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ABSTRACT

In this paper it is demonstrated how a nonparametric esti-
mator of the stationary workload distribution function of the
M/G/1-queue can be obtained by systematic sampling the
workload process. Weak convergence results and bootstrap
methods for empirical distribution functions for stationary
associated sequences are used to derive asymptotic results
and bootstrap methods for inference about the workload dis-
tribution function. The potential of the method is illustrated
by a simulation study of the M/D/1 model.

1 INTRODUCTION

Sampling (or probing) the workload in queuing systems is a
standard tool for performance evaluation. This is e.g. used in
call center evaluations, where the distribution of the waiting
time to service is estimated by the empirical distribution
function of the call answer time for repeated phone calls.
Another application is when a call admission controller
in an ATM network decides, whether there are sufficient
resources to allow a new connection to be established,
based on information obtained by sampling the workload at
neighboring nodes. Reliable estimation of the cumulative
distribution function is an important subject as a variety
of characteristics can be estimated by functionals of the
empirical cumulative distribution function (ecdf).

Throughout the paper we consider an M/G/1-queue,
i.e. the inter-arrival times are independently and exponen-
tially distributed with mean λ, the service times are inde-
pendently and generally distributed with mean f1, there is
1 server, and infinite waiting room.

For later purposes let {(Tn, Sn), n ≥ 1}, denote the
sequence of arrival and service times of the customers. Let
S be a generic random variable with the same distribution
as S1.

Let the workload in the system at time t be denoted
by Vt , i.e. Vt is the sum of the residual service times of the
customer being presently served and the customers awaiting
8

service. By convention, a workload process {Vt , t ∈ R}
will be taken right-continuous with left-hand limits. For the
M/G/1 queue, the evolution of Vt between two arrivals is
described by Lindley’s equation

Vt = (VTn− + Sn − (t − Tn)) ∧ 0, (1)

where t ∈ [Tn, Tn+1). In general a workload process Vt

is defined only for t ≥ 0. However, by Loynes’ Theorem
(Baccelli and Brémaud 2003, Theorem 2.1.1) it is possible to
prove that under the stability condition ρ = λf1 < 1 there
exists a unique stationary workload process {Vt , t ∈ R}
satisfying (1). We will use, V0 as a generic random variable
with the stationary distribution.

In what follows a cumulative distribution function (cdf)
is denoted by a capital letter, A, say. The k’th mo-
ment by ak , the stationary excess distribution by Ae(x) =
a−1

1

∫ x

0 (1 − A(y))dy, x ≥ 0, the complementary cdf by
Ā(x) = 1 − A(x), x ≥ 0, and its Fourier transform by
Â(t) = ∫ ∞

−∞ A(x) exp(−itx)dx, t ∈ R.
If we let F denote the cdf of the service time distribution

function and G the cdf of the stationary workload distribution
function, one can prove, under the stability condition ρ <

1 that Pollaczeck-Khintchine’s formula holds (Asmussen
2003, Theorem X.5.2)

G(x) = (1 − ρ)

∞∑
k=0

ρkF �k
e (x), 0 ≤ x < ∞, (2)

where �k denotes k-fold convolution.
We now assume that it is possible to test the performance

of the queue by sampling the workload, without loss of
generality, at every positive integer time point, as other
sampling intervals can be obtained by proper rescaling.
This process is denoted by {Vi, i ≥ 1}. The main objective
of this paper is to infer G from the sampled workloads. We
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suggest the ecdf as an estimator for G

Gn(x) = n−1
n∑

i=1

I (Vi ≤ x), 0 ≤ x < ∞. (3)

It’s n’th empirical process counterpart is defined as

βn(x) = n1/2(Gn(x) − G(x)), 0 ≤ x < ∞. (4)

In the following we will provide sufficient conditions for
the empirical process to converge weakly to a Gaussian
process. This information will be used to make statistical
inference about the workload distribution function.

