
 Proceedings of the 2005 Winter Simulation Conference 
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds. 
 
 
 

A FRAMEWORK FOR INTEGRATION MODEL OF RESOURCE-CONSTRAINED  
SCHEDULING USING GENETIC ALGORITHMS  

 
 

Jin-Lee Kim  
Ralph D. Ellis Jr. 

 
Department of Civil & Coastal Engineering 

365 Weil Hall 
University of Florida  

Gainesville, FL 32611, U.S.A. 
   
   
ABSTRACT 

The objective of this paper is to present an optimal algo-
rithm for a resource allocation model, which would be im-
plemented into a framework for the development of an in-
tegration model. Unlike present heuristic-based resource 
allocation models, the model does not depend solely on a 
set of heuristic rules, but adopts the concept of future float 
to set the order of priority when activities compete for re-
sources. The model determines the shortest duration by al-
locating available resources to a set of activities simultane-
ously. Genetic algorithms (GAs) are adopted to search 
optimal solutions. The results obtained from a case exam-
ple indicate that the model is capable of producing optimal 
scheduling alternatives, compared to a single solution that 
is produced by either the total float model or the least im-
pact model. 

1 INTRODUCTION 

The Critical Path Method (CPM) has been used widely in 
the construction industry. The CPM generates useful infor-
mation for the project manager to plan and control the pro-
ject more actively and efficiently. Critical and non-critical 
activities are particularly important for the purpose of pro-
ject management on large, complex projects. However, the 
CPM has proven to be helpful only when the project dead-
line is not fixed and the resources are not constrained by ei-
ther availability or time. Therefore, resource-constrained 
scheduling arises as a result of problems with the availability 
of resources. It is essential to apply the availability of re-
sources into a scheduling process for this reason. 

The CPM technique makes use of a project graph to 
schedule large projects with the assumption that there is an 
unlimited availability of resources. When the availability 
of resources is limited, the concepts of critical path and to-
tal float to the CPM technique lose their original meaning. 
If some activities on a critical path are delayed due to in-
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sufficient resources, then the critical path that has a zero 
total float no longer exists. If there is a systematic way to 
consider both resource dependencies and precedence rela-
tionships, resource-constrained scheduling for large pro-
jects can be resolved. 

Traditionally, resource-constrained scheduling has 
been classified into three categories: (1) resource alloca-
tion, (2) time-cost trade-off analysis, and (3) resource lev-
eling (Weist and Levy 1969, Moder et al. 1983, Moselhi 
and Lorterapong 1993, Hegazy 1999). These problems 
have been solved with either heuristic or optimal proce-
dures. Heuristic procedures employ some rule of thumb or 
experience to determine priorities among activities compet-
ing for available resources. Optimal procedures, also called 
analytical procedures, employ some form of mathematical 
programming or other analytical procedure to search for 
the best possible solutions. 

It is necessary to differentiate an optimal solution from 
a near optimal solution because both terms have very spe-
cific meanings in the operations research literature. An op-
timal algorithm is one that guarantees that an optimal solu-
tion will be found as soon as an optimal algorithm is 
completed. A near optimal algorithm, however, has a 
slightly less precise meaning than an optimal algorithm. 
Upon completion of a near optimal algorithm, a near opti-
mal solution is usually produced. What is meant by a near 
optimal solution is that it is a solution close to the opti-
mum. 

The heuristic procedures generally produce solutions 
for the resource-constrained scheduling problems in a rea-
sonable amount of time, even though the size of the project 
network is large. However, they have proven to be incon-
sistent with regard to the quality of results produced on 
project networks (Easa 1989, Boctor 1990, Hegazy 1999). 

Relative to the vast amount of research that has been 
conducted on heuristic procedures, optimal procedures 
have rarely been the focus of such extensive research. Con-
siderable progress has been made to produce optimal re-
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sults by depending on strong assumptions for small-sized 
project networks. However, no optimal procedures have 
proven to be computationally feasible for large, complex 
projects that can occur in practice. Therefore, it is impor-
tant to develop a more efficient algorithm that searches op-
timal solutions for the resource-constrained scheduling 
problems of large-sized project networks in a reasonable 
amount of time. A developed algorithm should consider 
both the availability of resources and precedence relation-
ships. 

