
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

LANGUAGE BASED SIMULATION, FLEXIBILITY, AND DEVELOPMENT SPEED
IN THE JOINT INTEGRATED MISSION MODEL

 David W. Mutschler

NAVAIR Air Combat Environment Test & Evaluation Facility (ACETEF)
48150 Shaw Road, Unit 5, Bldg 2109, S115,

Patuxent River, MD 20670, U.S.A.

ABSTRACT

The Joint Integrated Mission Model (JIMM) uses generic
system components and a simulation language that allows
developers to program specific system, platform, and
player characteristics, tactics, and doctrine. This permits
great flexibility in simulation design and rapid modifica-
tion of system types in complex simulations. However, the
time and expense of developing complex simulations can
be longer than desired. These costs can be mitigated by
constructing scenarios for reuse and providing example
scenarios for common use. In addition, a graphics user in-
terface (GUI) can also facilitate reuse and perform some
functions faster and more easily than can be achieved di-
rectly through simulation language text editing. This paper
will discuss efforts in simulation construction, simulation
reuse, and GUI development currently undertaken by the
JIMM Model Management Office (JMMO).

1 INTRODUCTION

The Joint Integrated Mission Model (JIMM) is a general-
purpose mission-level discrete-event simulator used pri-
mary for requirement analyses and installed system test
(Lattimore 2004; Nalepka 2000; Nalepka, Gump, and
Kurker 2001). JIMM is a major component of the Joint
Strike Fighter Program Office (JSFPO) Strike Warfare
Collaborative Environment (SWCE) toolset. It is also the
means for integrated operation at the NAVAIR Air Combat
Environment Test & Evaluation Facility (ACETEF). In
these and other capacities, it has been used for a variety of
efforts including Compass Call testing, Network Centric
Warfare (NCW) analyses, Analysis of Unmanned Air Ve-
hicles (Niland and Skolnik et al. 2005), Joint Theatre Mis-
sile Defense (JTMD) testing, and operation in the JSF Vir-
tual Strike Warfare Environment (VSWE) events.

JIMM is maintained by the JIMM Model Management
Office (JMMO). Originally created as a merge of the Air
Force SUPPRESSOR and the NAVAIR Simulated Warfare
Environment Generator (SWEG) models, JIMM was pre-

119
viously managed by the Electronic Systems Center (ESC)
at Hanscom Air Force Base. It has resided at the NAVAIR
ACETEF site since July 2004.

The JMMO currently manages two variants of the
JIMM model. One variant is used primarily by the Joint
Strike Fighter (JSF) Program and boasts of an ellipsoidal
earth model, phantasms and kalman filtering, and other
features. The second variant is known as the JIMM Ad-
vanced Combat Environment (ACE). JIMM ACE boasts
of multithreading (with parallel execution of events), im-
proved guidance, time-to-die, and additional features. De-
spite different internal structure however, they process the
same simulation input known as the JIMM Conflict Lan-
guage (JCL). Also, the JMMO is currently working to
merge these two versions. Hence, this paper is equally ap-
plicable to them both.

1.1 JIMM Data Capture

Constructively, JIMM has extensive data capture and log-
ging capabilities. This permits a straightforward under-
standing of what occurred during a simulation run. It also
has a very flexible and easy to use post-processing capabil-
ity that allows significant filtering of data. Results of mul-
tiple simulation runs can then be combined and analyzed in
conducting studies and performing evaluations.

1.2 JIMM Virtual Operation

JIMM can also be used to generate virtual threat environ-
ments. It has the ability to allow the substitution of one or
more specific systems by actual systems connected via an
interface (I/F) that uses a well-established shared memory
protocol known as Simulated Warfare Environment Data
Transfer (SWEDAT). When so interfaced, the system can
act and react as if it existed in the simulated environment.

The interfaced systems can take a number of different
forms. It could a piece of equipment (known as the system
under test (SUT)) on a hardware bench. It could be the
collection of systems in a virtual cockpit in the ACETEF
0

Mutschler

Manned Flight Simulator (MFS). It could be any number
of systems represented in environments such as the High
Level Architecture (HLA) or the Distributed Interoperable
Simulation (DIS) protocols. Moreover, the number of in-
terfaced systems capable of operating together in the same
simulation exercise is not restricted.

Figure 1: Integrated Operation in JIMM

1.3 JIMM Steps

Developing simulation exercises in JIMM usually consists
of nine steps.

