
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

IMPLEMENTATION OF A DISCRETE EVENT SIMULATOR FOR BIOLOGICAL SELF-ASSEMBLY SYSTEMS

 Tiequan Zhang
Rori Rohlfs

Russell Schwartz

Dept. of Biological Sciences and Computer Science Dept.
Carnegie Mellon University

4400 Fifth Avenue
Pittsburgh, PA 15213, U.S.A

.

ABSTRACT

We have implemented a simulation tool for the study of
computationally challenging biological self-assembly sys-
tems, particularly viral protein shells. The simulator im-
plements a generic model of self-assembly based on simple
local binding interactions to specify the behavior of com-
plex self-assembly reactions. Recently developed discrete
event methods allow for fast quantitative simulation of
these systems. The new simulator uses the Java language to
implement the model in a portable, interactive graphical
tool. The Java libraries can also be used directly to build
customized simulations. This paper discusses the simulator
model, the theoretical basis for its efficient operation, and
implementation issues in its design. It also discusses em-
pirical validation of the simulator package and presents
sample applications.

1 INTRODUCTION

Biological self-assembly is a process by which molecules,
typically repeated proteins subunits, spontaneously form
into larger, complex structures with limited help from cel-
lular machinery. Typical biological self-assembly systems
include actin and tubulin filaments, which form a network
of protein filaments called the cytoskeleton that is critical
to numerous processes in eukaryotic cells, and virus cap-
sids, which form the protective outer coat around the nu-
cleic acid of a virus. Investigations of these self-assembly
systems are important for basic biology and medical re-
search. In addition, they hold important lessons for humans
attempting to design novel self-assembly systems (White-
sides 1995, Whitesides 2002). However, limitations in our
ability to observe and manipulate rapid, nanometer scale
assembly reactions make it difficult to gain an understand-
ing of these systems by traditional experimental ap-
proaches alone. These problems are particularly acute for
viral capsids, which are typically extremely complex and

22
robust systems of hundreds of proteins assembled into ico-
sahedrally symmetric structures. Simulation methods pro-
vide a means to address some of these difficulties and as-
sist in the planning and interpretation of experimental
work.

Virus capsid assembly has recently attracted particular
attention in the modeling community because of its com-
plexity, its efficiency, and the difficulties involved in ex-
perimentally observing its progress. Current understanding
of virus capsid assembly is based on the Caspar and Klug
theory of “quasi-equivalence” (Caspar and Klug 1962,
Caspar 1980), which offered a possible explanation for ob-
served shell symmetries. Quasiequivalence theory also
provided a taxonomy for observed shell structures in terms
of “T numbers” describing the relative positions of sub-
units in the shell. Other approaches and models have been
developed to investigate different aspects of virus capsid
self-assembly, such as the equilibrium behavior of assem-
bly systems (Bruinsma et al. 2004, Zlotnick 1994), the fa-
vored assembly pathways (Reddy et al. 1998), mechanisms
behind some unusual “non-quasiequivalent” structures
(Schwartz, Garcea, and Berger 2000; Twarock 2004), and
the overall reaction kinetics of the assembly process (Zlot-
nick 1994, Endres and Zlotnick 2002).

Several simulation models have been developed based
on a theory of virus assembly called local rules (Berger, et
al. 1994). Local rules theory proposed that virus capsid
formation can be directed by local interaction of virus coat
protein subunits, with complex capsid geometries arising
from subunits selecting their local geometries and binding
partners based only on their immediate environments in the
shell. The simplest local rules set, used to describe a T=1
virus capsid geometry, is illustrated in Figure 1. This
model was used to explain the normal geometrical struc-
tures of virus and the possible reasons for some malformed
assemblies. It later formed the basis for a more complex
simulation model called local rules dynamics that com-
bined local rules with a sophisticated molecular dynamics-

23

Zhang, Rohlfs, and Schwartz

like model of particle movement and structure and reaction
rates (Schwartz et al. 1998, Schwartz 2000). However, the
computational cost of this model made it difficult to simu-
late large-scale assembly and systems with events acting
on widely different time-scales.

