
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

MINIMIZING THE TOTAL WEIGHTED COMPLETION TIME ON UNRELATED
PARALLEL MACHINES WITH STOCHASTIC TIMES

Jean-Paul M. Arnaout
Ghaith Rabadi

Engineering Management and Systems Engineering Department

247 Kaufman Hall
Old Dominion University

Norfolk, VA 23529, U.S.A.

ABSTRACT

This paper addresses the problem of batch scheduling in an
unrelated parallel machine environment with sequence de-
pendent setup times and an objective of minimizing the
weighted mean completion time. Identical jobs are
batched together and are available at time zero. Processing
time of each job of a batch is determined according to both
the machine it will be assigned to and the batch group to
which the job belongs. The jobs’ processing times and
setup times are stochastic for better depiction of the real
world. This is a NP-hard problem and in this paper, a solu-
tion heuristic is developed and compared to existing ones
using simulation. The results and analysis obtained from
the computational experiments proved the superiority of
the proposed algorithm PMWP over the other algorithms
presented.

1 INTRODUCTION

In this paper we compare different heuristics for the prob-
lem of scheduling a set of independent batches (each batch
is a group of identical jobs) on a set of unrelated parallel
machines.

For several years now, there has been significant re-
search involving scheduling in batches, as it may be
cheaper and faster to process jobs in batches than to proc-
ess them individually (Potts and Kovalyov 2000). One of
the main benefits gained by batch scheduling is revealed in
the case of setup times, where the machines incur setup
times associated with processing different jobs; a lot of
time can be saved by scheduling identical jobs in batches,
as setup will only be performed when switching batches
instead of individual jobs.

There are two possible scenarios in batch scheduling
environments: the first is job availability, where a job be-
comes available immediately after the processing of its
predecessor is completed. The second is batch availability,

214
in which a job will not be available until the complete pre-
vious batch has been processed. In this paper we address
the concept of batch availability.

The literature defines unrelated parallel machines as
machines having different processing times for the same
job (Liaw et al. 2003). They are unrelated in the sense that
the processing speed depends on the job being executed
and not the machine; each job will have different process-
ing times for each of the available machines. The jobs are
simultaneously available at the beginning of the scheduling
horizon (at time zero). Further more, each job can be
processed on any of the machines but needs to be proc-
essed by one machine only, and each machine is capable of
processing only one job at a time. Job preemption is not
allowed and there is no processing precedence on any of
the machines. Each job will be assigned an input weight wi
indicating its importance, and each batch of jobs has the
same processing time and input weight. The machine
setup times are dependent only on job sequences and are
machine independent.

The scheduling objective is to minimize the total
weighted mean completion time, which is at least a NP-
hard problem as the simplified problem of two identical
machines with no setup times is NP-hard in the ordinary
sense (Bruno, Downey, and Frederickson 1981). More-
over, what differentiates this paper from most of the previ-
ous literature is the use of stochastic processing and setup
times, ensuring a better depiction of the real world. Dis-
crete event simulation will be used to model and test the
problem addressed in this paper. Different heuristics will
be compared using the mean weighted completion time ob-
jective; the heuristic with the lower objective function
value will be the superior heuristic in this specific problem.

The rest of this paper is organized as follows. In sec-
tion 2 the related research is summarized. In section 3 the
problem statement and objective function are presented.
Section 4 contains description of the heuristics developed
and used. The simulation model verification is presented

1

Arnaout and Rabadi

in section 5, the computational results and output analysis
are respectively described in sections 6 and 7. Finally, we
conclude our results in section 8.

2 RELATED RESEARCH

There is a lot of literature on parallel machine scheduling.
The common objectives studied in this area include mini-
mization of completion time, tardiness, and makespan.
Previous research indicated that even the identical parallel
machine problem with minimization of total tardiness was
NP-hard (Karp 1972). Due to this difficulty, it became a
common and acceptable practice to find suitable heuristics
instead of optimal solutions for these complex scheduling
problems.

