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ABSTRACT 

In designing, analyzing  and operating real-life complex 
systems, we are interested, however, not only in perform-
ance evaluation but in sensitivity analysis and optimiza-
tion as well. Since most systems of practical interest are 
too complex to allow the analytical solution of totally re-
alistic models, these systems must be studied by means of 
Monte-Carlo simulation. One problem with Monte Carlo 
analysis is its expensive use of computer time. To address 
this problem, we propose an efficient technique for esti-
mating the expected performance of a stochastic system 
for various values of the parameters from a single simula-
tion of the nominal system. This technique is based on the 
likelihood ratio performance extrapolation (LRPE). We 
provide numerical experiments that demonstrate how the 
proposed technique significantly outperform the likeli-
hood ratio performance extrapolation technique in the 
context of the Markovian queueing models in transient 
analysis. 

1 INTRODUCTION 

Most systems of practical interest are too complex to al-
low the analytical solution of totally realistic models. 
Consequently, these systems must be studied by means of 
Monte-Carlo simulation. Planners typically want to know 
how the system will perform under various parameter set-
tings. To determine this, a computer simulation model 
may be developed and then run for these parameter set-
tings. As an example, consider a queueing network con-
sisting of stations with buffers and multiple servers at 
each station. Suppose that all parameters are known and 
fixed except for the service rate parameters of the expo-
nential servers. We wish to estimate the expected number 
of customers served (system throughput) by time T, for 
different service rates. A standard approach to this prob-
lem would be to use the crude Monte-Carlo approach by 
simulating the system at each value of the service rate.  
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Since large-scale simulations may require great amounts 
of computer time and storage, appropriate statistical 
analysis can become quite costly. 
 To address this problem, we propose an efficient 
technique for estimating the expected performance of a 
stochastic system for various values of the parameters 
from a single simulation of the nominal system. Given the 
performance measure at two values of the input distribu-
tion parameters, the proposed technique provides the abil-
ity to interpolate the simulation results at different values 
of these parameters. This technique is based on the likeli-
hood ratio performance extrapolation (LRPE). Arsham et 
al. [1989] showed that using the likelihood ratio (Radon-
Nikodym derivative) approach, one can estimate simulta-
neously the performance measure at various parameter 
values from a single simulation run. 
 Implementation of the LRPE approach requires com-
putation of the likelihood ratio (Radon-Nikodym deriva-
tive) of the underlying stochastic system. In this paper we 
use the continuous-time Markov chain frame-work to find 
the likelihood ratio for large classes of queuing models 
(see Nakayama et al. [1994]). Continuous-time Markov 
chains are good models for many stochastic systems, in-
cluding certain queuing systems, inventory systems, and 
reliability and maintenance systems. While the basis of 
the LRPE technique (Rubinstein 1986, 1989, Glynn 1987, 
Reiman and Weiss 1989, L’Ecuyer 1995, 1990 ) has been 
known for some time, the technique works only for per-
turbations of limited size due to its high variance. In this 
paper, we develop an interpolating technique as an effec-
tive tool for estimating system response to parametric per-
turbations in simulation. We show, through extensive ex-
perimentations, that the proposed technique is an effective 
tool for measuring parameter sensitivity in the context of 
the Markovian queueing models in transient analysis. 
There are many instances in which the transient behavior 
of stochastic systems is important. Since the characteris-
tics of most real systems change over time, the stochastic 
processes for those systems do not have steady-state dis-
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tribution. For example, in a manufacturing system the 
production scheduling rules and the facility layout (e.g., 
number and location of machines) may change from time 
to time. 
 The rest of the paper is organized as follows. Section 
2 reviews the basic idea of the Radon-Nikodym derivative 
approach to the so-called “what if” problem (performance 
extrapolation) on which the proposed interpolation tech-
nique is based. Section 3 develops the proposed technique 
as an efficient method for estimating the transient per-
formance measures of stochastic systems. Section 4 gives 
the Radon-Nikodym derivative for some classes of Mark-
ovian queueing systems and provides our computational 
experiments that demonstrate the efficiency of the pro-
posed technique. Finally, section 5 contains some con-
cluding remarks.     

