
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

DATA CONSISTENCY IN A LARGE-SCALE RUNTIME INFRASTRUCTURE

 Buquan Liu
Huaimin Wang

Yiping Yao

School of Computer
National University of Defense Technology

Changsha, Hunan 410073, CHINA

ABSTRACT

In order to support large-scale distributed simulation, we
have developed a RTI called StarLink+ with particular ar-
chitecture which is compliant with IEEE 1516. StarLink+
is composed of a Central RTI server and multiple Local
RTI servers. Each Local RTI server manages multiple fed-
erates. Data consistency has great influence on RTI's per-
formance and scale. In StarLink+, only a small portion of
data must be globally consistent for all Local RTI servers.
However, a great amount of data is not consistent for dif-
ferent Local RTI servers. This paper focuses on the re-
search of data consistency about a variety of data in Star-
Link+. On the one hand, we introduce the fully consistent
data such as object name designation and handle assign-
ment; on the other hand, we also study the partly consistent
data such as publication and subscription, ownership trans-
fer, and time management.

1 INTRODUCTION

High Level Architecture (HLA) introduces many advanced
technologies into distributed simulation and makes distrib-
uted simulation develop rapidly. With the scale of distrib-
uted simulation applications getting larger and larger，the
performance of current Runtime Infrastructure (RTI) can
not satisfy increasing need of various applications, and the
implementation technology of high performance RTI has
become a focus in distributed simulation area.

In distributed architecture, data in RTI is deployed in
different positions. Data consistency has an important ef-
fect on RTI’s performance and scale. Good approaches can
decrease the volume of information in network and en-
hance the efficiency of RTI, thereby solve the performance
bottleneck of RTI.

Different from conventional distributed RTIs, Star-
Link+ is a hierarchical RTI in accordance with IEEE 1516
standards (IEEE 2000a, IEEE 2000b, IEEE 2000c, IEEE
2003), which is composed of a Central RTI server (CRTI)

17
and multiple Local RTI servers (LRTIs). We have success-
fully deployed StarLink+ into 31 personal computers inter-
connected by 100 Mbps network and run a federation with
1800 federates. Thousands of federates joined a whole fed-
eration within a few minutes. It only cost 900 federates
about 5.63 seconds to advance one step all together using
the timeAdvanceRequest service, while each federate sent
one message subscribed by all other federates within a step.

In StarLink+, only a small portion of data is globally
consistent in all Local RTI servers and large amount of
data is not consistent. However, any types of data do not
prevent concurrent execution of different Local RTI serv-
ers. This paper introduces some important technologies
about data consistency in StarLink+. In the next section,
we explain the unique architecture of StarLink+ and give a
few definitions on data consistency. Several experiments
and their results are described in this paper, thus these ex-
periments’ environment is also introduced there. In the
third section, the global data consistency in StarLink+ is
discussed, including designation of object name and as-
signment of handles. While data inconsistency is discussed
in the fourth section, such as publication and subscription,
ownership transfer, and time advance mechanism. In the
fifth section, we explain three issues about StarLink+,
which are possibly alternative implementation techniques,
standardization and future work. All techniques in this pa-
per shall be useful to a robust RTI’s developers for large-
scale simulations.

2 DATA CONSISTENCY

StarLink+ was developed on the basis of StarLink (Liu,
Wang and Yao 2004). As shown in Figure 1, we know that
the whole system is composed of a Central RTI sever and a
group of Local RTI servers. The Central RTI server is in
charge of all Local RTI servers and each Local RTI server
takes charge of multiple federates. CRTI and all Local RTI
severs can communicate with one another. Without a Local
RTI Component (LRC) (DMSO 2000), a federate can only

87

Liu, Wang, and Yao

communicate with its LRTI. Communications among
CRTI, LRTIs and federates are accomplished by the
CORBA middleware StarBus (CORBA 2005, Liu 2004,
StarBus 2005).