Various models have been generated to solve prob-
lems within each class of the three resource-constrained 
scheduling problems. Each class of problem has its own 
algorithm for solutions because of the different objectives 
and constraints. Thus, algorithms designed for resource al-
location are not applicable to resource leveling (Hegazy 
1999). In addition, a project manager desires to satisfy both 
objectives, causing a conflict between the availability of 
resources and project duration. 

On account of the inherent complexities of construc-
tion projects and the difficulties with applying the re-
source-constrained scheduling problems into a model, little 
research has been done to integrate solutions to these prob-
lems. Therefore, it is necessary to develop an efficient, op-
timal model that integrates solutions for the resource-
constrained scheduling problems in order to provide a 
powerful tool for a project manager. 

The objective of this paper is to present an optimal al-
gorithm for a resource allocation model, which would be 
implemented into a framework for the development of an 
integration model. This framework for the development of 
an integration model for the resource-constrained schedul-
ing is discussed. An application of the model using a case 
example is illustrated. 

2 RESOURCE-CONSTRAINED ALLOCATION 
MODEL  

The resource-constrained allocation problem aims to allo-
cate the available resources to activities so as to find the 
shortest duration of a project within the constraints of 
precedence relationships. The assumptions underlying this 
problem are that the availability of resources is constrained 
to some maximum value, and that the project has to be 
completed using the given resources. As a result of the re-
source-constrained allocation, a schedule that shows the 
shortest duration with resource limits is created for a pro-
ject network.  

The additional costs directly associated with utilization 
of allocated resources are undesirable for the contractor as 
they occur in the following problems (Popescu and Charo-
enngam 1995): 
 

• Cost of requiring additional resources, 
• Cost of idle labor or equipment, and  
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• Cost of delay to other activities not having enough 
resources to schedule the work. 

2.1 Problem Formulation 

The resource-constrained allocation problem has gained 
importance from the fact that it is a “combinatorial” prob-
lem, which includes job-shop sequencing and assembly-
line balancing problems (Davis 1973). This is also well 
known as one type of a Nondeterministic Polynomial (NP)-
hard problem. This type of problem is characterized by a 
factorial growth in the amount of computation required to 
consider all possible solutions as problem size increases 
(Davis 1973). 

Let L and k be the number of resource combinations 
and the number of activities, respectively. The size of the 
search space is Lk. It takes Lk attempts to search optimal 
solutions by exhaustive enumeration. For instance, a pro-
ject has 30 activities and each activity has 2 resource com-
binations. It will take 230 (equal to 1,073,741,824, that is up 
to 109) attempts to find the optimal solution. In the end, 
computational efforts increase exponentially as either the 
number of resource combinations or the number of activi-
ties increases. 

Davis (1973) describes resource allocation as “the 
method of scheduling activities within fixed amounts of 
resources available during each time period of project du-
ration so as to minimize the increase in project duration.” 

The resource-constrained allocation problem solved in 
this paper may be stated as follows, as summarized by 
Moselhi and Lorterapong (1991): 
 

• A finite set of activities is given, 
• Each activity has a fixed duration, requires a fixed 

amount of one or more different types of re-
sources, and is subjected to a set of precedence re-
lationships, 

• An activity can start only when its precedence 
constraints are met, and 

• All of its required resources are available 
throughout its duration, or, if desired, could be 
split. In other words, splitting could be achieved 
by breaking down the activity into a group of se-
quential subactivities. 

 
The objective of the resource-constrained allocation 

model is to minimize the project duration when constrained 
by precedence relationships among project activities and 
the availability of resources. It is assumed that daily re-
source requirements of any activity are predetermined. The 
sum of all available resource units allocated to different ac-
tivities on the same day should not exceed the total number 
of units available on that day. 
20
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2.2 Genetic Algorithms Procedure for Resource 

Allocation Model  

The simplified procedure of GAs that is used in this paper 
is as follows; (1) Define a solution representation, (2) Set 
variables, objective functions, and constraints, (3) Generate 
initial population, (4) Evaluate fitness of possible solution, 
(5) Apply genetic operators, and (6) Test termination con-
ditions. This procedure was modified from Sakawa’s 
(2002) fundamental procedures of GAs. Figure 1 shows the 
simplified procedure.  
 