2  RADON-NIKODYM DERIVATIVE 
APPROACH 

Before proceeding further, we briefly discuss the likeli-
hood ratio method (Radon-Nikodym derivative) approach 
as it is related to the proposed interpolation method to be 
discussed subsequently. Consider a stochastic simulation 
system parameterized by a real vector Θ∈θ  of con-
tinuous parameters, where Θ  is some open subset of 

nR . We are interested in performance measures that are 
based on the behavior of the stochastic system in some 
time interval T, where T is a stopping time. Suppose we 
have independent simulation results of the system at pa-
rameter Θ∈1θ   and want to estimate the transient per-
formance measure of that system at parameter Θ∈0θ , 

( )I|0θl , where I represents the initial conditions used to 
start the simulation at time 0. 
 The basic idea of LRPE is that ( )I|0θl can usually 
be viewed as the expectation of some function of 0θ  and 
the sample path ω , say )ω,( 0θh , with respect to a prob-
ability measure 

0θP . Suppose that 
0θP is absolutely con-

tinuous with respect to 
1θP , i.e., for every measurable set  

Β, if )(P
1

Bθ = 0 then )(P
0

Bθ = 0. In this case, one can 
write 
 
             ( ) [ ]ω),(EI| 00 0

θθ θ h=l  

                              ∫= )ω()ω,(
00 θθ dPh  

                            ω)( ω)](ω),([
1

1

0
0 θ

θ

θθ dP
dP
dP

h∫=  

                               [ ]),(T,ω),(E 1001
θθθθ Lh= , 

 
where )ω)(/(),(T,

10)10 θθθθ dPdPL = is the Radon-

Nikodym derivative of 
0θP with respect to 

1θP  or the like-
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lihood ratio of the process up to stopping time T. The sub-
script 0θ  in [ ]ω),(E 00

θθ h  means that the expectation op-

erator is induced by 
0θP . 

Typically ω  could be the set of values taken by a fi-
nite sequence of independent (possibly multivariate) ran-
dom variables Y with probability density function f(y, θ ). 
For example, consider an M/M/1 queue and let ( )I|0θl  
be the expected mean waiting time in the system for the 
first T customers in the system, provided that the initial 
conditions used to start the simulation at time 0 is I. In 
this case, ω  could be the set of actual interarrival and 
service times and )ω(P

0θd   is the product of their densi-
ties. We have 

 
             ( ) [ ]),(EI| 00 0

θh Yθθ =l       (1) 

                             ( ) ( ) yyy dfh  , , 00 θθ∫=  

            ( ) ( )
( ) ( ) yy
y
y

y df
f
f

h 1
1

0
0 , 

,
,

 , θ
θ
θθ∫=  

 
           [ ]),,T(),(E 1001

θθθθ Lh Y=  ,             (2) 

where  ( ) ( )
( )  

,
,

,,T
1

0
10 θ

θ
θθ

y
y

f
f

L = and  

( ) ∏
=

=
T

j
jf

1
0j0 ),(,f θθ yy .      

 
 It is important to note that the original expectation of 
h(Y) in (1) is taken with respect to the underlying pdf 

),( 0θyf , whereas that given in (2) is taken with respect 
to the pdf ),( 1θyf . It follows that changing the probabil-
ity density from ),( 0θyf  to ),( 1θyf , we can express the 
performance measure )|( Iθl for all Θ∈θ as an expecta-
tion with respect to ),( 1θyf and then estimate it accord-
ingly. In terms of simulation, this means that in principle, 
one simulation at 1θ  can produce estimates of the per-
formance measure at all "valid" values of  θ .  
 Estimating ( )I0θl  using the Radon-Nikodym ap-
proach yields computational savings, but reduces preci-
sion. By generating a sample n21 Y,...,Y,Y  from 

( ) , 1θyf ,we can estimate ( )I|0θl  by the correspond-

ing sample mean ( )I|~
0θl = ( )[ ]∑

=

n

i Lh
n 1i

10 ,T,)(1 θθy . 