1. The Language Database (LDB) step is used to ini-
tialize the JIMM Conflict Language (JCL). This
step is often run during JIMM installation and
only its output is referenced thereafter. The LDB
must always be the first step executed.

2. The Icon Database (IDB) step is used to generate
symbols for the JIMM graphics display. IDB
steps must all be executed before the RDB or
CDB in which graphics are employed. This step
is optional.

3. The Ground Database (GDB) is used to process
Digital Terrain Elevation Data (DTED) files into
an intermediate form. This step is only employed
when a terrain skin is used in the exercise.

4. The Environment Database (EDB) step takes the
files created by previous GDB steps and generates
a terrain skin. This step is only employed when a
terrain skin is used in the exercise and must fol-
low all GDB steps.

5. The Type Data Base (TDB) step is used to define
player type structures, tactics, and system charac-
teristics.

6. The Scenario Data Base (SDB) is used to define
instances of player types, provide locations and
initial paths for component platforms. Initial sys-
tem settings are set for specific platforms. During

JIMMInput
Files

SWEDAT

I/F
DIS
I/F

HLA
I/F

Output
Files

System
Under Test

(SUT)
HLA
Exercise

DIS
Exercise
1191
the initial SDB step, the use of terrain (using out-
put from the EDB step), the earth model, and
other scenario settings are established. Any
change in these setting in subsequent SDB steps is
ignored. The final SDB must have language for
final scenario preparation in anticipation of sce-
nario execution.

7. The Run Database (RDB) is used to execute the
scenario and produce simulation output. Data
captured and modes of output are specified. A
random number seed can be varied when using
multiple runs for analysis. The game time at the
end of the previous step determines the initial
game time. At the end of the final SDB step,
game time is zero (0.0). Hence, subsequent RDB
(or CDB) steps must have later end times than
their previous steps.

8. The Configuration Database (CDB) step is similar
to the Run Database step except that it also in-
cludes instruction for integrated operation with in-
terfaced systems.

9. The Analysis Database (ADB) takes RDB (or
CDB) output and filters the captured data for eas-
ier analysis. An ADB step can only be used to fil-
ter the output of a single RDB or CBD step. Mul-
tiple (different) ADB steps can be run using the
same RDB or CDB step as input. ADB output
can be either in text format or in a tab delimited
format for importing into spreadsheets and other
analysis tools.

2 PLAYER STRUCTURE

The main simulation object in JIMM is the “player”. It is
the entity where perceived data concerning threats and
friends is managed and where all thinking operation is per-
formed.

A JIMM scenario may contain multiple instances of
players of the same type. Player types are defined in the
TDB. These type definitions include tactics, platforms,
and systems.

In the SDB, the specific instances of player types are
defined and organized into one or more command chains.
Command chains define specific relationship between
players such as commander, subordinate, and peer. A sin-
gle player may exist in more than one command chain.
Moreover, command chains are further organized into dif-
ferent sides (e.g. “Blue vs. Red”).

The components of a player (usually systems) may be
located at different sites. Hence, these systems are
grouped within a construct known as a “platform”. A plat-
form may or may not move within the scenario. A plat-
form may also have associated shapes.

For example, a jet fighter may be modeled as a simple
single platform player. In addition, a surface to air missile

Mutschler

(SAM) site may have two sensors and one weapon in dif-
ferent locations and hence be modeled as a player with
three platforms. One fighter could only detect and react to
a platform with a sensor while another fighter might only
detect and choose not to react to the platform with the
weapon. Conversely, though the SAM site exists in multi-
ple locations, it would still have only one set of percep-
tions. Hence, if the two sensors each detect the different
jet fighters, the player could allocate the weapon toward
firing at either one of them.

Different systems within a platform may be grouped
together in “elements”. An element may have a suscepti-
bility whereby it can be detected during a sensing event. In
addition, elements may be destroyed during damage reso-
lution.

Figure 2: Player Structure

To continue the example, the jet fighter platform may
have several elements. The element with weapon systems
may have a susceptibility that allows it to be detected and
targeted by the SAM site. When a shot strikes the target
and damage resolved, the element may be destroyed. As-
suming the lost element is not “critical”, the fighter may
survive the strike with its remaining elements intact, react,
and then move away.

In JIMM, there are eight generic system types.