The paper is organized as follows. In Section 2 the
covariance structure of the workload process is studied. The
weak convergence of the empirical process of sub-sampled
M/G/1 workloads and the bootstrap method are given in
Section 3. Section 4 discusses algorithmic aspects and gives
an illustrative numerical example. Section 5 contains some
remarks on possible extensions and other aspects of the
results. All proofs are carried out in Section 6.

2 DEPENDENCY STRUCTURE OF
SAMPLED WORKLOAD

In general, when one establish weak convergence of empir-
ical processes, to appropriate Gaussian processes, a handle
on the dependence structure of the process under study is
needed.

One possibility is to utilize the regenerative structure
of the workload process and proceed with an analysis along
the lines of Datta and McCormick (1993). This will require
a detailed study of the relation between the regenerative
structure of the workload process and the sampled work-
load process along with the development of a theory for
bootstrapping the empirical measure of regenerative pro-
cesses. This track is currently under study and will be
reported elsewhere, see Hansen and Pitts (2005), Hansen
and Pitts (2005). More specifically, Hansen and Pitts (2005)
shows by utilizing the regenerative structure that weak con-
vergence for the empirical process is ensured if ES2 < ∞.
In Hansen and Pitts (2005) the regenerative structure is used
to show weak convergence for the empirical process and
asymptotic results for a blocked bootstrap procedure. This
indicates that the methods described in the present paper
can be used on much more general queueing systems.

As it is straightforward to show that the sampled work-
load is associated a number of standard tools for associated
sequences can be utilized. One of these tools is the moving
block bootstrap procedure, and a clear advantage is that this
is supported in most statistical software packages.

The theory of associated sequences was introduced by
Esary, Proschan, and Walkup (1967) and has since found
8

many applications in probability, statistics, and reliability,
we refer to Newman (1984) for a survey and Vanichpun
and Makowski (2002) for a recent review of applications
within the analysis of queuing systems.

Definition 1 A finite sequence of random variables,
X1, . . . , Xn is said to be associated if, the inequality

Cov(f (X1, . . . , Xn), g(X1, . . . , Xn)) ≥ 0

holds for all coordinate-wise nondecreasing functions f, g :
R

n → R for which the covariance is defined. An infinite
sequence of random variables is said to be associated if
every finite subsequence is associated.

We now turn to establishing that {Vi, i ≥ 1} is an
associated sequence. Unfortunately, we are not able to
show this directly, although it is sequentially increasing
which implies associateness, see Definition 3 and Lemma
1 of Section 6 for details.

Proposition 1 The sampled workload process
{Vi, i ≥ 1} is an associated sequence of random vari-
ables.

Under a regularity condition on G it is possible to
bound Cov(G(V1), G(Vn)).

Assumption 1 Let B(R+) denote the Borel σ -field.
Define a σ -finite measure µ on the measurable space
(R+, B(R+)) by

µ(A) = 1A(0) +
∫

A

dx, A ∈ B(R+). (5)

Assume that G has a density g with respect to µ. In that
case g can be decomposed as

g(x) = (1 − ρ)1{0}(x) + gac(x), x ≥ 0,

where gac is the absolutely continuous component of G. In
addition assume that gac is essentially bounded with respect
to Lebesgue measure.

Remark 1 If the service time cdf is absolutely con-
tinuous we notice by Young’s inequality

‖ f �k ‖∞ ≤ ‖ f ‖∞‖ f �(k−1) ‖1 = ‖ f ‖∞,

where ‖ · ‖∞ is the essential supremum with respect to
Lebesgue measure. Hence, the absolutely continuous part
gac is bounded by

‖ gac ‖∞ ≤ ρ‖ f ‖∞.

Proposition 2 Assume that G satisfies Assumption
1, then

Cov(G(V1), G(Vn)) ≤ ‖ gac ‖2∞ Cov(V1, Vn).
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The covariance structure of the workload process for
the M/G/1-queue has been under intensive investigation,
see Beněs (1957), Ott (1977) and Abate and Whitt (1994).
From these results it is possible to derive the following
proposition (see Section 6 for details).