Figure 1: Local Rules for T=1 Virus Capsid Geometry

A novel discrete event method for accelerated quanti-

tative simulation of self-assembly reaction progress was
proposed by Jamalyaria, Rohlfs and Schwartz (2005). This
fast, memory-efficient simulation method was designed to
handle complex self-assembly systems on the scales of
single cells. Virus capsids are challenging in general be-
cause the enormous number of distinct intermediates pos-
sible makes it computationally intractable to use differen-
tial equation approaches commonly used to approximate
chemical reactions on large scales without large simula-
tions. The cellular scale is particularly challenging because
it encompasses system sizes that are near the boundary of
what is computational achievable by stochastic discrete
event methods but are sufficiently small that deterministic
continuous methods cannot necessarily be considered reli-
able approximations.

In the present work, we describe a simulator devel-
oped by combining local rules theory and our fast discrete-
event simulation method to model these hard systems. The
objective of this implementation is to build a reliable re-
search and educational tool to investigate the pathways and
possible kinetic traps in self-assembly systems; develop
and evaluate hypothesis about actual systems with the aid
of available experimental data; facilitate a thorough analy-
sis of the trade-offs among run time, memory usage and
accuracy; and analyze the convergence of the discrete and
continuous methods for systems scales near the boundary
of what is accurately approximable by large-scale methods.
It is specifically designed to:

22
• Employ a very general model adaptable to many
different biological geometries and assembly
processes.

• Explicitly represent the stochastic nature of bio-
chemistry on small (cellular) scales.

• Achieve accuracy and robustness for a broad
range of system parameters and model details.

• Be sufficiently portable and easy to use that it can
be productively applied by users with no familiar-
ity with the theory of the simulation methods.

In the remainder of this paper, we describe the simula-

tor model and implementation and present empirical results
demonstrating the simulator capabilities and validating its
correctness.

2 IMPLEMENTATION

2.1 Overview

This simulator has been developed using a Model-View-
Controller (MVC) design pattern. The model represents the
local rules that govern behaviors of the assemblies, which
are the basic unit of the simulation, the event queue and a
set of global properties of the simulation (e.g. solution vol-
ume or temperature). The view provides an interactive dis-
play of simulation progress and renders the detailed three-
dimensional graphical representation of the structures pre-
sent in the simulation at any given time. The controller,
which handles interactions between the user and the model
and view, includes two separate components: that instruct-
ing the simulator to advance the time or change the angle
of the view and that implementing the laws of physics that
determine the time course of the simulation. This separa-
tion reflects the centrality of the physics model to the simu-
lator and the conceptual distinction between predictable
user-directed actions and unpredictable actions the simula-
tor itself directs. Users can customize the important pa-
rameters of the physical model and control the simulation
through either the Graphical User Interface (GUI) or
through direct access to the Java code.

2.2 Discrete Event Model

Chemical reactions are conventionally described by formu-
lae such as the following:

The above states that two molecules, A and B, react to
form a molecule C with a characteristic rate kf. C can also
convert back into A and B with a rate kr. Systems of such
reactions are often deterministically modeled using ordi-
nary differential equations (ODEs) to track the concentra-
24

Zhang, Rohlfs

tions of reactants such as A, B and C as functions of time
and of the rate constant parameters (Turner, Schnell, and
Burrage, 2004). By contrast, a discrete event (DE) model
uses a stochastic approach to model the reaction progress
in terms of individual reaction events separated by waiting
times. Waiting times are exponentially distributed with av-
erage times Tf and Tr for each type of reaction. If we set our
units so that the total volume of the simulation is 1, then
we can easily relate ODE and DE models of the same sys-
tem. If we specify the time unit such that Tf =1/kf and
Tr=1/kr, then the discrete count of reactants in the DE
model will converge on the continuous concentration of
reactants in the ODE model for sufficiently large systems.

2.3 Protein Model

The model used by the present simulator is derived from
local rules theory (Berger et al. 1994), a model defining
self-assembly systems in terms of simple pair-wise binding
interactions. Local rules theory is a hypothesis about the
mechanism of actual virus shell assembly, but is also a
very useful computational abstraction in that it establishes
a general model allowing for the concise specification of a
broad range of self-assembly systems. The physical model
of the simulator is similar to the local rules dynamics
model (Schwartz et al. 1998, Schwartz 2000), a prior ex-
tension of local rules to handle reaction rate information.
The new model, however, uses a discrete-event simulation
method (Jamalyaria, Rohlfs and Schwartz 2005), in con-
trast to the computationally demanding molecular dynam-
ics-like method of the local rules dynamics model.

