
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

A KANBAN MODULE FOR SIMULATING PULL PRODUCTION IN ARENA

Mark A. Treadwell
Jeffrey W. Herrmann

Institute for Systems Research

University of Maryland
College Park, MD 20742, U.S.A.

ABSTRACT

In the short timeline of rapid improvement events (kaizen
events), it is difficult to use the full power of simulation
because of the time required to construct models, particu-
larly if the system uses pull production control methods
such as kanbans. This paper describes multiple ways to
model pull production control and compares them on
measures related to model construction and execution. A
kanban workstation module significantly reduces the time
required to develop a pull production model, which makes
simulation more useful as a decision-making tool in rapid
improvement events.

1 INTRODUCTION

One popular tactic in the lean manufacturing “toolbox” is
the rapid improvement, or kaizen, event. A rapid im-
provement event comprises a highly compact sequence of
activities: examining the current conditions, identifying po-
tential areas of improvement, and implementing the pro-
posed changes. Usually these events take place over the
course of a single week, with several weeks of preparation
beforehand and a follow-up analysis period afterwards.

Since facilities are placed back into production imme-
diately following the conclusion of the event, it is generally
not feasible to extensively test a wide range of system con-
figurations. In this situation, simulation can be extremely
helpful for investigating alternative designs; however,
given the compressed timeline, it can be difficult to pro-
duce a helpful model. This problem is exacerbated when
one considers that kanbans and other pull production con-
trol methods are frequently implemented to limit work-in-
process inventory. The extra complexity of pull produc-
tion control increases model construction time even fur-
ther.

This paper focuses specifically on kanbans, which are
a popular method for implementing pull production control
in manufacturing cells. A kanban is a card or some other
mechanism that authorizes the workstation to produce a

141
part. When the workstation completes the part, the kanban
stays with the part in the downstream workstation’s input
queue (or buffer). When the downstream workstation be-
gins working on the part, the kanban is released. In a sim-
ple production line, raw material waiting to be processed at
the first workstation has no kanbans. At the last station, a
part’s kanban is released as soon as the part leaves the sta-
tion (so that the last station is always authorized to work).

Manufacturing cell design processes are used by many
firms, as described in Suzaki (1987), Suri (1988), Rother &
Harris (2001), Conner (2001), Hales & Andersen (2002),
and Hyer & Wemmerlöv (2002). For more about pull pro-
duction control and kanbans, see Hopp and Spearman
(2001), Askin and Goldberg (2002), and Black and Hunter
(2003).

Modern discrete-event simulation software has many
modules to help analysts quickly construct simulation
models of manufacturing systems. These include stations,
conveyors, and guided transporters, to name a few. More-
over, simulation is a very useful tool for designing manu-
facturing systems. See, for instance, the survey by Smith
(2003).

Pull production control, however, has not been ade-
quately addressed. This paper discusses various ways to
implement pull production control in discrete event simula-
tion (specifically, Arena, by Rockwell Software) and de-
scribes work done to compare the construction effort and
execution time of models built using these alternative ap-
proaches. A kanban workstation module was found to be
the best approach. In this approach, kanbans are modeled
as resources. Thus, all of the overhead for tracking kan-
bans is managed internally, while providing flexible op-
tions for entity creation or input from an external source.
The analyst needs to include only a single, easily custom-
ized module to represent each workstation. Constructing a
complete model then requires much less effort than if it
were to be constructed from standard Arena components.
At this point, the kanban workstation module can model
stations with parallel, identical servers but cannot be used
for fork or join processes.

3

Treadwell and Herrmann

Gahagan and Herrmann (2001) identified the need for
adaptable simulation models for evaluating different pro-
duction control policies. They described a general frame-
work that covers a wide variety of production control poli-
cies, not just kanbans. Williams, Ülgen, and DeWitt
(2002) created a kanban simulator that uses an Excel
spreadsheet as the interface to manage the parameters of a
Witness simulation model. Their system provides sophis-
ticated modeling of storage and transportation systems, al-
lowing for automatic optimization of the number of kanban
cards and tracking of inventory levels. This approach,
while offering excellent support for in-depth analysis, was
not designed for the quick construction of simulation mod-
els during a rapid improvement event.