Proposition 3 If ESν+3 < ∞, for ν ≥ 1, then

Cov(V1, Vn) = O(n−v−ε) (6)

for some ε > 0.
The properties outlined in Proposition 1, 2 and 3 turn

out to be sufficient information to apply several useful
results from weak convergence and resampling methods of
associated sequences.

3 ASYMPTOTIC NORMALITY AND
THE BOOTSTRAP

The theory of empirical processes plays a central role in
statistics and it has many applications ranging from pa-
rameter estimation to hypothesis testing. The literature of
empirical processes is large and there are many profound
results, see e.g. van der Vaart and Wellner (1996) for a
comprehensive overview for independent random variables.

To deal with random variables such as time series that
are dependent, one naturally asks whether results obtained
under the independence assumption remain valid. Such
asymptotic theory is evidently useful for statistical inference
of stochastic processes.

Without the independence assumption, it is more de-
manding to develop weak convergence theory and bootstrap
methods. There are three main directions: Via 1) mixing
conditions, 2) martingale methods for causal processes, 3)
structural properties of Markov chains (e.g. Harris recur-
rence), 4) conditions on the covariance structure of associ-
ated sequence or 5) regenerative processes by Hansen and
Pitts (2005), Hansen and Pitts (2005). In the present pa-
per we follow direction 4) based on Shao and Yu (1996),
Peligrad (1998) and Louhichi (2000).

Let Q be the quantile function of G defined by

Q(t) = inf{x : G(x) ≥ t}, 0 < t ≤ 1 (7)

Q(0) = Q(0+).

This means, the quantile function Q is the left continuous
generalized inverse (Billingsley 1968, Page 42) of the right
continuous distribution function G.

In this paper we treat weak convergence →D in D[0, T ),
where [0, T ) is a subset of the extended positive real line,
and D[0, T ) the Skorohod space of all right-continuous
functions on [0, T ) with left hand limits endowed with the
metric induced by the supremum norm, see ?, Chapter IV.

Finally, let B be a tight random element in D[0, ∞),
satisfying B(∞) = 0, whose marginal distributions are
871
zero-mean normal and a covariance function specified by

E(B(x)B(y))

=
∞∑

k=1

Cov(I (V1 ≤ x), I (Vk ≤ y)). (8)

We are now ready to present the weak approximation
result for the n’th empirical process βn defined in (4).

Theorem 1 If ESν+3 < ∞ for some ν ≥ 4 and G

satisfies Assumption 1, then we have

βn →D B in D[0, ∞). (9)

In order to assess the performance of the estimator Gn,
some sort of confidence band is needed. Since we regard the
estimate as an element of D[0, ∞), it is natural to consider
confidence regions in this function space. This leads to
consideration of simultaneous confidence bands from the
unknown distribution function.

Assume for the moment, that the distribution of ‖ B ‖∞
is known and q is its quantile function (see (7)). Then,
Theorem 1 implies that

P(‖ βn ‖∞ ≤ q(α)) → P(‖ B ‖∞ ≤ q(α)) = α,

as n → ∞. An α · 100%-confidence band could then be
calculated as

Gn ± n−1/2q(α).

However, the quantile function is unknown. To deal
with this problem we use the bootstrap. As the data is not
iid, Efron’s (Efron 1979) IID-bootstrap method is modified
by Künsch’s (Künsch 1989) moving block bootstrap (MBB)
method. See, Lahiri (2003) for a recent and detailed account
of bootstrap methods and their properties for dependent data.

Let k and l be two integers such that n = kl. Let
Tn1, . . . , Tnk be iid random variables each having uniform
distribution on {1, 2, . . . , n}. Define the triangular array
{Vni, 1 ≤ i ≤ n} by Vni = Vi for 1 ≤ i ≤ n and
Vni = Vi−n for n < i ≤ n + l. Then the bootstrapped
estimator of the empirical distribution function is defined
as

G∗
n(x) = 1

k

k∑
i=1

1

l

Tni+l−1∑
j=Tni

I (Vnj ≤ x), 0 ≤ x < ∞.