The basic building block of a simulation is a subunit,
which is generalized to represent a single protein or cap-
somer in a biological self-assembly system. Each subunit
has a user-specified set of binding sites defined by a posi-
tion in space relative to the center of the subunit and a set
of other binding sites with which it can bind. The affinities
of each type of binding site with its own sets of compatible
types of binding sites are encoded by the mean waiting
times to form and break a binding interaction, Ta and Td.
Because waiting times are exponentially distributed, the
means completely specify the waiting time distributions.

Some assembly models require that subunits can dy-
namically change their binding configurations. One exam-
ple is the autostery model (Caspar 1980), which provides
an explanation for the experimental observation that the
overall rate of growth is limited by the time to form a small
“growth nucleus” (Prevelige, Thomas, and King 1993). In
order to model changing or partially changing binding site
configurations, subunits in this simulator are defined as
combinations of domains, each of which has some possible
conformations. A Domain object encodes a partial current
pattern of binding sites in the subunit. Using this represen-
tation, the conformations of individual domains can change
without affecting other domains. Thus, some binding sites
22
, and Schwartz

may become available or unavailable due to some stimulus
while other binding sites remain unperturbed. In the sim-
plest case, there is only one domain in a subunit, which
might contain two conformations, one with some binding
sites, the other without any binding site. Two such con-
formations are graphically illustrated in Figure 2 (a) and
(b). Figure 3 illustrates the process by which one domain
can switch between two conformations, a and b, with dif-
ferent affinities represented by average switching times Tf
and Tb, while a second domain remains fixed. The sphere-
cone complex shown in Figure 2(b), (c) and (d) are graphi-
cal representations of structures of some subunits. The
physical properties (mass, size etc.) and the hierarchical
structure of one subunit – domain, conformation and bind-
ing site – define its specific binding behaviors.

Figure 2: Subunits from Different Assembly Models

Figure 3: Conformational Switching in Domain 1

 The next level in the conceptual hierarchy is an as-

sembly. An assembly consists of either one subunit (also
called a monomer) or multiple subunits connected by
bonds from the binding of pairs of compatible binding
sites. Some examples of possible assembly structures that
can be represented by the model are shown in Figure 4.
Figure 5 illustrates the hierarchical architecture used to im-
plement an assembly in this simulator. The binding site
configuration and binding patterns predefined by the local
rules for a specific system determine the structure of the
possible intermediates and final assembly products.

25

Zhang, Rohlfs, and Schwartz

Figure 4: Examples of Assembly Structures: (a) Dimer
Filament (b) Tetrahedron (c) Pentamer of Virus Capsid
Model (T=1) (d) Helical Tubular Filament

Figure 5: Hierarchical Architecture of Assembly Imple-
mentation in the Simulator

2.4 Event Implementation

A set of discrete events, representing individual chemical
reactions, are used to advance time in the simulation. The
simulator can explicitly represent, sample and process the
following events:

1. FormBondEvent. This type of event represents a

future assembly binding reaction involving two
compatible binding sites on different subunits
from same or different assemblies.

2. BreakBondEvent. This type of event represents a
future breaking reaction of a binding interaction
between two compatible binding sites. Fulfillment

Assembly
• Subunits
• AssemblyGraphic

Subunit
• currrent Conformations
• SubunitGraphic

BindingSite
• BindingSiteGraphic

• SubunitType
• Domains

Domain
• Conformations

Conformation
• BindingSites

• BindingSiteType
• compatible BSTs

Domain
• Conformations

Conformation
• BindingSites

Conformation
• BindingSites

BindingSite
• BindingSiteGraphic
• BindingSiteType

• compatible BSTs

BindingSite
• BindingSiteGraphic
• BindingSiteType

• compatible BSTs

Subunit
• currrent Conformations
• SubunitGraphic
• SubunitType

• Domains

Domain
• Conformations

Conformation
• BindingSites

Conformation
• BindingSites

BindingSite
• BindingSiteGraphic
• BindingSiteType

• compatible BSTs
222
of this reaction will separate two previously
bound binding sites.

