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ABSTRACT 

Most research on lot-size optimization has concentrated on 
single-stage batch production systems.  However, in prac-
tice it is of interest to optimize performance over multiple 
processing stages, where stages are not independent.  The 
models in this study consider two stages, where multiple 
products are produced using the processing stages sequen-
tially.  The objective is to minimize total lot flow times 
across both stages by selecting the optimal lot sizes for 
each product, subject to these remaining constant across 
both stages.  Analytical relationships can be developed but 
rely on the assumption of lot interarrival time independ-
ence.  This is clearly not the case in most manufacturing 
problems.  Better solutions can be obtained experimentally 
using simulation and response surface methods.  Alterna-
tively, an approach has been developed that allows dy-
namic feedback to be used in adjusting analytical relations 
to compensate for auto-correlation.  Results using this ap-
proach compare well with those obtained experimentally. 

1 INTRODUCTION 

Since the lot-sizing problem is fundamental to batch pro-
duction system performance, lot-sizing approaches to 
guide manufacturing practise are highly desirable.  Lot 
sizes can be treated as decision variables if queuing theory 
is used to describe the behavior of lots of parts flowing 
through a capacity-constrained system.  It is then of pri-
mary interest to determine lot sizes that will minimize flow 
times and work-in-process (WIP) inventory, thus enhanc-
ing the performance of the manufacturing system. 

The objectives of this research are three fold.  The first 
objective is to demonstrate an experimental approach for 
determining optimal lot sizes using discrete-event simula-
tion and response surface methods.  A two-stage system 
processing multiple product types is assumed.  The second 
objective is focused on investigating analytical models for 
predicting lot flow times and determining lot sizes that will 
minimize average flow times.  Lot interarrivals are de-
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scribed by the first two moments of a general distribution, 
with lot interarrival times assumed to be independent.  Lot 
service times are also described by the first two moments 
of a general distribution, where service times include a 
setup time for each new lot of parts and a processing time 
based on the lot size.  Analytical lot size optimization may 
be used in attempting to minimize average lot flow times 
across multiple stages.  However, performance is shown to 
be poor when compared to experimental results.  This is 
due to auto-correlation effects.  The final objective is to 
demonstrate a methodology that overcomes the limitations 
of assuming independent lot interarrival times.  The ap-
proach is to use dynamic performance feedback to adjust 
queuing relationships so auto-correlation is compensated 
for.  This methodology is an extension to the recent work 
by Enns and Li (2004) on single-stage problems.   

2 LITERATURE REVIEW 

Since the 1980’s, several researchers have dealt with sto-
chastic lot interarrival times and the prediction of lot queue 
or flow times.  Karmarkar was one of the earliest to exam-
ine the effects of lot-sizing policies using queuing models.  
Several papers were published describing the impact of the 
lot sizes on flow times and work-in-process (WIP) inven-
tory.  Analysis of the single-product, single-stage problem 
(Karmarkar, 1987) dealt primarily with M/M/1 and M/G/1 
queuing assumptions.  Later extensions included multiple 
product, multiple stage models.    

The single-stage lot sizing problem of most relevance 
to manufacturing is one that allows general interarrival 
time assumptions.  Only approximate GI/G/1 queuing rela-
tionships can be used since no closed form solution exists.  
These approximations are based on the mean and variance 
of the interarrival and service time distributions.  Examples 
can be found in Whitt (1983) and Buzacott and Shanthi-
kumar (1993).  When the entities in queue are considered 
to be lots of parts, the lot size can be considered a decision 
variable.   
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Lambrecht and Vandaele (1996) derived the approxi-
mate relationships between lot size and expected flow 
times for a single product, single stage GI/G/1 model.  Op-
timal lot sizes were determined using a steepest-descent 
algorithm.  As well, the variance of lot flow times was 
considered. Lambrecht, Ivens and Vandaele (1998) ex-
tended the development of this lot-sizing approach, as part 
of a scheduling procedure called ACLIPS, to multiple 
product types moving through multiple stages. 
 Enns and Choi (2002) derived sets of equations, based 
on differentiation, to obtain optimal lot sizes for GI/G/1 
approximations where multiple products were considered. 
These relationships were used to study the performance of 
a production system using Material Requirements Planning 
(MRP).  Fowler, et. al (2002) investigated lot-size optimi-
zation in a multiple product, multiple stage production en-
vironment through the use of queuing relationships and 
Genetic Algorithm search techniques.   
 Finally, Enns and Li (2004) considered the problem of 
auto-correlation between lot interarrival times in manufac-
turing systems.  It was demonstrated that lot size optimiza-
tion based on GI/G/1 assumptions worked poorly in a mul-
tiple product, single stage environment where lot arrivals 
were derived from accumulated independent customer de-
mand.  A methodology was developed that used dynamic 
performance feedback to adjust queuing relationships so as 
to compensate for auto-correlation effects.    