1. Thinker systems allow for processing of perceived
data and execution of tactics (decision logic).

2. Sensor Receivers sense elements and emitting
systems of target platforms.

3. Sensor Transmitters are paired with Sensor Re-
ceivers and emit energy used in detections.
Transmitters do not need to be co-located with
their linked sensor receivers.

4. Communication Receivers are needed for the re-
ceiving of message data from other players.

5. Communication Transmitters are needed to pro-
vide message data to other players.

6. Weapons are used to engage platforms and target
their detected elements (if applicable). Weapons

PLAYER

PLATFORM

ELEMENT SHAPES

TACTICS

SYSTEM SUSCEPTIBILITY

CAPABILITY
1192
may be linked to sensors (trackers) if the shots are
“guided” by those sensors to their targets.

7. Disruptors (Jammers) are used to inhibit the func-
tion of sensor and communication receivers. Like
transmitters, the emissions of disruptors can also
be detected by some sensor receivers (as pro-
grammed by the scenario developer).

8. Mover systems allow platforms to change position
and orientation. Each platform may have at most
one mover system.

Scenario developers program the specifications for

each system type during the TDB step. In JIMM, these
specifications are known as “capabilities”. System capa-
bilities may be used more than once in the same player and
may also be used to define the same system type (or part of
the same system type) in different player structures.

PLAYER-STRUCTURE abn_cmdr
 TACTIC abn_cmdr_tactics
 PLATFORM 1 abn_cmdr_a/c
 ELEMENT 11 abn_cmdr_ele
 DISCRETE QUANTITY: 1 CRITICAL
 MOVER 114 abn_cmdr_body
 CAPABILITY abn_cmdr_body_data
 FUEL jp-4 CONTINUOUS 4000. (KG)
 ELEMENT 12 abn_cmdr_comm_ele
 DISCRETE QUANTITY: 1
 COMM-RCVR 112 comm_rcvr
 CAPABILITY comm_rcvr_data
 COMM-XMTR 116 comm_xmit
 CAPABILITY comm_xmit_data
 COMM-RCVR 113 comm_rcvr
 CAPABILITY comm_rcvr_data
 COMM-XMTR 117 comm_xmit
 CAPABILITY comm_xmit_data
 ELEMENT 13 abn_cmdr_radar_ele
 DISCRETE QUANTITY: 1 NONCRITICAL
 THINKER 111 abn_cmdr_thk
 CAPABILITY abn_cmdr_thk_data
 THINKER 118 abn_cmdr_thk
 CAPABILITY abn_cmdr_thk_data
 SNR-RCVR 1110 abn_cmdr_rx
 CAPABILITY abn_cmdr_rx_data
 SNR-XMTR 1111 abn_cmdr_tx
 CAPABILITY abn_cmdr_tx_data
 LINKAGES
 111 WITH 1110 112 WITH 116
 1110 WITH 1111 113 WITH 117
END PLAYER-STRUCTURE

Figure 3: Sample Player Structure

2.1 Simulation of the Thinking Process

In JIMM, the thinking process is simulated on a per player
basis. Each player retains “knowledge” about platforms.
This knowledge is collectively known as a “perception”.
Information in the perception is garnered either through di-
rect observation via its own sensor systems or through
communication with other players. Moreover, information
in a perception need not correspond to “ground” truth. The
data can be out-of-date or entirely incorrect.

Mutschler

Perceptions are employed by players to make deci-
sions (via tactics). Since perception data can be wrong, the
resulting decision can also be wrong. Moreover, simula-
tion of thinker systems can result in delays in perception
updates and consequential delays in decision processes.

The modeling of thinking in JIMM is based on a
mechanism known as a “pending queue”. Each player has
a single pending queue. When a thinking event is gener-
ated, it is not scheduled immediately. Instead, it is placed
at the tail of the pending queue where it waits for a thinker
system. If a system is available immediately, then it is set
to “busy” and the event is scheduled for a future game time
given a programmed “time to think” for that event type.
Not all thinker system types can process the same type of
thinking events. Also, different thinker system types can
have different “time to think” settings for different thinking
events.

Figure 4: Pending Queue Operation

If all thinker systems are busy, then the event must
wait on the pending queue until a thinker system is avail-
able. If too many thinking events occur, then the pending
queue can have a “backlog”. In other words, the player is
overwhelmed and delays in its decisions will result.

2.2 Thinking Events

Thinking events are divided into five major categories.