3. ConfChangeEvent. This type of event represents a
change in conformation of a subunit domain.

Those types of events are implemented as a set of Java
classes, and contain such essential information as the time
when the event is sampled and will be processed and the
binding sites or domains it involves.

All the possible events for each Assembly object are
sampled from exponential distributions based on a user-
defined average waiting time for each reaction, which is
equivalent to the inverse of the reaction rate constant in
more standard chemical kinetics notation. For example,
each bond in an assembly is sampled for possible Break-
BondEvents and each free binding site in the assembly is
sampled for possible FormBondEvents with each free
compatible binding site in the simulation. The event with
minimum waiting time found for each assembly is stored
into an event queue. This model of exponentially-
distributed waiting times is mathematically equivalent to
the N-fold way model for reaction kinetics (Gillespie
1976), which is itself a continuous-time Markov model
representation of the system. We use a slightly modified
version of a more efficient algorithm than that used in the
N-fold way method that is better suited to systems with
large numbers of possible reaction intermediates (Ja-
malyaria, Rohlfs and Schwartz 2005).

 The simulation stores sampled events in an event
queue, which is sorted according to the time that an event
is supposed to be processed. The event queue is currently
implemented as a binary heap priority queue. Adapting
other queue structure for some particular types of assembly
simulation could improve the average performance, al-
though more experiments are needed to find such applica-
tion domains.

2.5 Simulation Process Implementation

2.5.1 Initialization

At the start-up of simulation (simulation system time t =0),
the system is provided with a population of m assemblies
and an empty event queue. For each assembly, we sample
all possible events involving that assembly and place the
one with minimum waiting time into the event queue. The
sampling of FormBondEvent involves pair-wise interac-
tions among all assemblies. To avoid duplicate Formbon-
dEvent sampling and enqueueing, m(m-1)/2 comparisons
are made and the produced list of events is screened to re-
move extra identical events. Currently, this method of ini-
tialization, which requires a one-time O(m2) computation,
is the practical bottleneck for our simulation computations.
We expect this situation to be improved by using a tech-
nique of the classical N-way method to equate small iden-
6

Zhang, Rohlfs

tical assemblies during sampling; although this technique
cannot be applied to arbitrary assemblies because of the
intractability of testing for identity between assemblies, it
should offer a substantial reduction in startup costs if ap-
plied to monomers.

2.5.2 Simulation Run

After a minimum-time event is extracted from the queue,
the current simulation time is updated. If the most recent
time when all assemblies involved in this event change
state is no later than that when this event is sampled, this
event is a valid event, otherwise it is considered invalid.
Different types of events are handled as follows:

• Valid BreakingBondEvent: When the breaking

can split the involved assembly into two uncon-
nected sub-assemblies, we sample new events for
them and change their states (events to be in-
volved, sampling time, component information
etc.). Extra rules can be applied for some special
cases. For example, in some linear filament simu-
lations, it is desirable to allow binding interactions
to break only at the ends of the filaments. Bonds
breaking within closed loops are also sometimes
treated as a special case (e.g. a bond breaking in
the pentamer shown in Figure 4(c)). In this case,
we can use a FormBondEvent with a shorter wait-
ing time to rebind the broken bond quickly. This
fast rebinding indirectly represents the difficulty
of breaking a stable loop structure, due to the en-
tropy benefit of binding subunits already held in
the proper binding positions by other binding in-
teractions.

• Valid FormBondEvent: Normally, for a Form-
BondEvent involving two assemblies, they are
merged into a single assembly and new minimum-
time event is sampled for that assembly. Binding
can also occur between compatible binding sites
within a single assembly, triggering resampling of
events for that assembly. Such binding is allowed
only if the binding sites are of compatible types
and are within user-specified bond angle, dis-
tance, and rotation tolerances of one another. A
queued binding event might actually be impossi-
ble to implement, either because the two assem-
blies have subunits that would overlap if they
were bound (a problem called steric hindrance) or
because the number of subunits is larger than a
user-specified maximum assembly size. In such
cases, the binding event will not be implemented
and new events will be sampled for the two as-
semblies.