The n’th-bootstrapped empirical process is then defined as

β∗
n(x) = n1/2(G∗

n(x) − Gn(x)), 0 ≤ x < ∞.
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In the following P ∗ denotes the conditional probability given
(V1, . . . , Vn). The notation 	 in the following Theorem is,
for notational convenience, used to replace the O-notation.

Theorem 2 If ESν+3 < ∞ for some ν ≥ 3, G

satisfies Assumption 1, and ln, kn are sequences of natural
numbers satisfying

nh 	 l 	 n1/3−α

for some 0 < h < 1/3 − α, 0 < α < 1/3, ln = l(2k) for
2k ≤ n < 2k+1, ln → ∞ as n → ∞, and n = knln, then
the series in (8) is convergent and

β∗
n →D B, in D[0, ∞)

holds P ∗-almost surely in the Skorohod Topology on
D[0, ∞).

Remark 2 As noted in Peligrad (1998), Remark
2.1, the central limit theorem of the bootstrapped empirical
process is ensured for a larger class of processes, than the
empirical process of the original data.

From Theorem 2 the following result follows.
Corollary 1 Under the conditions in Theorem 2,

we get

P∗ (‖ β∗
n ‖∞ ≤ q(α)

) → P (‖ B ‖∞ ≤ q(α)) = α,

as n → ∞.
The confidence band is then constructed by simulating

N independent replications β∗
n,i , i = 1, . . . , N of β∗

n , and
q(α) is estimated by

q̂N (α) = inf

{
x : N−1

N∑
i=1

I (‖ β∗
n,i ‖∞ ≤ x) ≥ α

}
.

A α · 100% bootstrapped confidence band can then be con-
structed as

Gn ± n−1/2q̂N (α). (10)

4 SIMULATION RESULTS

The results above have interesting consequences for statisti-
cal inference about queuing systems. We shall in the present
section see, how the presented weak convergence results
enable statistical inference about the workload distribution
function.

We will consider the widely used M/D/1 queue for
our simulation study, which means the service times have
a deterministic length. For the simulation study we will
throughout this section assume ρ = 0.5 and S ≡ 1. (For
simulation results on other service time distributions, see
Hansen and Pitts (2005), Hansen and Pitts (2005).)
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Observe that all moments of S exists and that G is
absolutely continuous except for the atom at zero. From
Remark 1 it follows that the absolute continuous part of G

is bounded by ρ.
In order to make comparisons, we calculate the sta-

tionary cdf of the workload distribution. One approach to
calculate the compound geometric distribution in (2), is 1. to
notice that the stationary excess distribution of the constant
random variable S ≡ 1, is the uniform distribution over
[0, 1], 2. derive the Fourier transform of Fe and 3. utilize
that

G(x) = 1

2π

∫ ∞

−∞
(1 − ρ)

1

1 − ρF̂e(t)
exp(−itx)dt.

However, inverting the Fourier transform is by no means
trivial because of the discontinuity at 0. For numerically
stable procedures we refer to Abate and Whitt (1992) and
Grübel and Hermesmeier (1999).

Another and more simple possibility is to notice that,
if F is one-sided and of lattice-type, i.e. concentrated on
the non-negative integer multiples of some h > 0, then
the compound geometric distribution (2) can be handled
numerically by Panjer recursion (Panjer 1981). If F is not
of lattice-type, then the use of Panjer recursion requires an
initial discretization step which leads to a discretization error.
Theoretical justifications for discretized Panjer recursion can
be found in Grübel and Hermesmeier (1999), Grübel and
Hermesmeier (2000). Using Panjer recursion instead of
transform methods avoids problems that may arise if the
Fourier transform winds about 0.