1. Notice – The initial awareness of a perception or
specific type of perception update. Notice events
will usually result in corresponding ‘digest’
events.

2. Digest – The processing of a perception update.
Digest events will result in ‘review’, ‘react’, and
‘ponder’ events given the programming in the
player tactics.

3. Review – The review of perception. This includes
its elimination if it hasn’t been updated given a
period of elapsed simulation time.

4. React – The allocation of player resources given
perceived data. This is also known as “resource
allocation”. Actions (such as sending messages)
can also be done.

Thinking
Events

Thinker System

Thinker System
1193
5. Ponder – Also known as plan, this simulates more
complex planning regarding categories of re-
source allocation or other player actions.

Resource Allocation is generally based upon system

types where each system is a resource to be utilized
‘against’ a perception. Additional resources are perceived
friends (commander, peers, and subordinates in the same
command chains as the player), communication nets, and
future players (from which new players are created).

Table 1: Resource Allocation Types
Resource Allocation
Type

Resources

Absorb Any system with expendables
(e.g. fuel and ordnance)

Comm. Method
Selection

Communication Nets on which
transmitters operate

Emcon (Emission
Control)

Sensor Transmitters (on or off)

Fill Request Any system (usually a thinker)
with expendables that can be-
come created players

Intell Send Perceived Friends (subordi-
nates, commanders, and peers)

Lethal Assign Perceived Friends
Lethal Engage Weapons
Maneuver Movers
Non-lethal Engage Disruptors (Jammers)

The types of resource allocation can have one or more

stages. Absorb, Emcon, Fill Request, Intell-Send, and
Comm-Method-Selection each have a single stage. Lethal
Assign, Maneuver, and Non-Lethal Engage have four
stages (queue add, queue drop, start and stop), and Lethal
Engage has six (queue add, queue drop, start, stop, firing
start, and firing stop). The multiple stages better simulate
stages in the thinking process. An example of one stage in
the assignment logic of a player is below.

LETHAL-ASSIGNMENT-QUEUE-ADD normal_tactics
 TGT-TYPE drone attacker adhoc_fighter
 USE INPUT FOR FILTER 1
 SUB-TYPE close_sam
 3D-POSITION WITHIN engage_zone
 RE: PLATFORM/PT TARGET-LOC
 AND 2D-DIST < 100.0 (KM)
 AND BELIEVED-ALIVE
 USE FILTER 1 SELECTIONS FOR FILTER 2
 SUB-TYPE close_sam
 TARGET-ACTION IS shoot_to_kill
 OR ENG-CONTROL-MODE IS close_sam_cdr
 FROM FILTER 2 SELECTIONS
 CHOOSE-FROM
 close_sam
 PICK-AT-MOST 9 NOW
END LETHAL-ASSIGNMENT-QUEUE-ADD

Figure 5: Example of Resource Allocation

Mutschler

3 SCENARIO GENERATION

The ability to program player structures, system character-
istics, and tactics (such as resource allocation) makes
JIMM a very flexible model. System type characteristics,
individual system specifications, player construction, and
tactics and doctrine can be modified in the input file and
processed through JIMM without modifying the JIMM ex-
ecutable. This can greatly facilitate analysis of different
systems, platform configurations, and operational proto-
cols, et al.

However, this flexibility also introduces a difficulty
since a great number of parameters and tactics must be
specified even for the most simple of systems. This can
result in longer times for scenario generation.

Since reducing the time (and cost) of scenario genera-
tion is highly desirable, a number and techniques have
been utilized achieve this reduction while also maintaining
flexibility.

3.1 Reusing Simulation Components

In JIMM, significant savings in development time are rou-
tinely achieved through multiple utilizations of simulation
components. Tactics, susceptibilities, characteristics, sys-
tem types, element types, and even platform types can be
used in multiple player structure specifications. This is a
very basic form of reuse that operates with the same simu-
lation.

Another method of reducing development time is to
adapt existing simulations in whole or in part. Hence, a
developer could ‘cut’ a desired component and ‘paste’ into
a new simulation using any editing tool.

To facilitate this transferring of instructions, simula-
tion code is often divided into “chapters” where each chap-
ter describes a specific player. Furthermore, the top of the
simulation file contains a listing of all chapters to facilitate
any searching.