• Valid ConfChangeEvent: The current conforma-
tion of a monomer will be switched to another
22
, and Schwartz

conformation specified in this event. This also
triggers the sampling of new possible events for
the assembly involved.

• Invalid event: An invalid event does not trigger
any change in the simulation state. However, if
one actor in the invalid event has not had new
events sampled for it since the invalid event, then
a new minimum time event will be sampled for
that assembly. This ensures that at all times there
is some sampled event for each assembly in the
queue.

During the simulation run, the resampling of new

events still involves obtaining one type of event with the
minimum time. However, since at most two assemblies
need to be assigned new events, no more than two events
are sent to the queue at each step, unlike in initialization.
Furthermore, the amount of work per step is linear in the
system size after the initial quadratic startup cost.
 Figure 6 outlines the event processing loop. After a
predefined number of simulation steps are finished or the
event queue becomes empty (because no more events are
possible), the simulation process will stop to wait for new
controls from the user.

Figure 6: Flow Chart of a Simulation Step

2.6 View and Control

Users can use the mouse to rotate, translate or zoom part of
the simulation scene to observe the details of the assembly
structures from different viewpoints. Users can control the
simulation process through the initialization of some pa-
rameter values listed in Table 1 and through GUI buttons
which provide options to run the simulation continuously
or step-by-step. More sophisticated control of the simula-
tion can be obtained by editing additional parameters or
subunit type definitions directly in the Java code defining a
specific simulation run.

Dequeue the next event, check validity and update time

Find event type.
valid

invalid

Break the bond to split
the assembly, check

loop breakage, adjust
each assembly

Change the con-
formation and

adjust the assem-
bly

Form the bond,
check for steric
hindrance and

loop formation,
adjust each as-

sembly

For each valid assembly, sample new event and enqueue it

FormBondEvent

ConfChangeEvent

BreakBondEvent
27

Zhang, Rohlfs

Table 1: Parameters of Simulation and Kinetics Equations
Parameter Description
A0 Monomers (assembly with one subunit) without

binding capacity
A1 Monomers with binding capacity
Aj Assembly consisting of j subunits
[Aj] The concentration of assemblies with j subunits
N The initial number of monomers
l The maximum number of subunits allowed in

any filament
Ta The average waiting time for two binding sites

to associate to form a bond. It is equal to 1/ka in
kinetics equations.

Td The average waiting time for two binding sites
to break a bond. It is equal to 1/kd in kinetics
equations.

T+ The average waiting time for a monomer to
switch from a non-binding to a binding confor-
mation. It is equal to 1/k+ in kinetics equations.

T- The average waiting time for a monomer to
switch from a binding to a non-binding confor-
mation. It is equal to 1/k- in kinetics equations.

3 EXAMPLE APPLICATIONS AND RESULTS

We validated our prototype simulator primarily by com-
parisons of discrete event and ODE models of simple
structures. Given sufficiently large numbers of subunits,
the two models would be expected to converge on identical
time courses. The simulator was also used to build a sim-
plified virus capsid model with T=1 icosahedral symmetry
efficiently, a system for which we cannot construct a trac-
table ODE model.
 Simplified virus capsid model: This simulator has
been used to build a simplified virus capsid model with T=1
icosahedral symmetry. The complete assembly, shown in
Figure 7, includes 60 subunits with the structure shown in
Figure 2(d). The local rules set used is shown in Figure 1.

Figure 7: T=1 Icosahedral Virus Capsid Screenshot

22
, and Schwartz

Linear filament assembly model: The structure of
the subunit of actin-like assembly is shown in Figures 2(a)
and 2(b). In this type of simulation, the following rules are
set:

• The maximum allowable length of a filament as-

sembly is set to l=4.
• Each monomer is able to switch between binding

and non-binding conformations.
• The simulation is initialized with N monomers in

the non-binding conformation.
• The FormBondEvent has to involve at least one

monomer.
• The BreakingBondEvent has to involve one sub-

unit located at either end of a filament assembly.

After the simulation reaches equilibrium (shown in Figure
8), the average numbers of assemblies of each size over
some time are calculated to analyze the distribution of as-
semblies.