Algorithm 1 (Panjer Recursion)

1. Choose a discretization level h > 0 and consider
the corresponding lattice Ph = {hz| z ∈ Z}.

2. Discretize the density of the uniform distribution
function Fe over [0, 1] in the following way

f (x) =
{

h for x ∈ Ph ∩ (0, 1]
0 elsewhere

3. Calculate an approximation to the density of G by
the following recursion

g(x)

=


1 − ρ x = 0
ρ

∑x/h
j=1 f (jh)g(jh − x) x ∈ Ph ∩ (0, ∞)

0 elsewhere

For the workload distribution function of the M/D/1
under study, approximated with h = 1/1000, see the broken
line in Figure 1.
2
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Figure 1: The Theoretical Distribution Function G (Broken
Line) and the Estimate (Solid Line).
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Figure 2: Upper panel: Simulated Data Set of Size n =
200 with ρ = 0.5 and Sn ≡ 1, n ≥ 0. Lower panel:
Corresponding Estimated acf.

A stationary version of the M/D/1-workload process
(1) can be started out at 0, by realizing, that the marginal
distribution of V0 equals the distribution of a geometrically-
stopped uniformly-summed random variable. Recall that the
stationary excess distribution Fe is the uniform distribution
on [0, 1] and the geometric distribution has mean (1−ρ)−1.

Figure 2 (upper panel) shows a simulated data set of
size n = 200 from the stationary version of the M/D/1-
model in (1) with ρ = 0.5 and S ≡ 1. The autocorrelation
function, acf(n) = Cov(V1, Vn)/ Var(V0), is estimated and
plotted in the lower panel (solid lines) together with the
approximate 95% confidence limits for the hypothesis of
no correlation. The plot shows positive and non-vanishing
autocorrelations until lag 4, which indicates a quickly de-
caying positive autocorrelation function. This is expected
as, from Proposition 3, we have Cov(V1, Vn) = O(n−k−ε)

for all k ≥ 1.
The ecdf (3) of the sample is illustrated by the solid

line in Figure 1. We notice from this plot that the ecdf fits
87
the distribution function quite well. To get an idea of the
variability, see the six ecdf’s based on independent replica-
tions of the experiment with the corresponding theoretical
distribution function in Figure 4.

A practical problem of applying the asymptotic results of
Section 3 lies in choosing the block size l. In the present case
we use the ’calibration by adjusting the block size’ method
presented in Politis, Romano, and Wolf (1999), Algorithm
9.3.2. The rationale behind calibration methods is for various
block sizes to calculate the nominal confidence interval. The
word nominal is used to describe that we calculate the actual
coverage probability for the chosen block size. However,
as the distribution function is unknown, one uses the ecdf
as an approximation to the theoretical cdf. To describe the
calibration formally, see the following algorithm.

Algorithm 2 (Calibration)

1. For each block size l

2. Generate I MBB distribution functions (using block
size l)

F ∗
n,i , 1 ≤ i ≤ I,

from the ecdf Fn.
3. From each F ∗

n,i generate J MBB distribution func-
tions (using block size l)

F
∗j
n,i , 1 ≤ j ≤ J.

4. For each F ∗
n,i estimate the α·100% confidence band

by

q̂∗
i,N (α)

= inf

x : J−1
J∑

j=1

I (‖ F
∗j
n,i − F ∗

n,i ‖∞ ≤ x) ≥ α


and

F ∗
n,i ± q̂∗

i,N (α)

5. Estimate the actual coverage probability by



{
i : ‖ F ∗

n,i − Fn ‖∞ ≤ q∗
i,N (α)

}
I

Note, we have not claimed any asymptotic optimality
of the described procedure. It should only be seen as a
sensible way of choosing the block size in the small sample
case. More formal analyses of calibration methods in the
time series case, seem to be an open question.