In addition, since JIMM can process multiple TDB
and SDB files, different simulation components can be
coded in different text files. Hence, no text file manipula-
tion would be necessary for reutilization of player struc-
tures or specific sides in a scenario laydown.

Example scenarios are provided with the JIMM distri-
bution for this very same purpose. The current JIMM dis-
tribution has the following.

1. Obruty Final Battle – A comprehensive example

of JIMM features in a fictional setting. One sce-
nario is updated with recent JIMM features. An-
other version dates from the earliest NAVAIR-
maintained version of the Simulated Warfare En-
vironment Generator (SWEG). This older version
tests backward compatibility.
1194
2. EIMSE – This scenario for “Enhanced Integrated
Air Defense (IADS) Messaging in a Simulation /
Stimulation Environment” focuses on communi-
cation. (Williams and Chapman 2001)

3. Parallel – A simple scenario used to test multi-
threading.

4. EGADS – This set of seventeen scenarios for the
“Enhanced Generic Air Defense System” was
originally developed in the Air Force Research
Laboratory (AFRL) at Wright Patterson Air Force
Base (AFB). (Duquette 2003), (Duquette, Na-
lepka, and Luczak 2004).

3.2 Modifying Simulation Components

Even after a set of TDB files have been processed, infor-
mation specific to a player type, platform type, element
type, or system type may be modified. This is accom-
plished by a mechanism known as a “TDB overlay”
wherein TDB instructions replace the specifications previ-
ously given. Since TDB overlays are normally pro-
grammed in the same file as the SDB instructions, they are
often employed in analyses such as when comparing sys-
tem parameters or platform configurations. The example
below instructs all players using “attacker_tactics” to use
the JIMM “threat avoid” capability when determining
movement routes.

TDB
REPLACE-MODE
TACTIC attacker_tactics
 MOVE-OPTIONS
 THREAT-AVOID
 END MOVE-OPTIONS
END TACTIC
END-TDB

Figure 6: Example TDB Overlay

For specific players, it addition to those specifications

that are required for each player (such as initial location
and movement path), some parameters may be modified in
the SDB step itself. This includes the availability of plat-
forms and elements, initial tactics and contingency plans,
known perceptions, criticality, et al. This permits even
finer tuning of a scenario.

In the following example, the blue drone is a multiple
platform player. However, since only one platform is
specified, only that one platform will be instantiated in the
scenario. Initial location, path points, and movement start-
ing time are also provided for that platform. In addition,
initial perception information is provided via the “TOLD
ABOUT” statement and the initial parameters for contin-
gency plans from the player tactics are modified for this
one instance. Lastly, specific instructions are given for the
sensor receiver. The default setting is “ON” at scenario
start.

Mutschler

PLAYER: blue drone LEVEL: 1
 PLATFORM: 3 drone_a/c
 X,Y,Z: 260.0 -200.0 (KM) 350.0 (M) AGL
 ELEMENT: 31 drone_ele DISCRETE QUANTITY: 1
 SNR-RCVR 312 drone_emit_rx OFF
 TURN ON AT TIME: 3698.0 (SEC)
 END ELEMENT
 PATH START TIME: 3675.0 (SEC)
 ALT: AGL MODE: 3-D WITH-TURNS
 X,Y,Z: 260.0 -200.0 (KM) 350.0 (M)
 SPD: 225. (M/SEC) TURN-RADIUS: 2300. (M)
 X,Y,Z: 160.0 -260.0 (KM) 350.0 (M)
 X,Y,Z: 70.0 -210.0 (KM) 350.0 (M)
 X,Y,Z: -85.0 -170.0 (KM) 1050.0 (M)
 X,Y,Z: -105.0 -135.0 (KM) 1050.0 (M)
 X,Y,Z: -30.0 -140.0 (KM) 1050.0 (M)
 END PLATFORM
 INITIAL PLAN FOR MOVEMENT get_started
 TOLD ABOUT blue drone PLATFORM 3
 X,Y,Z: 260.0 -200.0 (KM) 350. (M) AGL
BY blue drone
END PLAYER

Figure 7: SDB Player Instructions

In addition, some parameters may be modified by in-

terface programs during integrated operation. External
programs can inject players, inject perceptions, create and
send messages, and take over decision logic (in whole or in
part), and dynamically return that control back to JIMM.