Figure 8: Screenshot of Filaments Distribution at Equilib-
rium after 40,000 Steps with Parameters N=500, L=4,
Ta=1, Td=0.25, T+=0.2, T-=1

The corresponding kinetic reaction equations are listed

below:

 A system of ordinary differential equations (listed in equa-
tions (1)) based on the kinetic reactions are set up and nu-
28

Zhang, Rohlfs, and Schwartz

merically integrated using MATLAB. Thus, to verify the
correct implementation of the queue-based discrete event
simulator, it is relatively straightforward to compare the
results from the two models, as shown in Figure 9. The re-
sults show the similar distributions both in values and pat-
terns.

0

0 1

1
1

1 1 0

1 2

22
1 2 2 3 1

1 1 1 1

[]
[] []

[]
2 [][] [] 2 [] []

[]
2 [][] [] 2 [] []

[]
2([][] [] [] [][])

(2)

[]
2 [] 2 [

l l

a j d j

j j

a d d a

j
a j d j d j a j

l
d l a

d A
k A k A

dt

d A
k A A k A k A k A

dt

d A
k A A k A k A k A

dt
d A

k A A k A k A k A A
dt

j l

d A
k A k A

dt

+ −

−

− +

= =

+ −

= − +

= − − + +

= − − + +

= − − + +

< <

= − +

∑ ∑

1 1][].lA −

 (1)

0

10

20

30

40

50

60

70

80

90

100

A0 A1 A2 A3 A4

Co
nc

en
tr

at
io

n

Simulation
ODE

Figure 9: Comparison of Filament Length Distributions at
Equilibrium

Platonic solid assembly model: Simulating virus cap-

sid self-assembly is more challenging and complex than
simulating filament assembly. Because of the large number
of possible intermediates for even the simplest icosahedral
structures, we cannot construct an ODE model for com-
parison without substantial simplification of possible as-
sembly pathways. To verify the accuracy of the methods
required for icosahedral capsid assembly simulation but
not for filament simulation (e.g. loop and steric hindrance
detection, fast binding following a loop breaking), we used
the much simpler tetrahedron system. Although tetrahe-
drons are not to our knowledge biologically significant,
they depend on the same loop-handling code as icosahedra,
but are simple enough to allow us to construct ODE mod-
els. The following rules are set for the simulator:
2

• The simulation is initialized with N monomers
with binding capacity.

• The bond binding and breaking can involve as-
semblies of any size.

• The three types of binding sites on each subunit
are set to have identical waiting time distributions.

• When a bond breaking produces an open loop in-
stead of two assemblies, the broken bond would
be “sealed” instantly, effectively assuming infinite
rate for binding sites held in place by other inter-
actions.

The kinetic reaction equations for this system are

shown below:

In the above reaction equations, A1 represents a

monomer with three different binding sites and A2 repre-
sents a dimer with four free binding sites. A3 has a triangu-
lar shape with three free binding sites. A4 is the complete
tetrahedron without any free binding site. The reaction rate
constants are determined for each reaction by the number
of possible pairs of binding sites that could implement that
reaction and by the reaction rate constants of the individual
binding site interactions. We model the time course of this
tetrahedron assembly process in terms of the concentration
of assemblies of different sizes by a system of differential
equations (shown in equations (2)) based on the above re-
action equations:

[] 21 3 [] 2 [] 4 [][] 3 [][]1 2 1 2 1 3

[] 3 82 22 [] [] 4 [][] []2 1 1 2 22 3
[]3 4 [][] 3 [][]1 2 1 3

[] 4 24 3 [][] []1 3 23
.

d A
k A k A k A A k A Aa d a adt

d A
k A k A k A A k Ad a a adt

d A
k A A k A Aa adt

d A
k A A k Aa adt

= − + − −

= − + − −

= −

= +

 (2)

The comparison of time courses of concentrations of 4

different sizes of assemblies from 1000 simulation runs
and the ODE model is shown in Figure 10-13. The parame-
ters used in the simulation runs are N=1000, Ta=1, Td=0.1.
In each figure, the red (smooth) curve is the result of nu-
merically integrating the deterministic ODEs and the black
229

Zhang, Rohlfs, and Schwartz

(dotted) curve is the mean for 1000 simulation runs. The
purple error bars correspond to mean plus/minus one stan-
dard deviation. Although the discrete event method shows
a certain degree of stochastic behavior from one run to an-
other, a close match between ODE and average simulator
behavior is observed from the comparisons.