In Figure 3, the 90% nominal coverage probability
is estimated at block sizes 1, 10, 30 and 50 and linearly
interpolated in between them. In the simulation study the
3
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Figure 3: Sample Mean of 1000 iid Bootstrapped Estimates
of the Nominal Confidence Interval, for Block Size l =
1, 10, 30, and 50. A ±1.96 Times the Sample Standard
Error, Interval is Centered Around the Sample Mean, is
Shown by the Vertical Broken Line Segments.

algorithm is based on I = 1000 and J = 100. A 95%
confidence interval based on the 1000 independent samples
of the confidence interval is indicated by the vertical broken
lines. The conclusion seems to be that a small block size
will do. This is not surprising as we noticed that the
autocorrelations died out quickly. In our further analysis
the block size was chosen to be 1.

As an estimate for the empirical distribution function we
used the ecdf of the data and the MBB method to construct
a 90% confidence band, by one iteration, i.e. I = 1 and
J = 1000 in Algorithm 2.

In Figure 4 we started 6 independent queues in the
stationary distribution and sampled n = 200 values. For
each realization we calculated the ecdf and the 90% MBB
confidence interval. We see, in each case, that the confidence
region covers the true distribution function.

All programming and simulations have been carried
out with standard routines in the freely available com-
putational statistical software package R, see <http:
//www.r-project.org> for more details.

5 DISCUSSION

Under strong requirements on the moment of the service
time distribution we have proven weak convergence to a
Gaussian process. Moreover, we have presented a recipe
for analyzing data from the widely used M/D/1-model.
However, by relaxing the moment conditions on S, the sum
of the covariance function will not converge (Ott 1977,
Theorem 1)

∞∑
n=1

Cov(V1, Vn) = ∞.
874
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Figure 4: The Distribution Function G (broken line), the
Estimate (solid line), and the Bootstrap Confidence Band
(dotted lines) for ρ = 0.5, n = 200, l = 1, k = 1000
and N = 1000. The Experiment was Replicated on Six
Independent Simulations of the Queue.

Processes of this type are described by various authors,
as being long-range dependent. It is well-known that the
scaling factor n1/2 used in the empirical processes is substan-
tially smaller for long-range dependent data. Furthermore,
the limit distribution of the normalized ecdf can be non-
normal. Procedures for a rather special class of long-range
dependent data are reviewed in Lahiri (2003), Chapter 10,
but a systematic study of long-range dependent associated
sequences seems to an open issue. As it is well documented
that data in communication systems can be long-range de-
pendent an interesting topic for further study is to see if
similar results can be derived for sampling the workload of
the M/G/1-queue with heavy tailed service times.

These and other open questions as well as applications
are studied in the separate papers Hansen and Pitts (2005)
and Hansen and Pitts (2005). In these papers the moment
condition on the service times are relaxed to ES2 < ∞.
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Quite interestingly this provides examples where the co-
variance function is not summable but we have indeed
convergence to the normal distribution.

6 PROOFS

In order to prove Proposition 1, we prove the slightly stronger
property of being sequentially stochastically increasing.

Definition 2 Let X, Y be R
n-valued random vec-

tors. We say that X ≤ Y in the sense of stochastically
ordering (written X ≤st Y ) if

E(f (X)) ≤ E(f (Y ))

for all increasing measurable functions f : R
n → R.

Definition 3 The real-valued sequence {Xn, n ≥ 1}
is said to be sequentially stochastically increasing (SSI) if
for each n = 1, 2, . . . it holds that

[Xn|(X1, . . . , Xn−1) = x] ≤st[Xn|(X1, . . . , Xn−1) = y]

for x, y ∈ R
n−1 satisfying x ≤ y component-wise.

Lemma 1 If a sequence of random variables
{Xn, n ≥ 1} are sequentially stochastically increasing,
then they are necessarily also associated.

For a proof, see Theorem 4.7 of Barlow and Proschan
(1975).