3.3 The JIMM GUI

The JIMM Graphics User Interface (GUI) also known as
“Pisces” was added to the JIMM Model Management Of-
fice (JMMO) distribution in 2005 (Briere et al. 2005). This
tool currently works for the Scenario Database (SDB) and
later steps. It allows reuse of scenario components speci-
fied in different TDB files and facilitates the simple and
straightforward construction and modification of scenarios
given existing player types. The following screenshot of
the GUI above shows a “very high” level plan view.

Figure 8: GUI Scenario Generation (High Level)

Once zoomed in, the GUI enables the adding of play-

ers of specific types to the scenario via a palette (icons)
1195
and the mouse to indicate a specific location. The follow-
ing screen shot shows more detailed information where the
path for a platform is being generated using the toolbar,
menus, and the mouse.

Figure 9: Path Generation with the JIMM GUI

In addition to scenario generation, the JIMM GUI pro-

vides several run-time scenario displays with loadable map
options, viewers, programmable charts, and scenario moni-
toring features.

Figure 10: GUI Runtime Display of a Platform

4 SCENARIO ANALYSIS

In JIMM, the main unit of captured data is an “incident”.
JIMM currently has over 150 different incident types. An
incident is a time-tagged recording of an action or change
that occurred during a simulation run. Incidents are
roughly based on English grammar. They include from
one to three players (subject, object, and indirect objects), a
single action (verb), and auxiliary data specific to the inci-
dent.

During post-processing in the ADB step, filtering can
be done on the players, incident types (actions), auxiliary

Mutschler

data, and time windows. The incident filtering mechanism
in JIMM is known as a “situation”. Output can be either in
the form of English-like syntax or a tab-delimited format
suitable for incorporation into spreadsheet and database
programs.

23:59:37.8 Day 365
 A3 aaa_gun (1 aaa_gun_veh), in envelope, intercepts
 8 gun_tgt (2 gun_tgt_area)
 weapon: uncontrolled; ordnance: gun_shell
 tgt (x,y,z): -369.0 km -339.0 km 0.000 km; Heading 90.0 deg;
 wpn (x,y,z): -372.0 km -339.5 km 0.0 km
 az: 80.5 deg; el: 0.0 deg; 3D dist: 3.0 km; 2D dist: 3.0 km;
 relative az: -170.5 deg; el: 0.0 deg: P9k): 0.05000
 launch time: 23:59:34.7 Day 365; commander: 11 aaa_gun_cdr

Figure 11: JIMM Incident Output (Text)

Situation output can be further filtered to provide only

the counts of those incidents that meet the filter. This is
very useful for analysis. For example, given a simulation
run where a jet fighter flies a mission deep into enemy ter-
ritory, a situation could be employed to determine the
count of shots fired at the fighter by all “SAM players” of a
given player type. Given multiple simulation runs (with
different random number seeds), the counts could be easily
analyzed toward mission survivability (or other purpose).

SITUATION: close_sam_fires_a_weapon
 THE independent close_sam
 FIRES-A-WEAPON-AT
 THE 71 vis_fighter
END SITUATION

Figure 12: Example JIMM Situation

Given the extensive use of JIMM for analysis, numer-

ous examples of situation logic are provided in the exam-
ple scenarios. In addition, the JMMO provide a set of tools
used for analysis with each JIMM release. JIMM users are
also free to submit tools to the JMMO for incorporation
and subsequent reuse.

JIMM is extensively tested for each release (Chapman
2005). Most of the tests are automated and consist of the
execution of small JIMM scenarios (known as ‘vignettes’)
and their subsequent analysis for correct operation. Over
3000 automated tests are in place. The automated accep-
tance test suite is currently being restructured as part of an
effort to leverage multiple processors during test execution.
One effect of this restructuring will be to make these
analysis scripts and program more readily available to the
user community. Though the test suite is available to
JIMM users on request, this greater ease of access should
greatly facilitate reuse.

5 FUTURE WORK

As part of its ongoing efforts, the JMMO is working to
both develop and acquire scenario databases for distribu-
1196
tion to the JIMM community. This should promote better
scenario development and provide a base for scenario
component reuse.

The JIMM GUI is also a major focus of the JMMO.
Efforts are underway to enhance its capability and increase
its ease of use.

In addition, the JMMO is currently proposing the de-
veloping a specific TDB database for use with the GUI.
This database would contain complex specification de-
scribing the physical characteristics of known platform
types. However, tactic would be simplistic. This would
allow the insertion of platforms into a scenario and provide
an “80%” solution for scenario development. Simple sce-
narios could be developed more quickly. In addition, the
databases would still be available for the development of
more complex and more scenario specific tactics.