The accuracy of the estimator ( )I|~
0θl is determined by 

its variance ( )I|~Var 0θl ( )[ ]10 ,T,)(Var1
1

θθθ Lh
n

Y= . 
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Note that the farther 01  from is θθ , the higher variance 

of the estimator ( )I|~
0θl , i. e., the variance of the LRPE 

estimators grows quite fast as the length of the perturbed 
parameter increases.  

3  THE INTERPOLATION APPROACH 

In this section, we discuss the interpolation technique as 
an efficient method for estimating the transient perform-
ance measures. Suppose we have independent simulation 
results of a stochastic system at two values of the parame-
ter Θθ ∈ , say 21  and θθ , and consider the expected per-

formance of the system at 0θ . Then, we have 
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An estimator of  ( )0θl  is   
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and  its variance is given by 
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It can be shown that the value of α  that minimizes 

( )0
~Var θl is given by   

( )[ ]
( )[ ] ( )[ ]2010

20*
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3.1 An Exact Confidence Interval for the 
Interpolation Response 

Let )( 0θl  be the unknown quantity to be estimated for a 
given scalar input parameter 0θ . Let 

),(T,),(X

 and ),(T,),(

200
(2)

100
)1(

θθθ

θθθ

Lh

LhX

Y

Y

=

=
 

be unbiased estimators of )( 0θl (i.e., 

][][ )2()1( XEXE = = )( 0θl ). Define the interpolated esti-
mator as: 
   ,  )1()( )1()2()0( XXX ααα −+=  

for any fixed α , )(X )0( α  is an unbiased estimator of 

)( 0θl . The value of α  which minimizes Var[ )()0( αX ] 
can easily shown to be   

   
)1()2()2()1(

)1()2()1(

2  

 
22

2
*

XXXX

XXX

σσσ

σσ
α

−+

−
=  

where , ][ )2(2
)2( XVarX =σ  , ][ )1(2

)1( XVarX =σ  and  

).,( )2()1(
)1()2( XXCovXX =σ  

A major difficulty with the interpolated estimator is that  
*α  is typically unknown, since  , ][ )1(XVar  

, ][ )2(XVar  and  ),( )2()1( XXCov are in general  un-
known. Realistically, α  needs to be estimated. Suppose 
that n independent replications of the simulation are per-
formed, one can estimate )( 0θl by the sample average  

.)α̂1(α̂)α̂()(~ )1(*)2(**)0(
0 XXX −+==θl  

which is generally biased, since )1()2(*   and   , α̂ XX   
are dependent .  
     Assuming that )2()1(   and XX  are jointly normally 
distributed, we are able to construct unbiased estimators 
for the unknown parameters and obtain exact confidence 
interval estimator for these parameters. The normality as-
sumption is reasonable, because we are dealing with cu-
mulative statistics, and central-limit effects ensure that 
joint normality is, at least, asymptotically obtained. In or-
der to construct unbiased estimator for the unknown pa-
rameters and to provide confidence interval for the inter-
polated estimator, we consider two cases: (i) 

)2()1(   and XX are independent; (ii) )2()1(   and XX are 
dependent. 

Case 1  ( )2()1(   and XX  are independent). We as-
sume   ),(X...,  ),,( )2()1()2(

1
)1(

1 nn XXX denote a sequence of 
i.i.d bivariate normally distributed random 2 tuples. The 
sequence   )  ,X(...,  )  ,X( )2()1()2()2(

1
)1(

1
)2(

1 nnn XXXX −− is 
0
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also i.i.d bivariate normally distributed with means (0, 