0.0000 0.0005 0.0010 0.0015

20
0

40
0

60
0

80
0

10
00

Time

N
um

be
r o

f M
on

om
er

s

ODE
Simulation

Figure 10: Time Course of Monomer Concentration

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0
20

40
60

80
10

0
12

0
14

0

Time

N
um

be
r o

f D
im

er
s

ODE
Simulation

Figure 11: Time Course of Dimer Concentration

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0
20

40
60

80
10

0
12

0

Time

N
um

be
r o

f T
rim

er
s

ODE
Simulation

Figure 12: Time Course of Trimer Concentration

2

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0
50

10
0

15
0

Time

N
um

be
r o

f T
et
ra

m
er

s

ODE
Simulation

Figure 13: Time Course of Tetrahedron Concentration

4 DISCUSSION, CONCLUSIONS AND FUTURE
WORK

We have implemented and tested a prototype of self-
assembly simulator system with a graphical interface based
on local rules abstractions and a recent time- and space-
efficient discrete event simulation method. Comparisons of
assembly processes of filaments and tetrahedrons between
our simulation runs and corresponding ODE models con-
firm the simulator correctness and give us experience with
the practical application of our simulator. The theoretical
innovation of the simulation method combines with the
flexibility and extensibility of the simulator framework to
create a more complex and realistic physical model than
was possible with prior work. This simulator should there-
fore be a valuable practical research tool for investigating
the kinetics of biological self-assembly on the time and
space scales typical of self-assembly reactions within liv-
ing cells. The simulator is particularly well suited for large
and complicated cellular self-assembly systems, such as
virus capsids and the cytoskeleton.

An ongoing goal of this project is further optimization
of this simulator, particular with regard to reducing initiali-
zation time and reducing memory overhead associated with
graphic displays for large simulations. We are also devel-
oping a prototype XML parser to allow users to fully de-
sign and customize simulations without the need to access
Java code. A principle long-term objective is to validate
quantitative rates of the model using direct experimental
observations, a milestone so far achieved only with simpli-
fied ODE models of capsid assembly (Zlotnick et al.
1999). While our simulator may be sufficient for this task,
detailed models of specific real-world virus systems must
still be constructed within the simulator.

The simulator (Version 1.2) in the form used in the
present work is available at the web site http://www-
2.cs.cmu.edu/~russells/software/discret
e/simulation.html. Further updates will be released
from the same site.
230

http://www-2.cs.cmu.edu/~russells/software/discrete/simulation.html
http://www-2.cs.cmu.edu/~russells/software/discrete/simulation.html
http://www-2.cs.cmu.edu/~russells/software/discrete/simulation.html

Zhang, Rohlfs, and Schwartz

ACKNOWLEDGMENTS

This work was supported by U.S. National Science Foun-
dation award #0346981. Tiequan Zhang and Rori Rohlfs
were also partially supported by the Merck Computational
Biology and Chemistry Program at Carnegie Mellon Uni-
versity. We also thank Sue Yi Chow, Blake Sweeney,
Prateek Kumar and Peter Kim for their contributions to this
work.

REFERENCES

Berger, B., P. W. Shor, L. Tucker-Kellog, and J. King.
1994. Local rule-based theory of virus shell assembly.
Proceedings of the National Academy of Sciences USA
91(16): 7732-7736.

Bruinsma, R. F., W.M. Gelbart, D. Reguera, J. Rudnick,
and R. Zandi. Viral self-assembly as a thermodynamic
process. Physical Review Letters 90(24):24801-24804.

Caspar, D.L.D., and Klug, A. 1962. Physical principles in
the construction of regular viruses. Cold Spring Har-
bor Symposium on Quantitative Biology 27: 1-24.

Caspar, D.L.D. 1980. Movement and self-control in protein
assemblies: quasi-equivalence revisited. Biophysical
Journal 32 (1): 103-138.