 
Figure 1: Simplified Flowchart of GAs Procedure 

2.2.1 Step 1: Defining a Solution Representation 

A solution is represented by the set of values associated 
with the problem variable. In the resource-constrained al-
location model, the activities that have a scheduling prior-
ity are the set of values, and the number of variables is the 
number of activities to be scheduled. GAs arrange that so-
lution in a string as shown in Figure 2. 
 

 
Figure 2: Genetic Algorithm Representation of Solution  
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The priorities of activities are assigned to each feasible 
activity set based on its minimal negative impact on the 
remaining total float of the entire network of the project 
(Moselhi and Lorterapong 1993). They have proposed the 
least impact model and used two terms: future float (FF) 
and next time frame (NTF). The future float for an activity 
is defined as “the finish float (Shanmuganayagam 1989) 
available to the activity if it will be postponed to the next 
time frame.” The next time frame coincides with the earli-
est finish time of all activities within the set being consid-
ered.  

The main advantages are the improvement to the com-
monly used least total float (TF) rule and the possibility 
that it can be used in conjunction with traditional CPM 
analysis to enable efficient scheduling with resource con-
straints. 

2.2.2 Step 2: Setting the Variables, Objective 
Functions, and Constraints 

Variables are activities that have the priority of getting re-
sources, and they are the values inside each feature, as 
shown in the string structure of Figure 2. A single objec-
tive function to evaluate each string is to minimize the pro-
ject duration of a project network. 

The sum of all available resource units allocated to 
different activities on the same day should not exceed the 
total number of units available on that day. 

2.2.3 Step 3: Generating Initial Population of Solutions 
(Strings) 

An initial population is generally created at random to ap-
ply GAs, as is done in most research (Bean 1994, Chan et 
al. 1996, Leu and Yang 1999, Hegazy 1999). 

2.2.4 Step 4: Evaluating Fitness of Possible Solutions 

The fitness of each string in the population obtained in 
Step 3 is evaluated by the value calculated when the fitness 
of string i is divided by the sum of the total fitness of all 
strings (Whitley 1993). 

2.2.5 Step 5: Applying Genetic Operators 

This research considers three genetic operators, such as re-
production, crossover, and mutation. These operators are 
similar to the general operators used by Reeves (1995) and 
Hartmann (1998). Hartmann (1998) used the latest finish 
time rule (LFT) to derive probabilities that are used to se-
lect the next activity for a job sequence, while the future 
float rule is used in this research. 

First, reproduction measures the fitness (that is, a pro-
ject duration) of strings in a generation. Some of the strings 
are reproduced in proportion to their objective function 
21
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values. The aim of reproduction is to provide good solu-
tions with a higher chance of passing their feature to the 
next generation than bad solutions. Reproduction also in-
creases or decreases the number of offspring for each 
string in the population according to the fitness values. 

Second, crossover selects two distinct strings from the 
population at random. It exchanges some portion of the 
strings with a probability equal to the crossover rate in or-
der to create a new offspring. One of the simplest ways is 
to choose some crossover point randomly. Everything be-
fore this point is copied from a first parent and everything 
after a crossover point is copied from a second parent (See 
Figure 3). 

Finally, mutation takes place after a crossover is per-
formed. Mutation is a random change of features in a string 
to reintroduce lost bit values into a population. It alters one 
or more features of a selected string with a probability 
equal to the mutation rate. Mutation changes the new off-
spring at random (See Figure 3). 
 

 
Figure 3: Genetic Operators – Crossover and Mutation 

2.2.6 Step 6: Testing Termination Conditions 

An algorithm for the resource-constrained allocation model 
is terminated when it meets conditions. The shortest dura-
tion under the availability of resources is the termination 
condition. Also, a solution that has the shortest duration is 
considered an optimal solution. 