3 A SIMPLE TWO-STAGE MODEL 

This research extends the work of Enns and Li (2004) to 
consider optimal lot sizing across multiple serial stages.  A 
simple problem environment was developed to facilitate 
experimentation, as shown in Figure 1.  There are two out-
lets at which individual customer orders are placed, with 
each outlet providing a different product.  The customer 
order interarrival times at the outlets are assumed to have a 
coefficient of variation of cc,j, where j is the stock keeping 
unit (SKU) or product type.  These customer orders are 
batched until a quantity of Qj orders have been received. 
The lot-size orders are then released and take some time to 
arrive at the first capacity-constrained resource.  This order 
placement delay has a coefficient of variation of co,j.  When 
the orders are received, they are placed in queue.  The 
merged arrival stream for the orders to this first stage has a 
coefficient of variation of ca,1.  The lots at the first stage, 
designated as i equal to 1, are processed in first-come-first-
serve (FCFS) order.   
 When all the parts in the lot have been processed, the 
lot is shipped to a second stage, designated as i equal 2, for 
an additional processing step.  A transit delay is incurred 
during shipping.  The processing of each lot-size order at 
each resource requires a setup time and a processing time 
for each unit in the order.  The coefficient of variation of 
lot-size service times is designated as cs,i.  Once the lot-size 
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orders have been processed at both stages, they are shipped 
to the outlet that placed the order.  The coefficient of varia-
tion of lot interdeparture times is designated as cd,i , while 
the coefficient of variation of lot transit times is shown as 
cf,j.  
 The objective is to determine lot size quantities, Qj, 
that will minimize the replenishment time, defined as the 
time from when a lot-size order is placed to the time it is 
received.  If the lot sizes are too small, there will be too 
many setups incurred at the capacity-constrained resources.  
Utilization will be high and long queue times will result.  If 
the lot sizes are too large, the resources will be committed 
to one product type for too long and other orders will have 
to wait longer than necessary, causing excessive average 
lot flow times. 
 In the scenario considered, all order and lot transit 
times are assumed to be independent of the lot sizes and 
therefore have no effect on minimizing replenishment cy-
cle times.  However, since these transit time delays are sto-
chastic, the distribution of these times will affect the vari-
ability of lot interarrival times to the queues.  In other 
words, as the coefficient of variation, ca,i, increases due to 
more variable transit times, the average queuing delays 
will also increase.  Since transit times affect the choice of 
optimal lot sizes only through ca,i, the optimal lot sizes are 
simply those that minimize the average weighted lot flow 
times at the capacity-constrained resources, defined as the 
sum of queue times and lot processing times.  
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Figure 1:  Diagram of Experimental Scenario 

 
 In this paper the problem is illustrated using an exam-
ple based on the following set of assumptions.  The mean 
demand rates for the product types at each outlet, D1 and 
D2, are assumed to be 44 and 50 units per period, respec-
tively.  The customer order interarrivals are described by a 
Poisson process, with each order quantity being 1.  There-
fore, the coefficients of variation for the customer interar-
rival times, cc,j, are 1.  However, the lot-size order releases 
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will have a lower coefficient of variation and will be auto-
correlated if the lot size exceeds 1.  The order placement 
delays are all assumed to be lognormal, with a mean of 5 
periods and a standard deviation of 1.  Therefore, the co,j 
values are 0.20.   