Figure 1: The Hierarchical Architecture of StarLink+

Management and delegate are two roles that a Local

RTI server takes on. On the one hand, any federate's in-
formation is preserved in its LRTI. A Local RTI server
takes charge in its federates and advances simulation in
coordination with the Central RTI server and other Local
RTI servers. On the other hand, a Local RTI server does
not see those federates managed by other Local RTI serv-
ers. Any Local RTI server can only join to other Local RTI
servers as a common federate. The term delegate is intro-
duced in StarLink+.

Definition 1 Delegate means that a Local RTI server
replaces its federates to communicate with other Local RTI
servers.

A Local RTI server can act as the delegate to its feder-
ates. As a delegate, the Local RTI server can join federa-
tion execution, publish and subscribe object class attributes,
register object instance, update attribute values, transfer
attribute ownership, etc.

In StarLink+, the central RTI server is similar to a
naming server (OMG 2005a) in CORBA. All LRTIs can
interconnect with one another by CRTI. CRTI can be used
for creation of federation execution, synchronization point,
save and restore in federation management. CRTI is not
used in other services such as declaration management, ob-
ject management, ownership management, time manage-
ment and data distribution management, etc. The data dur-
ing federation execution is mainly managed and
transmitted by Local RTI servers. Besides all federates' in-
formation, the data maintained by a Local RTI server in-
cludes federation name, federate list, synchronization point
list, object class list, interaction class list, registered object
list, object class name and handle pair list, interaction class
name and handle pair list, registered object instance name
and handle pair list, dimension list, dimension name and
handle pair list, reserved object instance name and handle
pair list, region specification list, etc.

LRTI1

F1

F2

F3

LRTI2

F4

F5

F6

CRTI

LRTI3

F7 F8 F9
17
All data requires to be consistent in each Local RTI
server as much as possible, not only static data that can be
obtained from a FOM Document Data (FDD) file and an
initialization file but also dynamic data that be produced
during federation execution such as federate list, synchro-
nization point list, registered object list, registered object
instance name and handle pair list, reserved object instance
name and handle pair list.

Definition 2 Strong consistency means that data
should be globally consistent in all Local RTI servers.

To decrease the overhead aroused by global data con-
sistency and enhance simulation efficiency, StarLink+ does
not compel each Local RTI server to maintain all data con-
sistently.

Definition 3 Weak consistency means that data is
not globally consistent in all Local RTI severs.

Both strong consistency and weak consistency are
highly efficient in StarLink+. All Local RTI servers can
execute simulation concurrently, and there is no synchroni-
zation based on lock mechanism. Therefore, StarLink+ is
able to be used for large-scale distributed parallel simula-
tions.

In this paper, a few important experiments are de-
scribed. They were conducted in a large computer room for
students to study and review. As in Figure 2, more than 90
personal computers are installed in the room, and they have
the same configuration. The configuration for each com-
puter is:

• CPU: Pentium IV 1.7G
• Memory: 256M
• Network: 100Mbps
• Operating system: Windows 2000.

Figure 2: Experiment Environment

In addition, all test programs were written in Visual

C++ 6.0. Except for one control program and one result
display program, all programs were run in the background.
The experiment environment was open. While we made
our experiments, students in the room might browse cam-
pus network, play network games, listen to music and
watch movies via network.

3 STRONG CONSISTENCY

Different from other RTIs which can support multiple fed-
erations, StarLink+ only supports a single federation. Mul-
88

Liu, Wang, and Yao

tiple federations should be executed by starting multiple
CRTIs. A federation’s name and a FDD file’s name should
be saved in an initialization file. Thus, strong consistency
of static data is easy to implement. Whenever CRTI and
each LRTI start, they use the same source code to read the
same FDD file for initialization, including object class list,
interaction class list, object class name and handle pair list,
interaction class name and handle pair list, dimension list,
etc. The data shall be globally consistent in CRTI and all
LRTIs although most data is useless in CRTI..
 This paragraph explains the rationale of strong consis-
tency for dynamic data in StarLink+. Representative ap-
proaches are the designation of object name and the as-
signment of handles.