2.3 Case Example 

This research team chose a simple six-activity network that 
was derived from Moselhi and Lorterapong (1993), as 
shown in Figure 4. For the sake of simplicity, the network 
is assumed to have two types of resources and each activity 
can consume only one type of resource. Durations and re-
quired resources are indicated directly on the network. 
21
 

 
Figure 4: Arrow Diagram for Case Example (After 
Moselhi and Lorterapong 1993) 

2.3.1 CPM Results 

The network for the case example consists of five activities 
and one dummy. Table 1 shows the output of the CPM 
analysis of the six-activity network, which can be easily 
obtained by manual calculation.  
 

Table 1: CPM Results 
Node 

I J 

Activity 
descrip-

tion 
Duration 
(Days) 

Early 
start 

Late 
start 

Total 
float 

1 2 1 2 0 3 3 

1 3 1 1 0 0 0 

2 4 2 3 2 7 5 

2 5 2 5 2 5 3 

3 5 3 9 1 1 0 

4 5 4 0 5 10 5 

 

2.3.2 Comparison with Heuristic Method 

If the availability of resources were not considered, the 
project duration would be 10 days. The results for the re-
source allocation model using the total float model, the 
least impact model, and the GA-based model are shown 
graphically in Figure 5, respectively. 

The total float model first selects activity 1-3. It then 
assigns the priority to activity 3-5 with a total float value of 
zero, as opposed to activity 1-2 with a total float value of 3 
days. As a result, the project duration obtained using the 
total float model is 20 days, which is 8 days longer than 
that obtained using both the least impact model and the 
GA-based model (See Figure 5 (a)). 
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Figure 5: Comparison of Resource Allocation Histograms 
The least impact model first selects activity 1-3. It then 
assigns the priority to activity 1-2 because it has a larger 
future float value than that of activity 3-5 (See Figure 5 
(b)). The schedule obtained using this model is considered 
the optimal duration in this paper. The project duration for 
Figure 5 (b), (c), and (d) is 12 days. 

Finally, the GA-based model shows two different 
schedules in comparison to the single schedule generated 
by either the total float model or the least impact model. 
One is shown in Figure 5 (c), which is the same as the 
schedule obtained using the least impact model, and an-
other is shown in Figure 5 (d) with variation in the start 
time of activity 2-4 and activity 2-5. The alternate start 
times of activity  2-4 and activity 2-5 are insignificant be-
cause they require the same number and type of resources 
21
under the assumption that there is no technological con-
straint. An algorithm for the resource-constrained alloca-
tion model is terminated when it meets conditions. The 
shortest duration under the availability of resources is the 
termination condition. Also, a solution that has the shortest 
duration is considered an optimal solution. 

Therefore, it is notable that the GA-based model is 
able to provide optimal scheduling alternatives, compared 
to a single solution by either the total float model or the 
least impact model. The GA-based model has the potential 
to reduce computation time because of faster programming 
and central processing unit (CPU) improvements. 
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3 INTEGRATION OF RESOURCE SCHEDULING 

USING GAS  

Genetic algorithms (GAs) have been used to solve con-
struction management problems, including resource sched-
uling, time-cost trade-off optimization, and combined re-
source allocation and leveling. Unfortunately, the research 
on these topics focuses on a single objective. Also, the re-
search does not present a method to obtain optimal solu-
tions within a reasonable amount of time, which is the 
main disadvantage of GAs. This drawback should be over-
come in an integration model to be developed for im-
provements of computation time. Therefore, it is necessary 
to develop an optimal model that integrates resource 
scheduling problems, by simultaneously considering mul-
tiple objectives as well as reducing computation time. 

Some research has been conducted to integrate the re-
source scheduling problems. Chan et al. (1996) combined 
resource allocation and leveling by setting a single equa-
tion with the objective of minimizing the difference be-
tween resource availability and utilization. In the string 
representation of GAs, they used the concept of current 
float to set the scheduling priority. The current float con-
cept (Shamuganayagam 1989) was introduced to eliminate 
network recalculation, which is the main disadvantage of 
the total float concept in the CPM analysis. The model es-
tablishes the order of priority for the relevant activities 
based on their current floats and allocates resources to the 
21
activity that has the smallest current float under the avail-
ability of resources. 

Hegazy (1999) combined resource allocation and lev-
eling using GAs. The research incorporated the concept of 
minimum total slack as the decision variable for resource 
allocation, and the minimum moment method for resource 
leveling. Although an effective improvement was made in 
the combined model, it has been stated clearly that it is 
necessary to integrate a time-cost trade-off analysis into the 
GA approach. 