)2(Xμ ), variances ( )222
)2()2()1(    ,  XXX σσσ +  and covariance   

.2
X )2(σ  Under the assumption of  bivariate normal distri-

bution,  one can write                   
      )X(α)( )2()1(*

0
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iiii XX −−−= θε l ni         ≤≤1       
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2
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  Lemma 3.1     }{ iε   are  i.i.d   normal random 

variables independent  of     }X{ )1()2(
iiX − with variance 
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)2()1()2()2( XXXX

σσασασσ ++−=  

     = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

)(
1   22

2
2

)2()1(

)2(
)2(

XX

X
X σσ

σσ  

     To estimate the unknown parameters )( 0θl  and α*  
we can use either the maximum likelihood or the least 
squares methods ( they yield the same solution under the 
normality assumption). 

Lemma 3.2.  The estimator of )( 0θl , α*   and  
2σ are respectively  

               )  ,(α̂)(ˆ )2()1(*)1(
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Proof.     See Fishman [1996]. 

 Case 2  ( )2()1(   and XX  are dependent).  
Let   )  ,X(..., )  ,X( )1()1()2()1(

1
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1
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denote a sequence of  i.i.d bivariate normally distributed 2 
tuple with means (0, )2(Xμ ), variances 
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where   )2()1()2()1()2()1( / XXXXXX σσσρ = . 

Finally, conditional on   }X{ )1()2(
iiX − i = 1, …, n, we 

can generate a confidence interval as follow  

δ1}{

)(/σ̂

)()(
Pr 2/1,2

1

22

00
−=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

≤

−

−
−−

=
∑

inn

i
i

Zt

ZZ
δ

θθ ll
(

 

where   X )1()2(
iii XZ −= and 2/2,1nt δ−−  denotes the 

δ1− /2 quantile of the student’s t distribution with n-2 
degree of freedom. Since the right hand side of this prob-
ability statement is constant, this confidence interval 
holds unconditionally, i.e., 

∑
=

−− −±
n

i
in ZZt

1

22
2/1,20 )(/σ)( )

l
(

δθ  provides a 100(1-

δ )% confidence interval for ).(θl  

4 RADON-NIKODYM DERIVATIVE FOR 
MARKOVIAN  SYSTEMS 

In this section, we present the Radon Nikodym derivative 
for some classes of Markovian queueing systems in tran-
sient analysis. Also, we present our computational ex-
periments that show that the proposed interpolation ap-
proach is an efficient way to estimate transient measures 
of performance.  

4.1  M/M/1: The Classical Queueing System  

The   M/M/1   queue can be analyzed as a birth–death 
process (see, e.g. Cooper [1981],   Gross and Harris 
[1998] and Kleinrock [1975]) by selecting the birth–death 
coefficients as follows: 
                             λλ =n        n =   0,   1,  2, ... 
                             μμ =n       n =   1,  2,  3, … 
For this queuing system, let  Xk   represent  the state of the 
system at the  kth transition, and define the following 
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The matrix   Q  is called the  infinitesimal  generator  ( or 
rate matrix or intensity matrix)  of the process;  and its 
elements,  qij ,   give the “rates”  of going from state i  to 
state j.    The ith diagonal element is usually denoted by -
qi ; qi, gives the rate of leaving state i to any other states.  
The elements in each row of Q thus sum to zero. Given 
that the system has entered state i,  the holding time in 
state i,  is an exponential random variable with parameter 
λ + μ,   since it is the minimum of two exponential ran-
dom variables,  namely,  arrival time with parameter λ 
and service time with parameter μ. Given that a transition 
occurs from state i,  the probability that the transition  is 

due to an arrival ( state increases to  i +1) is  
μ+λ

λ
 and 

the probability that is due to a service completion ( state 

decreases to i-1) is
μ+λ

μ
. Thus we have a process that 

stays in state i for a time that is exponential random  vari-
able and jumps  to either state  i +1  or  state i -1  with 
transition probabilities of   

P(Xk , Xk+1) = 

⎪
⎪
⎪
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The following lemma gives the Radon-Nikodym de-

rivative for the M/M/1 system. First, let  
 No = number of state transitions from state 0. 