The rest of this paper is organized as follows: Section
2 describes the alternative modeling approaches. Section 3
discusses the design of the experiments that were per-
formed. Section 4 presents the results, and Section 5 con-
cludes the paper.

2 MODELING ALTERNATIVES

Using a modern simulation software package such as
Arena gives an analyst a great deal of flexibility. Conse-
quently, there are many different possible ways to model a
workstation using kanbans. In this work, we focused on
two concepts: modeling kanbans as entities, and modeling
kanbans as resources. These concepts were implemented
in various ways, as described below.

The first model examined was one constructed previ-
ously to model a kanban pull production line. This model
used entities to represent the kanban cards and operators,
and had them flowing through the system alongside the
parts. Operators, cards, and incoming parts would wait in
queue until all three were available at one station, and then
incoming parts were transformed to kanban cards and re-
turned to the previous station while a new card took on the
logical identity of the part. This strategy is probably not
the best way to model a kanban system; while it does accu-
rately represent the functionality of the system, the logic
within the model is very difficult to follow, as shown in
Figure 1. The conceptual representation is also very com-
plicated, as no single entity exists to symbolize a part mov-
ing through the system; each part is represented by a dif-
ferent kanban card for each station it passes through. The
model can be made more efficient by removing the entity
type and entity picture assignments which follow each
process, but this does not change the logic governing its
function. The simplified model type will be referred to as
Entity in this paper, and the original version as Entity2.

Since a limited number of kanban are available at each
workstation, and they are only accessed by a single entity
at any one time, the modeling of the system can be simpli
fied by using resources to represent kanban cards. This
does not affect the logic behind the model, but lets Arena
14
handle all the work involved in managing the cards. This
model type will be referred to as Resource; its governing
logic is shown in Figure 2.

Figure 1: Logic for a Normal Workstation in the Entity2
Model Type.

Figure 2: Logic for a Normal Workstation in the Re-
source Model Type

The high-level constructs that Arena users work with

are made up of low-level blocks and elements. These cor-
respond directly to the Siman code produced to run the
simulations; in order to run a model, Arena must translate
modules and data into these component units. Building a
model with blocks and elements reduces the amount of
time required to compile and run a model; this is referred
to as the Resource Block model type.

Finally, the logic of the Resource Block model type
was used to create a kanban workstation module that a user
can easily manipulate while modeling complex systems.
The kanban workstation module includes a dialog that en-
compasses all information necessary to define a work-
station, including a name, its position, an expression for
processing time, and the number of kanban available at the
station. The main departure from the Resource Block
model type is that the kanban workstation module contains
logic to handle several different situations, for instance sta-
tions at the beginning, middle, and end of a kanban produc-
tion line. These stations employ most of the same logic but
each have slightly different requirements; the kanban
workstation module incorporates all three, with several al-
ternate logical paths to be selected based on the user's
choice in the module customization dialog. The logic is
pictured in Figure 3 below, with boxes drawn to denote the
various paths; the customization dialog is shown in Figure
14

Treadwell and Herrmann

4. The rest of the paper will refer to this as the Module
model type. The Arena template file is available online at
the following URL:
<http://www.isr.umd.edu/Labs/CIM/projec
ts/lean/kanban/>.

Figure 3: Logic Defining the Kanban Workstation Mod-
ule.

Figure 4: User Interface of the Kanban Work-
station Module.

3 EXPERIMENTAL DESIGN

The purpose of the experiments was to determine how the
different model types affected the effort needed to con-
struct a simulation model and the computational effort
needed to run the model.

To measure the effort required for the user to create
and customize a workstation, we counted the number of
user actions to construct a typical station. Three work-
station positions were examined: a beginning workstation
that generates parts, assuming an infinite supply of raw
material, and sends them to another kanban workstation; a
normal workstation that has kanban-enabled workstations
before and after; and an end workstation that produces
completed parts (there is no workstation afterwards). For
each of the model types described above, user actions were
counted for constructing a first station, constructing a nor-
mal station using new modules, constructing a normal sta-
tion by modifying a copy of an existing normal station,
constructing an end station with new components, and
141
modifying an end station from an existing normal station.
Table 1 presents a sample list of the user actions required
to create a new normal station in the Resource model type.
Individual modules in the model are listed on the left, with
the required customization steps on the right.