Several studies discussed the unrelated parallel ma-
chine problem. Ghirardi and Potts (2004) considered the
problem of scheduling jobs on unrelated parallel machines
to minimize the makespan. The heuristic they used was an
application of the recovering beam search. Weng, Lu and
Ren (2001) addressed the problem of scheduling a set of
independent jobs on unrelated parallel machines with se-
quence dependent setup times so as to minimize the
weighted mean completion time. They presented in their
paper seven heuristic algorithms and tested them. In their
algorithms, they either assigned a job to the machine with
the least cost contribution, or to the machine on which the
job has the shortest processing time. They also introduced
an algorithm where they first assigned the job with the
smallest ratio of processing time plus setup time to weight;
this strategy outperformed the rest significantly. The au-
thors claimed that their algorithms are extremely fast and
can find solutions for up to 120 jobs and 12 machines in a
small fraction of a second. Low (2004) solved a multi-
stage flow shop scheduling problem with unrelated parallel
machines and an objective of minimizing total flow time in
the system. A simulated annealing (SA)-based heuristic
was proposed to solve the addressed problem in a reason-
able running time. Mosheiov and Sidney (2003) addressed
the case of job-dependent learning curves and applied it to
the problem of unrelated parallel machines with the objec-
tive of minimizing total flow time.

Stochastic machine scheduling problems have been
considered, among others, by Glazebrook (1979), Weiss
and Pinedo (1980), Bruno et al. (1981), Weber et al.
(1986), Weiss (1992), and Mohring, Schulz, and Uetz
(1999).

In this paper, our objective is to develop a heuristic for
the unrelated parallel machine problem with the objective
of minimizing the total mean weighted completion time.
Previous literature have tackled this problem but hardly
with stochastic inputs.
2

3 PROBLEM STATEMENT

The scheduling problem considered in this paper can be
described as follows. There are M unrelated parallel ma-
chines and B batches, where a batch refers to a lot contain-
ing n identical jobs, and different batches have different
job types. In the case where there are not enough identical
jobs to form a full batch, a partial one will be produced.
As we are assuming the concept of batch availability, all
jobs in a specific batch should be processed on the same
machine to which the batch was assigned. Each machine is
assumed to be available at time 0 and can process one job
at a time. Each job has a weight (wi) indicating its impor-
tance, where wi has values between 1 and 5 with 1 being
less urgent than 5. The machine setup times are dependent
on jobs’ sequence and are machine independent. In other
words, setup times depend on both the batch just com-
pleted and the next batch to be processed, but there is no
setup between jobs belonging to the same batch. ski is the
setup time required on a machine if batch i is scheduled af-
ter batch k; k refers to the previous batch processed on the
machine.
 The batches processing times are dependent on the
machine they were assigned to; job Ji has a processing time
pij when it is assigned to machine Mj. For example, the
processing time of J1 on machine M2 is equal to p12.
However, jobs in the same batch are assumed to have the
same processing times when processed on the same ma-
chine. For a given schedule, job Ji completion time is rep-
resented by Cij, and our objective is to find a near optimal
schedule that can minimize the total mean weighted com-
pletion time. This is represented as follows:

 Minimize Z () ∑=
=

η

η 1

1
i

ijiCw ,

where η is the total number of jobs, and the completion
time of job Ji on machine Mj is given by:

 Cij = Ckj + pij + ski.

4 HEURISTIC ALGORITHMS

The basic and easiest method to obtain a solution for the
parallel machine problem is by randomly scheduling the
jobs to the machines (Kim, Na, and Chen 2003). The dis-
advantage of such a method is manifested in low quality
solutions and extensive computational time. From here
came the need to invest more time in developing appropri-
ate heuristics. In the following sections, different heuristics
are presented and compared in order to determine the most
appropriate one for our problem. Recall that the jobs’ proc-
essing and setup times are stochastic and drawn from dif-
ferent uniform distributions. Whenever a job is called by
any algorithm to be sorted with the other jobs or sent to a
142

Arnaout and Rabadi

machine, it will be assigned a processing time and setup
time following some uniform distribution; this is discussed
more in section 6.

4.1 Heuristic 1 (WSPT)

In the weighted shortest processing time first (WSPT) rule,
batches (containing identical jobs) will be sorted from the
smallest [iij wp] to the largest, and then they will be as-
signed to the different machines according to the smallest
[() ikiij wsp +]. WSPT has been used by a great number of
papers, especially in parallel machines’ environment. This
rule was proven to obtain optimal results in the single ma-
chine weighted completion time problem and very good
results in the same problem but on parallel machines
(Pinedo 1995).

1. {Sort the batches in the increasing order accord-

ing to their processing time over weight}
(a) Obtain the minimum processing time ρi for

each batch: MIN(pi1), MIN(pi2),…, MIN(piM).
where i is the batches’ index, and M is the to-
tal number of machines.

