.283+/-0.007 
                  (b) 1.101+/-0.103 0.282+/-0.008 
100,000     (a) 1.104+/-0.016 0.282+/-0.004 
                  (b) 1.103+/-0.018 0.285+/-0.004 
500,000     (a)  0.284+/-0.002 
                  (b)  0.284+/-0.002 
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taught in a stochastic operations research course to illus-
trate transient analysis issues. Surprisingly, we found very 
little evidence to support the fact that performing transient 
analysis will lead to ‘better’ confidence intervals. That is, 
even when transient analysis is ignored, the true mean is 
contained within the confidence interval and usually with 
greater precision. Table 9 also supports this finding. Here, 
we compare ‘equivalent’ run lengths for the Case 1 sys-
tems by restating the results found in Tables 5 and 6. For 
the (b) confidence intervals of Table 6, the total run length 
is the original run length plus the time unit of the perfect 
transient point.  So,  the  (b) confidence  intervals  have the 
same amount of data collected (in terms of time) over the 
run as the worst-case transient analysis run length times of 
Table 5. However, recall that the worst-case transient ana-
lysis occurs when no transient is deleted. So, in theory, the 
(b) generated confidence intervals should be ‘better’ than 
the confidence intervals generated under the ‘equivalent’ 
worst-case transient analysis run length, since they contain 
‘steady-state’ data. Also recall, and as displayed in Table 9, 
that a ‘--’ symbol indicates that a perfect transient point 
could not be found for the run length and only the (*) con-
fidence interval did not contain Wq. Then, in general, the 
‘best’ half-width occurs when no transient is deleted. In 
fact, the  worst-case transient analysis  runs generated more 
‘valid’ (Wq is within the confidence interval) confidence 
intervals at shorter run lengths than (b) (since perfect tran-
sient could not be found at the shorter run lengths). So, the 
runs    with    no    transient   deleted   generated   12   valid 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 9:  95% Half-Widths of Worst-Case Transient 
Analysis versus Perfect Transient Analysis at ‘Equivalent’ 
Run Lengths for Case 1 Systems 

‘Equivalent 
Run Length’ 

Worst-Case 
Transient 

Analysis (see 
Table 5) 

(b) Run Length 
(see Table 6) 

ρ=0.50 
6,000 0.019 -- 

20,000 0.008 0.013 
50,000 0.007 0.005 

100,000 0.003 0.003 
ρ=0.75 

6,000 0.095* -- 
20,000 0.050 0.057 
50,000 0.042 0.044 

100,000 0.028 0.023 
ρ=0.90 

6,000 0.810 -- 
20,000 0.446 -- 
50,000 0.230 -- 

100,000 0.176 -- 
1,000,000 0.069 0.076 
2

confidence intervals, while the ‘steady-state’ runs only 
generated 7 valid confidence intervals. For the 7 valid con-
fidence intervals generated via  the ‘steady-state’ runs, the 
runs with no transient deleted generated confidence inter-
vals with equal or better precision 5 out of those 7 times. 
The same comparison (see Table 10) when performed for 
the Case 2 systems yields similar, if not better, results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus we pose the question: At the undergraduate level, 

should transient analysis be taught when teaching the 
method of independent replications? Our conclusion is 
‘yes’ but with the following emphasis: 

 
• Transient analysis is an ad-hoc methodology and 

as such, there is no guarantee that the confidence 
interval generated will be ‘better’ (greater preci-
sion) than a confidence interval generated when 
transient data are present. 

• Run length seems to be the most important factor 
when trying to obtain confidence intervals con-
taining the true mean. 

 
Our opinion is that strong emphasis should be placed 

on the run length. It seems that, at least, for the systems 
studied, transient data whether present or not, have very 
little impact on the validity of the confidence interval; run 
length however, does. So the student should come away 
with the realization that running the simulation ‘long 
enough’ is much more important than identifying steady-
state behavior. 

Our confidence intervals were generated via the 
method of independent replications. Future research will be 
aimed at the impact of transient analysis when utilizing the 
batch means method. Our prediction is that since the batch 

Table 10:  95% Half-Widths of Worst-Case Transient 
Analysis versus Perfect Transient Analysis at ‘Equivalent’ 
Run Lengths for Case 2 Systems 

‘Equivalent 
Run Length’ 

Worst-Case 
Transient 

Analysis (see 
Table 7) 

(b) Run Length 
(see Table 8) 

s=5 
6,000 0.092 -- 

20,000 0.041 -- 
50,000 0.026 0.103 

100,000 0.018 0.018 
s=6 

6,000 0.026 0.026 
20,000 0.013 0.015 
50,000 0.007 0.008 

100,000 0.002 0.004 
500,000 0.002 0.002 
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means method is a single-replication method (see Law and 
Kelton 2000 or Kelton et al. 2004), determining the perfect 
transient point will assist in providing a better confidence 
interval than if transient analysis is performed ‘badly’. We 
are not comfortable with the same prediction for perfect 
run length analysis since if independent batches can be 
generated, at least one of the batches will contain transient 
data in the sample (or batch) mean. 
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