3.1 Object Name Designation

When a federate calls the registerObjectInstance service to
register an object instance, each object instance should be
designated a unique name. One method is that the object
name is registered and designated in CRTI. CRTI either
designates a new name for an object instance, or throws an
exception if a federate tries to register a name already as-
signed. However, the method is less efficient and CRTI
shall be a bottleneck. In fact, another efficient method is
used in StarLink+. Multiple federates can register object
instances to their LRTIs simultaneously. The parallel
method needn't CRTI to coordinate anything.

When a federate registers an object instance, the fed-
erate can appoint a name as one parameter of the regis-
terObjectInstance service. If the federate does not appoint a
name, its LRTI shall designate a default name. Then, the
LRTI attaches a prefix before each object name as

._"" objectNamelrtiNameobjectName ++=

Thus, the new object name is globally unique. In StarLink+,
each LRTI should join to CRTI with a unique name lrti-
Name, and we urgently demand that a federate shall not
register an object instance with any LRTI’s name. For ex-
ample, we often use these names to represent LRTIs such
as “machine01”, “machine02”, etc.

After an object instance is successfully registered in a
LRTI, the LRTI calls the lRTIregisterObjectInstance ser-
vice with the parameter of the new name to notify all other
LRTIs. These LRTIs register the object instance directly
and does not attach a prefix again. The lRTIregisterOb-
jectInstance service is added by StarLink+. We usually call
these services prefixing with "lRTI" expanded HLA ser-
vices, and they are for communication among CRTI and
LRTIs.

In StarLink+, CRTI can be started in a single com-
puter or in any computer together with a LRTI because
CRTI has nothing to do with the performance of our ex-
178
periments. We do not mention CRTI in the following ex-
periments. Here is one case of these experiments.

Experiment 1 One LRTI and one federate were
started in two computers respectively. Each federate joined
to its LRTI within the same computer. Federate F1 called
the registerObjectInstance service to register an object in-
stance to LRTI1, and LRTI1 called the lRTIregisterOb-
jectInstance service to register the object instance to LRTI2.
Then, LRTI2 called the discoverObjectInstance service to
notify federate F2 to discover the object instance. Now F2
registered another object instance to LRTI2 immediately.
When F1 found the object instance registered by F2, it
started the loop again.

Experimental result When F1 repeats the whole pro-
cedure from its registration to discovery for many times
such as 1000, 10000, etc., the average time Toneloop is
easy to compute then. However, the average time Tmachi-
nes from F1's registration to F2's discovery is more signifi-
cant, which is a half of Toneloop. In our experiments,
Tmachines is about 0.5 milliseconds.

3.2 Handle Assignment

In StarLink+, all members such as CRTI, LRTIs and feder-
ates are appointed a unique handle respectively. The han-
dle is represented by an integer. Here is the efficient ap-
proach.

1. The handle of CRTI is equal to zero.
2. When a LRTI joins to CRTI, its handle

()handle LRTI is assigned by CRTI as

.*10000)(erserialNumbLRTIhandle =

The serialNumber in the formula is the LRTI’s
registering order in CRTI. For example, the first
LRTI joining to CRTI is assigned the handle
10000, and the second LRTI's handle is 20000.

3. When a federate joins to a LRTI, its handle is as-
signed by the LRTI as

.)()(erserialNumbLRTIhandleFederatehandle +=

The serialNumber in the formula is the federate’s
registering order in its LRTI. For example, the
first federate joining to a LRTI with handle 20000
is assigned the handle 20001, and the second fed-
erate's handle is 20002. Of course, the method re-
quires that the number of federates within a LRTI
should not be more than 9999.

Now it is easy to designate an object instance handle.