Table 1: User Actions Required for Sta-
tion Creation

Normal Station (From scratch)
Seize Create
 Connect to previous
 Name
 Add resource
 Resource name
 Add resource
 Resource name
Release Create
 Connect to previous
 Name
 Add resource
 Resource name
Process Create
 Connect to previous
 Name
 Action
 Delay type
 Delay units
 Delay expression
Release Create
 Connect to previous
 Name
 Add resource
 Resource name

To measure computational effort, we generated the

Siman code for each model and counted the number of
statements produced for each station position. We also ran
the models and measured the time needed to execute mul-
tiple replications.

To verify the effects of the different model types in a
realistic setting, several different models were tested. An
existing simulation model of a nine-station cartridge as-
sembly line represented a typical scenario for a rapid im-
provement event; a three-station assembly line served as a
short model; and a rebalanced version of the short model
demonstrated the effects of including multiple servers at a
station. Each model was adapted to use the five model
types described in Section 2; the average time of ten runs
from calling Arena to its return was calculated, where each
run consisted of ten replications of 100 hours each.
5

http://www.isr.umd.edu/Labs/CIM/projects/lean/kanban/
http://www.isr.umd.edu/Labs/CIM/projects/lean/kanban/

Treadwell and Herrmann

4 EXPERIMENTAL RESULTS

Figure 5 portrays the effort required to construct stations in
various positions for each type of model. The Module
model type consistently requires significantly less effort
than the other model types, ranging from 50% fewer user
inputs to 90% fewer.

Comparison of User Efforts

0

10

20

30

40

50

60

70

80

First station Normal (new) Normal
(modify)

End (new) End (modify)

Model Type

Nu
m

be
r

of
 a

ct
io

ns
 r

eq
ui

re
d

Entity Entity2 Resource Resource block Module

Figure 5: Comparison of Effort Required for Vari-
ous Model Types and Workstation Positions.

Table 2 gives the number of statements produced by

each model type. While the Resource Block model type
generates the smallest number of statements, the Module
model type is not far behind.

Table 2: Number of Statements Generated by Various
Model Types for Several Workstation Positions.

Workstation Position Model
Type Beginning Normal End
Entity 15 28 21

Entity2 16 32 23
Resource 15 13 19

Resource Block 6 5 6
Module 9 8 10

Figure 6 plots the number of statements for all three

workstation positions in each model type against the num-
ber of user inputs. In both cases, smaller numbers are bet-
ter; it is clear that the Module model type does a better job
on both performance measures.

The mean runtimes observed for each model type, ap-
plied to each of the three models, are listed in Table 3 be-
low. Since runtimes are directly related to the number of
statements that must be processed, it is not surprising that
the Resource Block model type has the lowest times.
However, the Module model type is close behind.

1416
User vs. Computer Effort

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120

User inputs (blank module configuration)

St
at

em
en

ts
 to

 p
ro

ce
ss

 m
od

ul
e

Entity Entity2 Resource Resource Block Module

Figure 6: Comparison of User Effort to Number of State-
ments Produced.

Table 3: Mean Runtimes for Various Model Types,
Applied to Three Models.

Model Model
Type Simple Cartridge Multi
Entity 4 11.3 5.3

Entity2 4.5 12.2 5.9
Resource 3.9 7.5 5.3

Resource Block 2.1 3.8 2.7
Module 2.5 5.1 4.3

5 CONCLUSIONS

The results detailed in the previous section have demon-
strated that the kanban workstation module achieves our
goal of reducing user effort. Based on the number of in-
puts required, a user building a simulation model with this
tool should be able to complete initial construction in less
than half the time he or she would have required when us-
ing conventional means. This savings is accomplished
mainly by automating the process of filling in repeating pa-
rameters such as the module name, and allowing Arena to
manage naming and tracking of all the required resources.