   Nu = number of state transitions from state Xk to  
                 state   Xk+1. 
   Nd = number of state transitions from state Xk to 
                 state  Xk-1.   
Note that No+Nu represent the number of arrivals by time 
T and Nd represents the number of departures by time T. 

Lemma 4.1.1  For the M/M/1 system, let T be the 
stopping time. The likelihood ratio with respect to pa-
rameter 0λ   is given by  
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 Proof    Let N(T) denote the number of transitions up 
882
to time T.  The likelihood of the sample path up to time T 
under parameter λ  and μ  is  
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For a given parameter value 0λ , the Likelihood ratio is 
given by  
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For a given parameter value 0μ , the Likelihood ratio is 
given by  

     L(T, ),0 μμ =
),(
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 Example 4.1.2 Consider an M/M/1 system which 
starts empty and runs for time T.  We  are interested in 
knowing the average number in the system at time T,  for 
various arrival rates.  Assume we are not aware that this 
can be solved analytically. We simulate at arrival rate  λ 
and use LRPE to estimate the average number in the sys-
tem at time T for several other arrival rates 0λ = Δ+λ .  
It has been shown that as Δ increases, the variance of the 
LRPE estimate increases very rapidly (Rubinstein [1989]; 
Arsham et al. [1989]). For the interpolation approach we 
simulate at arrival rates 21  and λλ  to estimate the aver-
age number in the system at time T for several other arri-
val rates .0λ  

The M/M/1 model was simulated using the following 
parameters.  Arrival rates λ1 = 1 and  λ2 = 2, service rate μ 
= 2, and T = 3. The LRPE was applied to estimate the av-
erage number in the system at time T for 9 perturbed arri-
val rates between 1 and 2.   Table 1 presents the crude 
Monte Carlo simulation for the average number in the 
system at time T, LRPE estimates for the nine rates from 
λ1   and λ2, and the interpolation estimates with their cor-
responding variances.  
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4.2 M/M/1/s: Queuing System with Truncation  

For this queuing system define the following   
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Let  No = number of state transitions from state 0. 
 Nk = number of state transitions from state k. 
 Nu = number of state transitions from state Xk to       
Xk+1 
 Nd = number of state transitions from state Xk to state 
            Xk-1. 
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 Lemma 4.2.2  For the M\M\1\s system, let T be the 
stopping time. The likelihood ratio with respect to pa-
rameter 0λ   is given by  
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and with respect to 0μ  is given by  
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Example 4.2.1  Consider an MM/1/s System which 

starts empty and runs for time T.  We are interested in 
knowing the probability that the server is busy at time T, 
for various arrival rates. The M/M/1/s   model was simu-
lated using the following parameters.  Arrival rates λ1 
=0.1 and   λ2 = 0.23,   service rate  μ = 1, T = 50,   s = 5. 
The LRPE was applied to estimate the probability that the 
server is busy at time T for 9 perturbed arrival rates 0λ  
between 0.1 and 0.23. The analytical solution for the 
probability that the server is busy was calculated using the 
randomization technique for computing transient solution 
of Markov process (Gross and Miller [1984]). Table 2 
presents the analytical solution for the probability that the 
server is busy at time t, LRPE estimates for the nine rates 
from λ1    and λ2 ,  and  the interpolation estimates with 
their variances.  
 
Table 1: M/M/1 Example 

CMS LRPE from 1λ  LRBE from 2λ  Interpolation 0λ  

)(~
0λl  )0(~Var λl )(~

0λl )(~Var 0λl  )(~
0λl )(~Var 0λl )(~

0λl )(~Var 0λl

 1.1 0.881 1.313 0.882 1.673  0.804 1.688 0.843 0.839 

 1.2 1.074 1.875 1.001 2.595 1.028 1.569 1.018 0.978 

 1.3 1.217 2.084 1.121 4.180 1.133 1.307 1.130 0.996 

 1.4 1.342 2.385 1.196 6.496 1.213 1.302 1.210 1.084 

 1.5 1.440 2.346 1.329 10.437 1.420 1.276 1.410 1.137 

 1.6 1.642 2.830 1.327 16.162 1.570 1.377 1.551 1.269 

 1.7 1.766 3.175 1.456 25.000 1.747 1.683 1.729 1.577 

 1.8 1.956 3.656 1.565 37.188 1.888 2.173 1.870 2.053 

 1.9 2.155 4.011 1.580 55.030 2.078 2.954 2.053 2.803 
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4.3 M/M/ ∞  (Responsive Servers Queuing System )  