(b) Reorder the batches in the following way:
ρ1/w1 ≤ ρ2/w2 ≤ … ≤ ρB/wB.

2. After sorting the batches, send them one by one to
the machines. Assign each batch to the machine
that has the smallest [() ikiij wsp +].

3. Before a batch gets processed, separate its jobs so
they can be processed one by one on the assigned
machine.

4. STOP once all the jobs are assigned.

As one can see, WSPT neglects the setup time when

sorting the batches, which could lead to low quality solu-
tions if the setup times mount to a considerable portion of
the processing times.

4.2 Heuristic 2 (MWP)

Heuristic 2 works similar to WSPT, except that in Step 1,
the batches are sorted according to the smallest
[()kiij sp + × attuned weight component].

In the total tardiness minimization problems, the earli-
est weighted due date (EWDD) rule has been used quite
often. The weighted due date is calculated by multiplying
the due date by an attuned weight component which we
will refer to as γ in this paper. Kim, Na, and Chen (2003)
noted that the weight component γ is represented as the fol-
lowing:

21
 γ = [1 – (weight control parameter)× (wi)], (1)

where the weight control parameter α ∈ (0, 0.2); the selec-
tion of this range is explained in section 4.4. Due to its
high-quality results, we decided to manipulate the EWDD
rule so it can be used in our problem. α value was deter-
mined to be 0.1 for the total tardiness minimization prob-
lem (Kim, Na, and Chen 2003); empirical tests showed that
this value is also the best when used in this heuristic for
the problem in hand. The updated rule that we will refer to
as minimum weighted processing time (MWP) is calcu-
lated by multiplying the minimum processing time ρi of
each batch by the attuned weight parameter.

1. {sorting the batches}
(a) Obtain the minimum processing time ρi for

each batch.
(b) Calculate for each job its MWP:

 MWPi = ρi × [1.0 – (0.1)× (wi)].

(c) Reorder the batches from the smallest MWP
to the largest.

2. Step 2, 3 and 4 are exactly like in Heuristic 1.

4.3 Heuristic 3 (Weng’s Algorithm)

Weng et al. (2001) studied the problem of unrelated paral-
lel machine scheduling with setup consideration and a total
weighted mean completion time objective. They presented
in their paper seven heuristics, and showed through exten-
sive computational experiments that their heuristic algo-
rithm 7 significantly outperformed the other seven heuris-
tics presented. Algorithm 7 does not sort the jobs according
to a predetermined order; instead, among the unscheduled
jobs, it next assigns the job with the smallest ratio of proc-
essing time plus setup time to weight. So every time a job
needs assignment, the algorithm looks at all the unsched-
uled jobs, determines which one has the smallest
[() ikiij wsp +]) on which machine, and it assigns this job
to the associated machine.

Weng’s Algorithm was modeled through simulation
and compared with the proposed heuristics in this paper.

4.4 Heuristic 4 (PMWP)

The Pick Minimum Weighted Processing Time (PMWP)
algorithm introduced in this paper is similar to Weng’s Al-
gorithm in a sense that it will not sort the batches accord-
ing to a predetermined order. However, it will pick up from
the unscheduled batches the one having the smallest
[γ×+)(kiij sp] and assign it to the machine where this
minimum exists.
43

nd Rabadi
Arnaout a

Let S be a set containing the unscheduled batches.

1. Find batch i and machine j where the Equation (2)

is at its minimum:

 [Ckj + (pij + ski)× (1 – (α * wi))], (2)

2. where i є S (index of unscheduled batches), j is

the machine index, and k is the previous batch on
that specific machine j.

3. In Equation (2) above, Ckj refers to the comple-
tion time of the last batch on machine j, and the
control parameter α value was determined from
Figure 1 below.