When a federate registers an object instance, its LRTI as-
signs a handle for the object instance as
9

Liu, Wang, and Yao

.10000/)(
)10000*()(

LRTIhandle
erserialNumbObjecthandle +=

The serialNumber in the formula is registering order of ob-
ject instance. The formula means that an object instance’s
handle is made up of two parts, the low four digits repre-
sent a LRTI while the high digits represent registration or-
der. Of course, the method requires that the number of
LRTIs in a federation should not be more than 9999.

In fact, many other types of handles such as region
handle have similar results. An alternative way is to define
a structure with two member for handle types. One means
LRTI, and another means registration order. More details
are discussed in section 5.2.

Experiment 2 One LRTI and 60 federates were
started in every 30 computers respectively. Each federate
joined to its LRTI within the same computer. A federate
called the following services to initialize and then waited a
synchronization point to advance simulation. These ser-
vices included createFederationExecution, joinFederation-
Execution, getObjectClassHandle, getAttributeHandle,
publishObjectClassAttributes, subscribeObjectClassAttrib-
utes, registerObjectInstance, enableTimeRegulation, en-
ableTimeConstrained, etc.

Experimental results A batch program was used
to start 60 federates one by one automatically in each com-
puter. If the interval time between two federates was 1, 2,
or 3 seconds, the whole initialization time for 60 federates
to reach synchronization point in one computer was exactly
1, 2, or 3 minutes. If all batch programs in 30 computers
ran simultaneously, the whole initialization time for 1800
(60*30) federates was also nearly 1, 2, or 3 minutes.

4 WEAK CONSISTENCY

Due to the delegate mechanism, a LRTI does not see any
federates that belong to other LRTIs. Thus, there exists
large amount of weak consistency in StarLink+.
 This paragraph explains the rationale of weak consis-
tency in StarLink+. Representative principles are publica-
tion and subscription, ownership transfer, and time ad-
vance mechanism.

4.1 Publication and Subscription

In Figure 1, when federate F1 calls the publishObjectClas-
sAttributes or subscribeObjectClassAttributes service to
publish or subscribe object class attributes, LRTI1 records
the information and also calls the same service to publish
or subscribe object class attributes to LRTI2. Thus, if fed-
erate F2 publishes or subscribes the object class attributes
which have been published or subscribed by F1, LRTI1
shall not notify LRTI2 any more.
17
In the experiments with 1800 federates, all federates
published and subscribed the same object class attributes.
Therefore, each LRTI only published and subscribed corre-
sponding attributes to other LRTIs once. When a federate
called the updateAttributeValues service to update its in-
stance attributes, its LRTI only called the service once to
notify all other LRTIs. Then these LRTIs called the reflec-
tAttributeValues service to notify their federates. The ex-
periments indicate that the number of messages among
LRTIs decreases greatly.

4.2 Ownership Transfer

In accordance with HLA standards, an instance attribute
shall be owned by at most one joined federate at any given
time. The ownership of an instance attribute may be owned
by a federate, or unowned by all federates, or by RTI such
as an instance attribute in MOM (Management Object
Model).

In StarLink+, ownership state of each LRTI keeps
consistent at LRTI level, while that may be inconsistent at
federate level. That's to say, all LRTIs know which LRTI
the owner of an instance attribute belongs to, although they
may not know which federate the owner is. This weak con-
sistency can both guarantee correctness of ownership state
from overall perspective, and reduce communication
among LRTIs.

Therefore, a Local RTI server X shall not notify other
Local RTI servers if the ownership of an instance attribute
is only transferred between two local federates. While a
federate in Local RTI server Y requests to acquire the own-
ership, Y shall know that X is just the Local RTI server that
the owner belongs to. Then Y notifies X that it wants to ac-
quire the ownership. Now X notifies the owner to release
its ownership. When the ownership is released and owned
by Y, X should notify all other Local RTI servers to change
the owner to be Y. Next experiment gives a detailed exam-
ple. In addition, if the ownership of an instance attribute is
released by a federate in X and no one wants to acquire the
ownership, the instance attribute is unowned by all local
federates in X but all other LRTIs such as Y think that the
owner is still X.