For this queuing system define the following 
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Let    
 Nu = number of state transitions from state Xk to state 
               Xk+1. 
 Nd = number of state transitions from state Xk to state 
              Xk-1. 
 Lemma 4.3.1  Let T be the stopping time for the sys-
tem, then the likelihood ratio for the M\M\ ∞   system 
with respect to parameter 0λ   is given by  
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Example 4.3.1 Consider an M/M/ ∞  system which 
starts empty and runs for time T. We are interested in 
knowing the average number in the system at time T, for 
various arrival rates. The M/M/ ∞  model was simulated 
using the following parameters. Arrival rates λ1 = 0.1 and 
λ2 = 0.2, service rate μ = 0.3, and T = 10. The LRPE was 
applied to estimate the average number in the system at 
time T for 5 perturbed arrival rates as shown in table 4. 
The analytical solution for the average number in the sys-
tem at time T was calculated using the transient derivation 
for M/M/ ∞  model. Table 3 presents the analytical solu-
tion for the average number in the system at time T, the 
crude Monte-Carlo simulation, LRPE estimates for the 5 
rates from λ1 and λ2, and the interpolation estimates with 
their variances. 

5 CONCLUSION 

We have presented an interpolation technique that uses 
the likelihood performance extrapolation approach to es-
timate the expected performance of a stochastic system 
for various values of the input parameters from a single 
simulation of the nominal system. We have introduced the 
Radon Nikodym derivative for some classes of Markovian 
queueing systems in transient analysis.  We have shown, 
through extensive experimentations, that the proposed 
technique is an effective tool for measuring parameter 
sensitivity in the context of the Markovian queueing mod-
els in transient analysis.  
 
Table 2: M/M/1/5 Example 

Analytical. LRPE from 1λ  LRPE from 2λ  Interpolation 0λ  

 )(~
0λl )(~Var 0λl  )(~

0λl )(~Var 0λl )(~
0λl )(~Var 0λl  

0.113 0.114 0.112 0.009 0.111 0.025 0.117 0.007 

0.126 0.127 0.120 0.011 0.125 0.021 0.131 0.007 

0.139 0.140 0.126 0.013 0.126 0.021 0.145 0.007 

0.152 0.153 0.129 0.015 0.155 0.015 0.159 0.008 

0.165 0.166 0.128 0.017 0.169 0.014 0.172 0.008 

0.178 0.179 0.129 0.019 0.182 0.012 0.184 0.008 

0.191 0.192 0.118 0.020 0.195 0.012 0.195 0.009 
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Table 3:  M\M\ ∞  Example 
Anal. CMS LRPE from 1λ  LRBE from 2λ  Interpolation 0λ  

 )(~
0λl  )(~Var 0λl )(~

0λl  )(~Var 0λl  )(~
0λl  )(~Var 0λl  )(~

0λl )(~Var 0λl

0.11 0.348 0.337 0.329 0.350 0.421 0.347 0.218 0.348 0.143 

0.15 0.498 0.501 0.499 0.499 1.862 0.497 0.409 0.498 0.335 

0.19 0.602 0.602 0.603 0.593 4.407 0.601 0.537 0.600 0.478 

0.05 0.158 0.158 0.155 0.161 0.087 0.157 0.100 0.159 0.046 

0.40 1.267 1.258 1.256 1.033 151.91 1.359 68.613 1.258 47.265 
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