Comparisons to other model types demonstrate that
use of the module does not increase the computing time re-
quired to run a model; in fact, models built with the kanban
workstation module ran faster than all of the other models
except those built from the most low-level model type
(which is, correspondingly, the least user-friendly as far as
the interface goes). Runtime savings are on the order of 33
to 50% for a fairly large model with nine stations; the de-
crease is only a few seconds in this case, but for even big-
ger models the difference becomes more significant.

The targeted use of this simulation construction tool is
the kaizen rapid improvement event; due to the short time-
line and frequently complex models involved, any time
that can be saved in the construction of a simulation model
can make a significant difference in the overall success of
the project. The ability to create and adapt simulation
models quickly and easily makes it possible for more con-

Treadwell and Herrmann

cepts to be evaluated in a short time. Simulation can then
play a larger role and provide better support for decision
makers, which will improve the outcome of the project.

REFERENCES

Askin, Ronald G., and Jeffrey B. Goldberg. 2002. Design
and analysis of lean production systems. New York:
Wiley.

Black, J.T., and Steve Hunter. 2003. Lean manufacturing
systems and cell design. Dearborn, Michigan: Society
of Manufacturing Engineers.

Conner, Gary. 2001. Lean manufacturing for the small
shop. Michigan: Society of Manufacturing Engineers.

Gahagan, Sean M., and Jeffrey W. Herrmann. 2001. Im-
proving simulation model adaptability with a produc-
tion control framework. In Proceedings of the 2001
Winter Simulation Conference, ed. B.A. Peters, J.S.
Smith, D.J. Medeiros, and M.W. Rohrer, 937-945. Ar-
lington, Virginia: Institute of Electrical and Electron-
ics Engineers.

Hales, H. Lee, and Bruce Andersen. 2002. Planning manu-
facturing cells. Dearborn, Michigan: Society of Manu-
facturing Engineers.

Hopp, Wallace J., and Mark L. Spearman. 2001 Factory
physics. 2nd ed. Boston: McGraw-Hill.

Hyer, Nancy, and Urban Wemmerlöv. 2002. Reorganizing
the factory: Competing through cellular manufactur-
ing. Portland, Oregon: Productivity Press.

Rother, Mike, and Rick Harris. 2001. Creating continuous
flow: An action guide for managers, engineers and
production associates. Massachusetts: The Lean En-
terprise Institute, Inc.

Smith, J.S. 2003. Survey on the use of simulation for
manufacturing system design and operation. Journal
of Manufacturing Systems 22 (2): 157.

Suri, Rajan. 1998. Quick response manufacturing: A com-
panywide approach to reducing lead times. Oregon:
Productivity Press, Inc.

Suzaki, Kiyoshi. 1987. The new manufacturing challenge:
Techniques for continuous improvement. New York:
The Free Press.

Williams, Edward J., Onur M. Ülgen, and Chris DeWitt.
2002. An approach and interface for building generic
manufacturing kanban-systems models. In Proceedings
of the 2002 Winter Simulation Conference, Volume 2,
eds. Enver Yücesan, Chun-Hung Chen, Jane L. Snow-
don, and John M. Charnes, 1138-1141.
141
ACKNOWLEDGMENTS

The authors wish to thank the personnel at Naval Surface
Warfare Center, Indian Head Division, for their coopera-
tion with this research, particularly Jonathan Ross and
Chester Clark.

AUTHOR BIOGRAPHIES

MARK A. TREADWELL is a student in the Department
of Mechanical Engineering at the University of Maryland,
College Park. He is a member of INFORMS and ASME.
His e-mail address is <mtread@umd.edu>.

JEFFREY W. HERRMANN is an associate professor at
the University of Maryland, College Park, where he holds
a joint appointment with the Department of Mechanical
Engineering and the Institute for Systems Research. He is
the director of the Computer Integrated Manufacturing
Laboratory. He is a member of INFORMS, ASME, IIE,
SME, and ASEE. He received his Ph.D. in industrial and
systems engineering from the University of Florida. His e-
mail address is <jwh2@umd.edu>.
7

mailto:mtread@umd.edu
mailto:jwh2@umd.edu

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