4. After finding both i and j, assign batch i to ma-
chine j, and remove batch i from list S.

5. If S = Ø, STOP; else go to Step 1.

Control Parameter Alpha

26000

26300

26600

26900

27200

27500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Alpha

Co
m

pl
et

io
n

Ti
m

e

Figure 1: Control Parameter α

In Figure 1, we included a chart describing how the com-
pletion times of batches were fluctuating when α was
changed while applying PMWP to the problem at hand.
Recall that the values of α are between 0 and 0.2; it cannot
be 0 because Equation (1) will then be equal to (1 – (0 ×
wi) = 1, meaning that the weight will not be considered in
our decision. Also α cannot be 0.2 because wi could be
anywhere from 1 to 5; so in the case wi = 5, Equation (1)
will then be (1 – (0.2 × 5)) = 0, which will lead to incor-
rect decisions, as the algorithm will assign the wrong jobs
first assuming that they have the smallest [γ×+)(kiij sp].
We can conclude from Figure 1 that the algorithm is giving
the best solution when α = 0.02, and this will be the value
to be used in the proposed heuristic PMWP. It is worth
reminding here that α was equal to 0.1 when used with the
MWP heuristic, and it was not used with neither the WSPT
heuristic nor Weng’s algorithm.
21
5 MODEL VERIFICATION

Verification is the process of ensuring that the simulation
model behaves in the way it was intended according to the
modeling assumptions made (Kelton et al. 2004).
Different methods were applied in verifying the behavior
of our models:

1. We used first deterministic data instead of sto-

chastic data for both the processing and setup
times; this allowed us to predict the system’s be-
havior.

2. We let only a single entity enters the system, and
then followed this entity through all the decisions
nodes to ensure that the model’s logic is correct.

3. We Monitored the model’s animation, which
made it easier to detect any errors in our logic.

4. Finally, we put several variable animations, which
enabled us to determine which batch number is
first scheduled, and which batch is separated.

6 COMPUTATIONAL TESTS

The above heuristics have been modeled and compared us-
ing the simulation software Arena. The popularity of
simulation has been increasing over the past decade mainly
due to its ability to deal with very complicated models of
correspondingly complicated systems (Kelton, Sadowski,
and Sturrock 2004). The reason stochastic data was used
for the processing and setup times is to ensure a more real
representation of a manufacturing scenario, where most of
the time a job will not finish on a specific time, but on a
range between two times. Simulation is considered to be
one of the best approaches to deal with such source of ran-
domness. Another advantage of stochastic simulation is its
ability to provide the user with an assessment of the ro-
bustness of the model, due to the fact that randomness is
taken into account; after all, the actual system is unlikely to
work under ideal deterministic conditions, but rather in a
stochastic uncertain environment (Reuter and Hulsmann
2000). The jobs’ processing times and machines’ setup
times are stochastic; the processing times can take any
value of four different uniform distributions: U[55,75],
U[35,65], U[45,70], and U[70,90], and the setup times can
take any value of the following distributions: U[6,10],
U[4,9], U[3,8], and U[1,7]. Recall that these values will
not be known until the job is actually being processed on
the machine; this is how the algorithms robustness is being
tested. The reason uniform distributions were used is due
to their high variances, ensuring that the presented heuris-
tics are being tested under unfavorable conditions (Weng et
al. 2001). The jobs input weights were discrete values that
were randomly generated between 1 and 5.

The above four heuristics have been tested under 4 un-
related parallel machines, and we considered respectively
44

Arnaout and Rabadi

40, 80, 120, and 160 jobs. The number of replications for
each of the above 4 combinations was equal to 50 replica-
tions. The number of replications was obtained by follow-
ing the steps that Kelton, Sadowski, and Sturrock (2004)
recommended in order to obtain good confidence intervals.
We ran the simulation model for 10 replications; the half
width obtained was fairly large. We decided on the toler-
able half width that we want and substituted the appropri-
ate values in the following equation:

2

2
0

0 h
h

nn ≅ ,

where n0 and h0 refer respectively to the initial replication
number (10) and its associated half width, h refers to the
desired half width (tolerable), and n is the number of
needed replications (n = 50).

7 OUTPUT ANALYSIS

The results obtained from running 50 replications of 95%
confidence interval are shown in Table 1. The relative per-
formance was calculated as follows:

Relative Performance =
minZ
Zl , for l = 1, 2, 3, and 4,

where Zl refers to the mean weighted completion time ob-
tained when using heuristic l, and Zmin refers to the mini-
mum mean weighted completion time between all 4 heuris-
tics.