The setup times at the first stage, τ1,1 and τ1,2, are as-
sumed to be 0.30 and 0.20 periods per lot for product types 
1 and 2 respectively, while the part processing rates,  P1,1 
and P1,2, are 120 and 140 units per period, respectively.  
These setup and processing times were considered to be 
deterministic.  Once a lot of parts is completed at the first 
stage, it is transported to the second stage.  The transit time 
distributions for lots of both product types traveling to the 
second stage are assumed to be lognormal; each with a 
mean of 2.0 and a standard deviation of 0.6.  The setup 
times at the second stage, τ2,1 and τ2,2, are assumed to be 
0.25 and 0.30 periods per lot for product types 1 and 2 re-
spectively, while the part processing rates,  P2,1 and P2,2, 
are 150 and 110 units per period, respectively. 

4 EXPERIMENTAL LOT-SIZE OPTIMIZATION   

The first stage in analysis is to determine the optimal lot 
size combination, Q1 and Q2, experimentally using dis-
crete-event simulation and response surface methods 
(RSM).  A two-stage simulation model was developed us-
ing ARENA 5.0 (Kelton, et al., 2002).  Experiments were 
then run using the central composite design (CCD) shown 
in Figure 2.  A total of 26 runs were made, using the num-
ber of replications at each design point indicated within 
brackets in Figure 2.  A warmup of 1000 periods was used 
to reach steady-state conditions, with data collection con-
tinuing for 100,000 periods in each run.   
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115, 115 (2) 155, 115 (2)
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107, 135 (2)
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Figure 2:  Central Composite Design 

 
 The average total lot flow time results at the capacity-
constrained resources were analyzed using Design Expert® 
6.0.  A quadratic model, shown as Equation (1), fit the re-
sults nicely.  Lack-of-fit was not significant at the 95% 
confidence level and the resulting model had an R2 value of 
97.4%.  Figure 3 shows a normal probability plot of the re-
siduals. 
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 The response surface generated by this model is shown 
in Figure 4.  It is obviously quite flat along some  lines of 
orientation through the optimal, indicating there will be a 
variety of lot size combinations performing well.  Figure 5 
shows a contour plot of the surface around the optimal. 
 The optimizer in Design Expert® was used to deter-
mine the best lot size combinations to minimize the mean 
lot flow times (Montgomery, 2001).  These values were 
found to be 132 and 135, with a predicted average total 
flow time of 4.23 periods per lot.  This optimal lot size 
combination, was used in running five additional replica-
tions.  The average total lot flow time was 4.233, with av-
erage flow times of 2.213 and 2.020 at stages 1 and 2 re-
spectively.  The observed ca,i values were 0.690 and 0.567 
respectively.  The utilization levels at stages 1 and 2 were 
0.898 and 0.942 respectively. 
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Figure 3:  Normal Probability Plot of Residuals 
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Figure 5:  Contour Plot of Lot Flow Times 

5 GI/G/1 LOT-SIZE OPTIMIZATION  

Approximate lot-sizing relationships to minimize mean lot 
queue or flow times have been developed in previous re-
search.  However, these are based on restrictive assump-
tions about the interarrival times.  If general interarrival 
time distributions are used, they are usually based on the 
assumption of independent arrivals.  This is clearly not the 
case in many applications involving lot sizes.  Therefore, it 
is necessary to evaluate if these relationships still provide 
reasonable flow time estimates.  Good estimates of flow 
times facilitate finding optimal lot sizes to minimize flow 
times. 
 When the lot interarrival time distribution is assumed 
to be general, it is usually satisfactory to describe it in 
terms of the first two moments; the mean and standard de-
viation.  In this case, the following approximations can be 
used to estimate mean flow times, WTot, across a two-stage 
system.   