Experiment 3 Three local RTI servers LRTIA,
LRTIB and LRTIC ran in three computers. Federate F1 ran
in the same computer with LRTIA and joined to LRTIA.
Federate F2 ran in the same computer with LRTIB and
joined to LRTIB. In Figure 3, an instance was initially reg-
istered by F2 and F2 was the owner of its attributes. When
F1 called the attributeOwnershipAcquisition service to re-
quest to acquire the ownership of an attribute, LRTIA
knows that the owner belonged to LRTIB so that LRTIA
called the lRTIattributeOwnershipAcquisition service to
notify LRTIB. LRTIB called the requestAttributeOwner-
shipRelease service to notify F2 to release ownership.
Then, F2 called the unconditionalAttributeOwnershipDi-
90

Liu, Wang

vestiture service to divest the attribute’s ownership. LRTIB
set the attribute’s owner to be LRTIA and called the
lRTIsetOwnership service to notify all other LRTIs. Thus,
LRTIC set the attribute’s owner to be LRTIA while
LRTIA set the owner to be F1. Finally, LRTIA called the
attributeOwnershipAcquisitionNotification service to no-
tify F1 and F1 acquired the attribute ownership.

Experimental result The average time is 2 millisec-
onds, which was from F1's requesting to acquire the attrib-
ute ownership to receiving the notification of ownership
acquisition.

4.3 Time Advance

The computation of Greatest Available Logical Time
(GALT) is critical to implement time management services.
GALT is also called Lower Bound Time Stamp (LBTS) in
HLA 1.3 (DMSO 1998a, DMSO 1998b, DMSO 1998c).
For short discussion, we suppose that all federates call the
timeAdvanceRequest service to advance logical time, and
they do not modify their lookahead (Chandy and Misra
1979, Fujimoto 1988, Fujimoto 1996, Fujimoto 2000).

Definition 4 The symbol S(i) is defined:

(a) If i is a federate, we have S(i)=T(i)+L(i). When

federate i is in time advancing state, T(i) is the
logical time to which the federate request to ad-
vance. Otherwise, T(i) is the federate's current
logical time. L(i) means the federate's lookahead.
179
, and Yao

(b) If i is a Local RTI server, we have
S(i)=min{T(j)+L(j)}. For any j, j is a federate that
belongs to i.

To compare different values visually, we usually call

S(i) as i's stature (i is a federate or a Local RTI server). If
S(i)<S(j), we say that i's stature is less than j's.

If X is the Local RTI server that federate i belongs to,
the federate's GALT is computed as

GALT(i)=min{S(j), S(Y)}.

Where: For any j, j∈ X and i ≠ j;

 For any Local RTI server Y, X ≠ Y.
From the above algorithm, we know that quite few

messages occur among LRTIs for computing GALT. Time
management in StarLink+ is very efficient. As an example
of the federation with 30 LRTIs and 1800 federates, the
stature of a LRTI was equal to the minimal stature of its 60
federates'. Only when all 60 federates advanced one step,
the LRTI's stature was then changed and it should send a
message to notify all other LRTIs. In addition, a LRTI
must not send any message to its federates because its fed-
erates' information for computing GALT was preserved in
the LRTI.

Although the timeAdvanceRequest service is dis-
cussed and lookahead is supposed not to be modified dur-
ing a federation execution, this is similar to other time
management services even if lookahead is modified.