Leu and Yang (1999) proposed a GA-based multicrite-
ria optimal model for construction scheduling. Researchers 
unified time-cost trade-off and resource allocation. They 
used activity duration obtained from the time-cost trade-off 
model as basic input data for the computation of minimum 
project duration under resource constraints. However, they 
mentioned that improvements in resource leveling need to 
be made because resource conflicts still occurred. 

In the area of optimization, there is a need for ongoing 
research concerning the integration of resource scheduling 
problems, so that the integration can be applied in practice. 
There are recent trends to combine these three problems, 
even though this integration is neither easy nor intuitive. 
Therefore, this research team proposed a model that inte-
grates resource scheduling problems. The framework of the 
model is described in the following sections.  
 

 

Figure 6: A Framework for Integration Model 
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3.1 Proposed Integration Model 

The model proposed for integrating resource scheduling 
problems is a stepwise model as Figure 6 illustrates. The 
integration model starts with the problem formulation that 
establishes the objective function and constraints for each 
problem. Users may provide network information, such as 
the activity duration, activity cost options, precedence rela-
tionships, resource availability, and activity resource re-
quirements. This information is required because it is pro-
ject specific. The GA parameters, such as the number of 
experiments and trials to conduct, population size, and 
probabilities of genetic operators are also provided by the 
user. 

Module A is the resource-constrained allocation 
model, which is the focus of the previous section. In order 
to develop the model, this research team chose the concept 
of future float to set the scheduling priority, which has yet 
to be accomplished in the area of GA-based scheduling. 
The objective of the resource-constrained allocation model 
is to allocate the available resources to activities so as to 
find the shortest duration of a project. Precedence relation-
ships and the availability of resources are constrained in 
this model. An optimal project duration is obtained. 
Schedule and resource requirements are sent to Module B, 
the time-cost trade-off model. 

Module B is the time-cost trade-off model, the objec-
tive of which is to find an optimal point between the nor-
mal activity time-cost point and the crash activity time-cost 
point. Thus, the project duration is shortened with mini-
mum costs. A time-cost trade-off curve that depicts the re-
lationships between project duration and cost is created for 
the economic feasibility analysis of a project network plan. 
In Module B, the GA-Crashing simulator is to be devel-
oped in the following phase of the ongoing research. 

Module C is the resource leveling model, the objective 
of which is to minimize fluctuation in patterns of resource 
usage within the required duration. A histogram showing 
the variation in the resource profile is created as an output 
of Module C. In Module C, the GA-Profile generator is to 
be developed in the following phase of the ongoing re-
search. 

Multiobjective optimization problems (MOP) arise in 
many real-world decision making situations. Solutions to 
an MOP need to be optimized simultaneously in GAs like 
in other optimization techniques. However, no clear defini-
tion of an optimum exists in an MOP, even though an op-
timal solution can be obtained in the case of single objec-
tive optimization problems, such as resource allocation, 
time-cost trade-off, or resource leveling. 

The common difficulty with an MOP is that the objec-
tives of project cost, project duration, and resource utiliza-
tion may conflict with each other when the proposed model 
integrates the resource-constrained scheduling problems. If 
there is at least one optimal solution in the resource-
21
constrained scheduling problems, then the concept of non-
dominated solutions arises in the other objectives. There-
fore, it is important to search non-dominated solutions in 
order to satisfy the criteria of multiobjective resource-
constrained scheduling problems. 

4 CONCLUSIONS  

This paper presents an optimal algorithm for a resource al-
location model, which would be implemented into a 
framework for the development of an integration model. 
This framework for the development of an integration 
model for the resource-constrained scheduling is discussed. 
Its application using a case example was illustrated. 

By making use of the findings of the integration 
model, this research can benefit both a project manager 
making decisions with regard to their resource manage-
ment, and researchers applying the availability of resources 
into a scheduling process. More work is being carried out 
to expand the model by integrating both time-cost trade-off 
and resource leveling. Future work could examine the per-
formance of the integration model by reducing computa-
tional time. 
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