 W W W WTot t t t i t
i

m

, , , ,= + =
=
∑1 2

1
   (2) 

For each stage i, the following flow time approximation 
can then be substituted. 
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where Wq(i,t) is the weighted mean queue time at stage i, 

tix ,  is the weighted mean lot service time, ca(i,t) is the coef-
ficient of variation for lot interarrival times, cs(i,t)  is the co-
efficient of variation for lot service times and  ρi,t is the 

utilization rate.  If the parameters of the system are allowed 
to change through time, the subscript t indicates the values 
are for the current time.  These relationship are based on 
steady-state GI/G/1 queuing assumptions, which means the 
interarrival times are independent. 
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 When the entities in queue represent lots of parts, the 
weighted mean lot service time, including setup times, for 
n product types processed at stage i is given by the follow-
ing, 
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where j is the product type index, Dj is the demand rate, Qj 
is the product type lot size, Pi,j is the part processing rate at 
resource i, and ji ,τ  is the lot setup time at resource i. 
 The utilization rate for the stage i resource, including 
setup times, is then given by the following, 
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This value is constrained to be less than 1 under steady-
state conditions. 
 If it is assumed the lot setup times and part processing 
times are deterministic, the squared coefficient of variation 
for the lot service times at each stage i is expressed as fol-
lows, 
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 The objective is to solve for the lot sizes, Qj

*, that will 
minimize the average total lot flow times.  This can be 
done by taking the partial differential of Equation (2) with 
respect to each Qj, setting the resulting set of equations 
equal to 0 and then solving them simultaneously for Qj

*  
(Enns and Choi, 2002).  The resulting set of equations is 
shown as Equation (7). 
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where, 
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This nonlinear set of equations can be solved readily using 
various software, such as the Solver in Excel®. 

When the simulation was run with the optimal lot sizes 
based on the response surface model developed previously,  
ca,i values of  0.690 and 0.567 were observed.  If these  
values are used in Equation (7), the best lot sizes are found 
to be 185 and 161, with a predicted total lot flow time of 
7.997.  These lot sizes are significantly larger than the op-
timal lot sizes of 132 and 135 obtained experimentally in 
the previous section.  Therefore, it can be concluded that 
violating the assumption of independence cannot be ig-
nored when optimizing lot sizes with auto-correlated lot 
interarrival times. 

While it is possible to obtain optimal lot sizes experi-
mentally, this is impractical in real batch production envi-
ronments.  As well, the present analysis reveals it is insuf-
ficient to simply observe the lot interarrival time 
coefficients of variation, ca,i, and compute the optimal lot 
sizes using GI/G/1 relationships.  Therefore, development 
of a practical approach that uses queuing relationships but 
takes auto-correlation into account is desirable.  
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6 DYNAMIC LOT-SIZE OPTIMIZATION  

It is difficult to deal with the problem of auto-correlated 
data analytically.  Auto-regressive models can be used to 
analyze the behaviour but queuing relationships that allow 
lot-size optimization with correlated data have not been 
developed.  Therefore, an alternative approach developed 
by Enns and Li (2004) is applied.  This approach assumes 
the GI/G/1 relationships might prove satisfactory for lot-
size optimization if ca could be replaced by some other 
suitable parameter which is not actually the interarrival 
time coefficient of variation.  In other words, it is assumed 
the form of Equation (2) is suitable and that Equation (7) 
could be used to find near optimal lot sizes if appropriate 
adjustments could be made to the lot interarrival time pa-
rameter, ca,i.  This adjusted parameter will be designated as 
c’a,i. 
 The strategy is to use a dynamic feedback approach, 
implemented in a test bed where ARENA® is linked to 
Excel® through the use of Visual Basic for Applications® 
(VBA).  This involves taking the terms in Equation (2) re-
lated to Wq(i,t), replacing ca,i  with c’a,i, and rearranging them 
as shown in Equation (8). 
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A dynamic estimate of queue time, Wq(i,t), can be ob-