F2 LRTIB LRTIC LRTIA F1

attributeOwnershipAcquisition

lRTIattributeOwnershipAcquisition

requestAttributeOwnershipRelease

unconditionalAttributeOwnershipDivestiture

lRTIsetOwnership

lRTIsetOwnership

attributeOwnershipAcquisitionNotification

Figure 3: Time Delay of Acquiring Attribute Ownership
1

Liu, Wang, and Yao

Experiment 4 We started 30 LRTIs in 30 com-
puters, and 30, 40 or 60 federates ran in each LRTI. All
federates were both time regulating and constrained, and
they advanced logical time step by step. Each federate’s
lookahead was not larger than the interval logical time bet-
ween two steps. Thus all federates must advance simula-
tion together, and one federate could not go ahead or be-
hind another for the timeAdvanceRequest service. After
each federate initialized, it waited for a synchronization
point. When all 900, 1200, 1800 federates were started, a
control federate in 31st machine registered federation syn-
chronization point. Once the whole federation synchro-
nized, all federates called the timeAdvanceRequest service
to advance regularly. In each step, any federate sent a Re-
ceive Order (RO) message that was subscribed by all other
federates. A LRTI would call the timeAdvanceGrant ser-
vice to grant each local federate’ advance only when all
federates in the federation were time synchronized, i.e.
they requested to advance to the same logical time.
 Experiment results The average time for 900, 1200
and 1800 federates was 5.63, 7.58 and 21.04 seconds,
which was from a federate’s calling the timeAdvanceRe-
quest service to being granted. In fact, the best result we
have obtained for 900 federates was only 4 seconds.

5 MORE CONSIDERATIONS

Three issues are discussed in the section: alternative im-
plementation techniques, standardization and future work
about StarLink+.

5.1 Alternative Approaches

A few useful techniques about data consistency have been
introduced before. Of course, more complicated ap-
proaches may also be used for implementing StarLink+.
For example:

1. Let CRTI manage global data. This shall make
data consistency rather difficult. Suppose that
each federate's GALT be computed by CRTI.
CRTI should know each federate's advancing
status although a federate's status is already stored
in its LRTI. Thus, it is very complicated to con-
firm each federate's consistent status both in CRTI
and its LRTI such as publication and subscription
relationship, Time Stamp Order (TSO) message
queue, whether a federate is regulating or con-
strained, etc.

2. Let all federates join to all LRTIs. The approach
requires that each LRTI preserves all federates
status, which shall also make data consistency
complicated.

179
5.2 Standardization of StarLink+

The interface services in StarLink+ are compliant with
IEEE 1516, but a part of data types are in accordance with
HLA 1.3 and OMG HLA standards (OMG 2005b, OMG
2005c). For example, most handle types are defined as in-
teger. Both RTI::LogicalTime and RTI::LogicalTimeIn-
terval are defined as double. However, these types are de-
fined as the class type in IEEE 1516. This shall bring more
advantages:

1. Simplify the development of StarLink+.
2. Make users develop applications easily. Here is an

example. Two different variables x and y can be
written as x+y in StarLink+ although one may has
the RTI::LogicalTime type and the other owns the
RTI::LogicalTimeInterval type. However, the two
data types are different in IEEE 1516 and x+y is
illegal.

3. Be compatible with earlier RTI versions. The
RTIs that we developed before StarLink+ were
implemented in the same way.

5.3 Future Work

StarLink+ aims at different groups of users for large-scale
simulations. High performance computing is one important
research branch in our school (NUDT 2005). Besides
large-scale simulations over wide area network and local
area network, we shall migrate it to high performance com-
puters made by our school. Therefore, future work in Star-
Link+ may include:

1. Within a high performance computer, the Mes-
sage-Passing Interface (MPI) communication
mechanism shall replace underground CORBA
technology in StarLink+ (Hwang and Xu 1998,
MPI 2005). But CORBA is still applied for com-
munication between a high performance computer
and exterior machines.

2. In a single node or computer, a LRTI and its local
federates shall communicate via shared memory
rather than CORBA based on TCP/IP.