As can be seen from Table 1, PMWP significantly
outperformed the other algorithms for all experiments.
Even when the number of jobs per batch is one, which
changes the problem from batch scheduling to job schedul-
ing (because every job is a batch now), PMWP still
reached the lowest mean weighted completion time.
Weng’s Algorithm was the second best and it outperformed
the other two algorithms. These results imply that schedul-
ing the jobs directly to the machines without arranging
them in a predetermined order would lead to better results;
this is a valid reasoning because when we sort the jobs
ahead of time, it is very difficult to predict the setup times
as we do not know the jobs’ sequences on each machine.
On the other hand, when we are assigning jobs from the
unscheduled ones directly before they are processed, we
know which jobs already exist on the machines; hence we
214
know the jobs’ sequences on each machine and their asso-
ciated setup times.
 As we are comparing different models or logics for the
same problem, output analysis becomes crucial to ensure
the soundness of the results obtained. Even though the re-
sults stated in Table 1 clearly show the superiority of
PMWP, we will conduct simulation output analysis to
compare between PMWP and Weng’s Algorithm as it was
the second best. The appropriate statistical methods will be
applied to ensure that valid conclusions are drawn. This
comparison will be done under 40 jobs (each batch has one
job only) and 4 machines. The reason we chose 40 jobs is
to be as fair as possible to Weng’s Algorithm, which was
developed for job scheduling and not batch scheduling. We
ran both models for 100 replications each, and the outputs
were studied through Arena Output Analyzer; a screenshot
of the output is shown in Figure 2. The output analyzer
calculates the mean difference between the two algorithms
as follows:

H0: MeanPMWP – MeanWeng’s Algorithm = 0

As can be seen in Figure 2, the difference is negative be-
cause PMWP leads to smaller completion time than
Weng’s Algorithm. To see if the obtained difference is sta-
tistically significant (because of the stochastic input, we
need to ensure that the difference is far from zero in order
to draw sound conclusions), the output analyzer gives 95%
confidence interval on the expected difference. From Fig-
ure 2, you can see that this interval misses zero, and H0 is
rejected, concluding that PMWP performs better than
Weng’s Algorithm.

8 CONCLUSIONS

In this paper, we have introduced an effective heuristic al-
gorithm, PMWP, for minimizing the total mean weighted
completion time on unrelated parallel machines with se-
quence dependent setup times. PMWP was compared to
three other algorithms, including Weng’s Algorithm 7 in
Weng et al (2001). All four algorithms were modeled and
tested through simulation, and our conclusions were drawn
using a large number of replications and several statistical
tests. Computational experiments showed that PMWP sig-
nificantly outperformed the other algorithms, especially as
the number of jobs increased. Moreover, we were able to
draw the conclusion that in problems dealing with unre-
lated parallel machines with setup times and the objective
of minimizing the total mean weighted completion time, it
is better to schedule the jobs directly to the machines ac-
cording to some rule rather than sorting them in a prede-
termined order.
5

Arnaout and Rabadi

Table 1: Relative Performance Obtained from Computational Experiments

Figure 2: Arena Output Analysis

Number
of jobs

Number of
jobs per batch WSPT MWP Weng's

Algorithm PMWP

40 1 1.1021146 1.054535 1.0072343 1
80 2 1.0907348 1.048003 1.0117412 1

120 3 1.1166439 1.079203 1.0143247 1
160 4 1.120799 1.083521 1.0166956 1

 It is worth noting here that the four heuristics pre-
sented in this paper were also tested in a deterministic en-
vironment, and the results obtained were similar to the sto-
chastic environment in the sense that PMWP significantly
outperformed the other algorithms, and Weng’s algorithm
was the second best.

REFERENCES

Akkiraju, R., S. Murthy, P. Keskinocak, and F. Wu. 1998.
Multi machine scheduling: an agent-based approach.
In Proceedings of Innovative Applications of Artificial
Intelligence, July 1998: 1013-1018.

Bruno, J.L., P.J. Downey, and G.N. Frederickson. 1981.
Sequencing tasks with exponential service times to
21
minimize the expected flow time or makespan. Jour-
nal of the ACM 28 (1): 100 –113.

Ghirardi, M., and C.N. Potts. 2004. Makespan minimiza-
tion for scheduling unrelated parallel machines: A re-
covering beam search approach. European Journal of
Operational Research. In Press.

Glazebrook, K. D. 1979. Scheduling tasks with exponential
service times on parallel machines. Journal of Applied
Probability 16: 685– 689.

Karp, R.M. 1972. Reducibility among combinatorial prob-
lems. Complexity of Computer Communications. Ple-
num Press, New York: 85-103.

Kelton, D., R. Sadowski, and D. Sturrock. 2004. Simula-
tion with Arena. 3rd ed. McGraw-Hill Companies,
New York.
46

Arnaout and Rabadi

Kim, D-W, K-H Kim, W. Jang, and F. Chen. 2002. Unre-

lated parallel machine scheduling with setup times us-
ing simulated annealing. Robotics and Computer Inte-
grated Manufacturing 18: 223-231.