tained using exponential smoothing.  Every time a lot is 
completed at each capacity-constrained resource, the ob-
served queue time for the lot is used to update Wq(i,t).  This 
value is then fed over to the Excel® spreadsheet program 
where Wq(i,t) is plugged into Equation (8), along with the 
current values of tix , , ti,ρ  and cs(i,t).  The value of c’a(i,t), 

which might be termed the implied lot interarrival time co-
efficient of variation, is then solved for.  In other words, 
this adjusted coefficient of variation value is the one that 
would result in the observed flow times, given independent 
lot interarrival times.  This implied lot interarrival time co-
efficient of variation, c’a(i,t), is then used in solving for the 
current optimal lot sizes, Q*

j,t, using Equation (7).  As well, 
the values of tix , , ti,ρ , and cs(i,t) are updated, based on the 

new Q*
j,t values.  Equations (4)-(6) are used for this pur-

pose.  Finally, the new lot sizes are dynamically fed back 
to the ARENA® simulation program to determine the lot 
size quantities for any new order releases.   

This feedback approach for dynamic lot sizing was 
applied to the previous problem. An exponential smoothing 
constant of 0.05 was used and five replications were run.  
Each replication included a warm-up period of 1,000 and 
data collection over 40,000 time units.   
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The average c’a(i,t) values used in lot size computations 
were 0.338 and 0.276 for stages 1 and 2 respectively.  
These are considerably less than the previous observed 
ca(i,t) values.  Figure 6 shows a typical plot of the dynamic 
c’a(i,t) values through time.  The time-averaged values of 
Q*

j.t were 154 and 133 for product types 1 and 2 respec-
tively.  Figure 7 shows a typical plot of the dynamic lot 
sizes.  The average lot queue times, Wq(i,t), were 0.717 and 
0.809, while the average lot flow times, Wi,t , were 2.054 
and 2.217 at stages 1 and 2 respectively.  The average total 
lot flow time of 4.271 compares well with the average total 
lot flow time of 4.233 observed using the optimal lot sizes 
of 132 and 135 obtained experimentally.  The observed 
utilization levels were 0.885 and 0.932 at stages 1 and 2 
respectively. 

 

 
Figure 6:  Implied Interarrival Time Coeff. of Variation 

 

 
Figure 7:  Dynamic Lot Sizes 

 
The observed mean lot flow times using the dynamic 

lot-sizing approach based on feedback were very close to 
the mean lot flow times obtained using the optimal lot sizes 
determined experimentally.  The flow time value of 4.271 
obtained using dynamic lot sizing is around 1.0% higher 
than the flow time value of 4.233 obtained using static lot 
sizes of 132 and 135.  Therefore, it can be concluded that 
the dynamic lot-sizing approach works well for lot size op-
timization in this serial-stage problem.  In general, the ap-
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proach would appear to be suitable when common lot sizes 
are required across multiple serial stages. 

7 CONCLUSIONS 

This purpose of this research was to further investigate a 
dynamic feedback approach to adjust queuing relationships 
for auto-correlation.  Previous work dealt with a single-
stage problem.  The current study has extended the results 
by showing the approach can also be effectively applied to 
serial-stage problems where common lot sizes are desired 
across stages.  The queuing relationships exploited to op-
timize lot sizes are based on summing the relationships for 
single-stage problems, while constraining lot sizes at each 
stage to be equal.  This simple approach can be exploited 
since lot interarrival times at each stage are monitored, 
with adjustments made accordingly.  Therefore, interdepar-
ture time distributions from upstream stages do not need to 
be explicitly considered.  The approach was found to per-
form well for the sample problem tested and would appear 
to be both robust and practical. 

Further research should consider more complex sce-
narios.  As well, there is an opportunity to use models 
based on this approach to better understand the impact bot-
tleneck resources have on performance.  Of particular in-
terest would be studying the use of this lot-size optimiza-
tion approach to help mitigate bottleneck effects.   
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