6 CONCLUSION

StarLink+ is a hierarchical RTI compliant with IEEE 1516
standards. Data consistency has a considerable effect on
RTI's correctness and efficiency. In StarLink+, all local
RTI servers can execute simulation concurrently, which
can enhance performance of StarLink+ greatly. This paper
introduces a few efficient technologies for data consistency
such as definition of object class name, and assignment of
various handle types. More efficient technologies for data
inconsistency are also described such as publication and
2

Liu, Wang, and Yao

subscription, ownership transfer, and time advance mecha-
nism. In addition, we have also presented multiple experi-
ments and their results.

ACKNOWLEDGMENTS

We thank the National High Technology Research and De-
velopment Program of China (863 program) under the
grants of No. 2004AA112020 and No. 2004AA115130 for
their support. We also appreciate the National Natural Sci-
ence Foundation of China under the grants of No.
60373024 and No. 90412011.

REFERENCES

Chandy, K. M., and J. Misra. 1979. Distributed simulation:
A case study in design and verification of distributed
programs. IEEE Transactions on Software Engineer-
ing 5 (5): 440-452.

CORBA. 2005. Available via
<http://www.corba.org> [accessed March 20,
2005].

DMSO. 1998a. High level architecture rules, v1.3 [online].
Available via <http://hla.dmso.mil> [ac-
cessed August 15, 2000].

DMSO. 1998b. High level architecture interface specifica-
tion, v1.3 [online]. Available via
<http://hla.dmso.mil> [accessed August 15,
2000].

DMSO. 1998c. High level architecture object model tem-
plate, v1.3 [online]. Available via
<http://hla.dmso.mil> [accessed August 15,
2000].

DMSO. 2000. RTI 1.3-next generation programmer's guide
version 6 [online]. Available via
<http://hla.dmso.mil> [accessed April 8,
2002].

Fujimoto, R. M. 1988. Lookahead in parallel discrete event
simulation. 1988 International Conference on Parallel
Processing 3: 34-41.

Fujimoto, R. M. 1996. HLA time management: Design
document. College of Computing Georgia Institute of
Technology Atlanta. Available via
<http://www.cc.gatech.edu/computing/
pads/papers.html> [accessed October 5, 2002].

Fujimoto, R. M. 2000. Parallel and distributed simulation
systems. New York: John Wiley & Sons.

Hwang, K., and Z. Xu. 1998. Scalable parallel computing.
New York: The McGraw-Hill Companies, Inc.

IEEE. 2000a. Standard for modeling and simulation (M&S)
high level architecture (HLA)-framework and rules.
IEEE std 1516-2000. Piscataway, New Jersey: Insti-
tute of Electrical and Electronics Engineers.

IEEE. 2000b. Standard for modeling and simulation (M&S)
high level architecture (HLA)-federate interface speci-
179
fication. IEEE std 1516.1-2000. Piscataway, New Jer-
sey: Institute of Electrical and Electronics Engineers.

IEEE. 2000c. Standard for modeling and simulation (M&S)
high level architecture (HLA)-object model template
(OMT) specification. IEEE std 1516.2-2000. Piscata-
way, New Jersey: Institute of Electrical and Electron-
ics Engineers.

IEEE. 2003. IEEE recommended practice for high level
architecture (HLA) federation development and execu-
tion process (FEDEP). IEEE std 1516.3-2003. Pis-
cataway, New Jersey: Institute of Electrical and Elec-
tronics Engineers.

Liu, B. Q., H. M. Wang, and Y. P. Yao. 2004. Key tech-
niques of a hierarchical simulation runtime infrastruc-
ture-StarLink. Journal of Software 14 (1): 9-16.

MPI. 2005. Available via <http://www.mpi-
forum.org> [accessed June 14, 2005].

NUDT. 2005. Available online via
<http://www.nudt.edu.cn/newweb/resea
rch/achievement.htm> [accessed June 14,
2005].

OMG 2005a. Available online via
<http://www.omg.org/technology/docum
ents/formal/naming_service.htm> [ac-
cessed March 20, 2005].