Kim, D-W, Na, D. & Chen, F. 2003. Unrelated parallel
machine scheduling with setup times and a total
weighted tardiness objective. Robotics and Computer
Integrated Manufacturing 19: 173-181.

Liaw, C., Y. Lin, C. Cheng, and M. Chen. 2003. Schedul-
ing unrelated parallel machines to minimize total
weighted Tardiness. Computers & Operations Re-
search 30: 1777-1789.

Low, C. 2004. Simulated annealing heuristic for flow shop
scheduling problems with unrelated parallel machines.
Computers and operations research. In Press.

Mohring, R., A. Shulz, and M. Uetz. 1999. Approximation
in stochastic scheduling: the power of LP-based prior-
ity policies. Journal of the ACM (JACM) 46 (6): 924-
942.

Mosheiov, G., and J. Sidney. 2003. Scheduling with gen-
eral job-dependent learning curves. European Journal
of Operational Research 147: 665-670.

Pinedo, M. 1995. Scheduling: Theory, Algorithms, and
Systems. Prentice Hall international series in industrial
and systems engineering, New Jersey.

Potts, C., and M.Y. Kovalyov. 2000. Scheduling with
batching: A review. European Journal of Operational
Research 120: 228-249.

Pourbabai, B. 1985. One stage scheduling of preemptive
jobs on parallel machines with setup times and due
dates. In Proceedings of American Institutions of In-
dustrial Engineering, Annual Conference Convention
1985, 258: 525-528.

Reuter, R., and J. Hulsmann. 2000. Achieving Design Tar-
gets through Stochastic Simulation. In Proceedings of
the Madymo Users’ Conference, Paris 2000. Avail-
able online via <
http://www.easi.de/company/publicati
ons/mad_2000/mad_2000.pdf > [accessed
March 20, 2005].

Weber, R.R., P. Varaiya, and J. Walrand. 1986. Scheduling
jobs with stochastically ordered processing times on
parallel machines to minimize expected flowtime.
Journal of Applied Probability 23: 841– 847.

Weiss, G. 1992. Turnpike optimality of Smith’s rule in
parallel machines stochastic scheduling. Mathematics
of Operations Research 17: 255–270.

Weiss, G., and M. Pinedo. 1980. Scheduling tasks with ex-
ponential service times on non-identical processors to
minimize various cost functions. Journal of Applied
Probability 17: 187–202.

Weng, M., J. Lu, and H. Ren. 2001. Unrelated parallel ma-
chine scheduling with setup consideration and a total
weighted completion time objective. International
Journal of Production Economics 70: 215-226.
21
AUTHOR BIOGRAPHIES

JEAN-PAUL M. ARNAOUT is a PhD student at the De-
partment of Engineering Management and Systems engi-
neering at Old Dominion University. He also has been a
graduate and research assistant at this department since
2003. He received a Master’s degree in Engineering Man-
agement from Old Dominion University, Norfolk, Vir-
ginia, in 2003, and a bachelor’s degree in Mechanical En-
gineering from the University of Balamand, Lebanon. His
Research interests include Optimization Techniques, Simu-
lation and Modeling, Scheduling and Rescheduling. His e-
mail address is < jarna002@odu.edu >.

GHAITH RABADI is an assistant professor at the De-
partment of Engineering Management and Systems Engi-
neering at Old Dominion University. Prior to that, he was
a visiting assistant professor at the Department of Indus-
trial Engineering and Management Systems at the Univer-
sity of Central Florida. He received his Ph.D. and M.S. in
Industrial Engineering from the University of Central Flor-
ida, Orlando, Florida, in 1999 and 1996 respectively. He
received his B.S degree in Industrial Engineering from the
University of Jordan, Amman, Jordan. He has been in-
volved in research projects funded by NASA and Depart-
ment of Homeland Security. His research interests include
Operations Research, Scheduling, Simulation Modeling
and Analysis, and Optimization. His e-mail address is
< grabadi@odu.edu >.

47

http://www.easi.de/company/publications/mad_2000/mad_2000.pdf
http://www.easi.de/company/publications/mad_2000/mad_2000.pdf
mailto:jarna002@odu.edu
mailto:grabadi@odu.edu

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