Another possibility for future work lies in the estab-
lishment of default parameters and behaviors. This would
allow JIMM players and platforms to be developed in less
time since data would already be known and would not
need to be explicitly programmed.

6 ADDITIONAL INFORMATION

The Joint Integrated Mission Model (JIMM) Model Man-
agement Office (JMMO) provides management, develop-
ment, testing (Gibson and Chapman 2001), support (in-
cluding phone support), and other services pertinent to
JIMM. The JMMO is currently housed in the NAVAIR
Air Combat Environment Test & Evaluation Facility
(ACETEF), Battlespace Modeling & Simulation Division
(Code 5421). The JMMO may be reached via e-mail at
<jmmo@navy.mil>.

7 CONCLUSION

This paper has described language-based simulation in the
Joint Integrated Mission Model and shown the use of
player structures, generic systems, and tactics. It has de-
scribed several methods for component reuse as well as
plans by the JIMM Model Management Office to facilitate
further reuse. All in all, these efforts should reduce the
time and cost for generating and analyzing JIMM scenarios
while maintaining current flexibility.

8 REFERENCES

Briere, Marc et al. JIMM 2.4.2 GUI user’s guide. 2005.
Available at <jmmo@navy.mil>.

Chapman, Michael et al. JIMM 2.4.2 acceptance test plan.
2005 Available at <jmmo@navy.mil>.

Duquette, M, Nalepka J, & Luczak R. The enhanced ge-
neric air defense system. AIAA Modeling and Simula-
tion Technologies Conference and Exhibit. Provi-
dence RI (Aug 16-19 2004). AIAA-2004-4799

mailto:jmmo@navy.mil
mailto:jmmo@navy.mil
mailto:jmmo@navy.mil

Mutschler

Duquette, Matthew M. The enhanced generic air defense

system – an unclassified threat environment for JIMM.
Nov 2003, JIMM User’s Group. Available at
<jmmo@navy.mil>.

Gibson, R.D, and Chapman, M. Legacy software testing –
a current methodology. The Eleventh Annual Interna-
tional Council On Systems Engineering (INCOSE).
Melbourne, Australia. (July 1-5, 2001).

Lattimore, Peter et al. JIMM 2.4.2 Users Guide. July
2005. Available at <jmmo@navy.mil>.

Nalepka, J.P. JIMM: The next step for mission level simu-
lation models. AIAA Modeling and Simulation Tech-
nologies Conference, AIAA 2000-4491, AIAA, Wash-
ington D.C. 2000

Nalepka J., Gump J., Kurker R. JIMM: The next step for
mission models. 2001 SPIE Aerospace/Defense Sens-
ing and Controls Conference (#2367), Orlando FL
(April 2001).

Niland, William; Skolnik, Brian; Rasmussan, Steve;
Finley, Kevin; Allen, Kevin. Enhancing a collabora-
tive UAV mission simulation using JIMM and the
HLA. Proceedings of the Spring 2005 Simulation In-
teroperability Workshop, Simulation Interoperability
Standards Organization, San Diego CA, April 2005

Williams, Stacy & Chapman, Michael. EIMSE example
scenario documentation. Available at
<jmmo@navy.mil>.

1197
AUTHOR BIOGRAPHY

DAVID W. MUTSCHLER obtained his PhD in Com-
puter and Information Science from Temple University in
1998. He has been employed by the Naval Air Systems
Command (NAVAIR) for twenty years and has been work-
ing with the SWEG and JIMM models for nearly ten years.
He is a member of the Association for Computing Machin-
ery (ACM), the ACM Special Interest Group in Simulation
(ACE/SIGSIM), the Institute of Electrical & Electronics
Engineers (IEEE) and the IEEE Computer Society
(IEEE/CS). He is currently serving as the JIMM Model
Manager and head of the JIMM Model Management Office
(JMMO). He is also an assistant professor at the Florida
Institute of Technology (FIT) School of Extended Gradu-
ate Studies (SEGS) at Patuxent River, MD. His e-mail ad-
dress is <david.mutschler@navy.mil>.

mailto:jmmo@navy.mil
mailto:jmmo@navy.mil
mailto:jmmo@navy.mil
mailto:david.mutschler@navy.mil

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