OMG 2005b. Available online via
<http://www.omg.org/cgi-
bin/doc?formal/2001-05-01> [accessed June
15, 2005].

OMG 2005c. Available online via
<http://www.omg.org/cgi-
bin/doc?formal/2002-11-11> [accessed June
15, 2005].

StarBus. 2005. Available online via
<http://starbus.nudt.edu.cn> [accessed
March 20, 2005].

AUTHOR BIOGRAPHIES

BUQUAN LIU received his B.S. degree in computer sci-
ence from Nanjing University in 1991. His M.S. and Ph.D.
degrees were received in School of Computer from Na-
tional University of Defense Technology (NUDT) in 1998
and 2004 respectively. He has achieved 2 Provincial Sci-
ence and Technology Advance Awards and 1 patent of the
design of hierarchical RTI servers based on interoperabil-
ity protocol. Now he is an assistant professor of the school
and his interests are distributed simulation and high per-
formance computing. His e-mail address is
<bqliu@nudt.edu.cn>.

HUAIMIN WANG is a professor in School of Computer
at the National University of Defense Technology. He re-
ceived his Ph.D. degree in computer science in 1992. He is
a member of the Editorial Board of Chinese Journal of
3

http://www.corba.org/
http://hla.dmso.mil/
http://hla.dmso.mil/
http://hla.dmso.mil/
http://hla.dmso.mil/
http://hla.dmso.mil/
http://hla.dmso.mil/
http://hla.dmso.mil/
http://hla.dmso.mil/
http://hla.dmso.mil/
http://hla.dmso.mil/
http://www.cc.gatech.edu/computing/pads/papers.html
http://www.cc.gatech.edu/computing/pads/papers.html
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.nudt.edu.cn/newweb/research/achievement.htm
http://www.nudt.edu.cn/newweb/research/achievement.htm
http://www.omg.org/technology/documents/formal/naming_service.htm
http://www.omg.org/technology/documents/formal/naming_service.htm
http://www.omg.org/cgi-bin/doc?formal/2001-05-01
http://www.omg.org/cgi-bin/doc?formal/2001-05-01
http://www.omg.org/cgi-bin/doc?formal/2002-11-11
http://www.omg.org/cgi-bin/doc?formal/2002-11-11
http://starbus.nudt.edu.cn/
mailto:bqliu@nudt.edu.cn
mailto:bqliu@nudt.edu.cn
mailto:bqliu@nudt.edu.cn

Liu, Wang, and Yao

Computers and Journal of Computer Science and Technol-
ogy. Dr. Wang has served as a member of the Expert
Committee for Computer Software and Hardware of the
National High Technology Research and Development
Program of China (863 Program). Since 1990, he has
chaired more than 10 research projects under the grants of
the National Natural Science Foundation of China, 863
Program, and the National Basic Research Program of
China (973 Program), etc. In 2003, he was awarded one
2nd class National Science and Technology Advance
Award. Up to now, he has published more than 90 papers
and directed 20 graduate students. His research focuses on
distributed object, agent technology, grid computing and
network security. His e-mail address is
<whm_w@163.com>.

YIPING YAO is a professor of School of Computer in
National University of Defense Technology. In this school,
he received his M.S. and Ph.D. degrees in 1987 and 2004
respectively. he received his B.S. degree in computer sci-
ence from Huazhong University of Science and Technol-
ogy in 1985. He worked in America from March 1996 to
July 1997. At present, he has achieved 2 second-class Na-
tional Science and Technology Advance Awards and 8
Provincial Science and Technology Advance Awards.
More than 40 papers and 3 monographs were also pub-
lished. His research areas are distributed simulation and
virtual reality. His e-mail address is
<ypyao@nudt.edu.cn>.

1794

mailto:whm_w@163.com
mailto:whm_w@163.com
mailto:whm_w@163.com
mailto:ypyao@nudt.edu.cn
mailto:ypyao@nudt.edu.cn
mailto:ypyao@nudt.edu.cn

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