Endres, D. and A. Zlotnick. 2002. Model-based analysis of
assembly kinetics for virus capsids or other spherical
polymers. Biophysical Journal 83: 1217-1230.

Gillespie, D.T. 1976. A general method for numerically
simulating the stochastic time evolution of couples
chemical reactions. Journal of Computational Physics
22: 403-434.

Jamalyaria, F., R. Rohlfs, and R. Schwartz. 2005. Queue-
based method for efficient simulation of biological
self-assembly systems. Journal of Computational
Physics 204: 100-120.

Prevelige, P.E., Thomas, D. and King, J. 1993. Nucleation
and growth phases in the polymerization of coat and
scaffolding subunits into icosahedral procapsid shells.
Biophysical Journal 64: 824-835.

Reddy, V.S., H.A. Giesing, R.T. Morton, A. Kumar, C.B.
Post, C.L. Brooks, 3rd, and J.E. Johnson. 1998. Ener-
getic of quasiequivalence: computational analysis of
protein-protein interactions in icosahedral viruses.
Biophysical Journal 74: 546-558.

Schwartz, R. The local rules dynamics model for self-
assembly simulation. Computer science Ph.D. thesis,
Massachusetts Institute of Technology, 2000. (also
published as MIT Laboratory for Computer Science
Technical report MIT-LCS-TR-800)

Schwartz, R., P.W. Shor, P.E. Prevelige, and B. Berger.
1998. Local rules simulation of the kinetics of virus
capsid self-assembly. Biophysical Journal 75(6):
2626-2636.
223
Schwartz, R., R. L. Garcea, and B. Berger. 2000. Local
rules theory applied to polyomavirus polymorphic
capsid assemblies. Virology 268: 461-470.

Turner, T. E., Schnell, S., Burrage, K. 2004. Stochastic ap-
proaches for modelling in vivo reactions. Computa-
tional Biology and Chemistry 28(3): 165-78.

Twarock, R. 2004. A tiling approach to virus capsid as-
sembly explaining a structural puzzle in virology.
Journal of Theoretical Biology 226(4): 477-482.

Whitesides, G. M. 1995. Self-assembling materials. Scien-
tific American. September: 146-149.

Whitesides, G. M. 2002. Self-assembly at all scales. Sci-
ence 295: 2418-2421.

Zlotnick, A. 1994. To build a virus capsid: an equilibrium
model of the self assembly of polyhedral protein com-
plexes. Journal of Molecular Biology 241(1): 59-67.

Zlotnick, A., J.M. Johnson, P.W. Wingfield, S.J. Stahl, and
D. Endres. 1999. A theoretical model successfully
identifies features of hepatitis B virus capsid assem-
bly. Biochemistry 38: 14644-14652.

AUTHOR BIOGRAPHIES

TIEQUAN ZHANG is a Ph.D. student in the Department
of Biological Sciences at Carnegie Mellon University. He
received his M.S. in Computer Science from New Jersey
Institute of Technology in 2003, and M.D. in medicine
from Beijing Medical University in 1996. His Research in-
terests are in biological system modeling. His e-mail ad-
dress is tiequanz@andrew.cmu.edu.

RORI ROHLFS will attend the University of Washington
Genome Sciences Ph.D. program in the fall of 2005. She
graduated from Carnegie Mellon University in 2004 with a
BS in computer science and a BS in biology. She can be
contacted at rrohlfs@gmail.com.

RUSSELL SCHWARTZ is an assistant professor in the
Department of Biological Sciences at Carnegie Mellon
University. He received his B.S., M.Eng., and Ph.D. from
the Department of Electrical Engineering and Computer
Science at the Massachusetts Institute of Technology. His
research is concerned with the modeling and simulation of
biological systems. He is a member of INFORMS, the
ACM, the Biophysical Society, and the International Soci-
ety for Computational Biology. His e-mail address is
russells@andrew.cmu.edu and his Web address is
http://www-2.cs.cmu.edu/~russells.
1

mailto:tiequanz@andrew.cmu.edu
mailto:rrohlfs@gmail.com
mailto:russells@andrew.cmu.edu
http://www-2.cs.cmu.edu/~russells

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