Proof of Proposition 1 First we notice that {Vi, i ≥ 1}
is sequentially stochastically increasing. Let f be any real-
valued measurable and increasing function and

(u1, . . . , un−1) ≤ (v1, . . . , vn−1)

component-wise. Then by Lindley’s equation (1)

E(f ([Vn|V1 = u1, . . . , Vn−1 = un−1]))
= E(f ([Vn|Vn−1 = un−1]))
≤ E(f ([Vn|Vn−1 = vn−1]))
= E(f ([Vn|V1 = v1, . . . , Vn−1 = vn−1])).

Hence by Lemma 1 {Vi, i ≥ 1} is associated. �

Proof of Proposition 2 Let 0 ≤ x ≤ y, then

G(y) − G(x) ≤ ‖ gac ‖∞(y − x).

From which we observe that the function f1 defined by

f1(x) = ‖ gac ‖∞x − G(x), x ≥ 0,
87
is increasing. Now, by successive applications of Definition
1 we get

Cov(G(V1), G(Vn)) ≤ ‖ gac ‖∞ Cov(V1, G(Vn))

≤ ‖ gac ‖2∞ Cov(V1, Vn).

�

Lemma 2 If ESν+3 < ∞, for some ν ≥ 1, then

Cov(V0, Vt ) = O(t−ν−ε),

for some ε > 0.

Proof From Abate and Whitt (1994), Proposition 1, it
follows that Vt has one moment less than S. Furthermore,
it also follows (Abate and Whitt 1994, Theorem 10) that

Cov(V0, Vt ) = Var(V0)Ūe(t).

The cdf U , has one moment less than Vt . Consequently,
by the tail integration formula

uν+1 =
∫ ∞

0
xν+1U(dx)

=
∫ ∞

0
(ν + 1)xνŪ(x)dx (11)

< ∞.

Whereby, for some ε > 0,

Ū (x) = O(x−(ν+1)−ε), for x → ∞.

From which

Ūe(x) = u−1
e 1

∫ ∞

x

Ū(y)dy

= O(x−ν−ε), for x → ∞,

and some ε > 0. �

Proof of Proposition 3 Follows immediately from
Lemma 2. �

Lemma 3 Assume ESν+3 < ∞, for some ν ≥ 1 and
G satisfies Assumption 1. Let {U ′

n, n ≥ 1} be a sequence
of independent random variables uniformly distributed on
[0, 1 − ρ]. Then the sequence of random variables

Un = G(Vn)1(Vn > 0) + U ′
n1(Vn = 0)
5
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is stationary, associated, uniformly distributed on [0, 1] and

Cov(U1, Un) = O(n−ν−ε)

for some ε > 0.

Proof of Lemma 3 As {Vn, n ≥ 1} and {U ′
n, n ≥ 1}

are stationary, stationarity of {Un, n ≥ 1} is immediate.
The uniform distribution of the Un’s, n ≥ 1 on [0, 1] follows
directly by stationarity and their definition.

Let f : R
n → R be a measurable increasing function,

then for (u1, . . . , un−1) ≤ (v1, . . . , vn−1) componentwise,
in the same way as the proof of Proposition 1

Ef ([Un|U1 = u1, . . . , Un−1 = un−1])
= Ef ([Un|Un−1 = un−1])
≤ Ef ([Un|Un−1 = vn−1]).

Hence {Un, n ≥ 1} is SSI and by Lemma 1 associated.
For the covariance function consider

Cov(U1, Un) = Cov(G(V1)1(V1 > 0), G(Vn)1(Vn > 0))

+ Cov(G(V1)1(V1 > 0), U ′
n1(Vn = 0))

+ Cov(U ′
11(V1 = 0), G(Vn)1(Vn > 0))

+ Cov(U ′
11(V1 = 0), U ′

n1(Vn = 0))

= I + II + III + IV.

By use of Cuadras’ generalization (Cuadras 2002, Theorem
1) of the Hoeffding identity, Abate and Whitt (1994), the
tail integration formula, Propositions 2 and 3 one obtains
the following estimates

I = O(n−ν−ε)

II = O(n−ν−ε)

III = O(n−(ν+1)−ε)

IV = O(n−ν−ε).

for some ε > 0. Combining the estimates for I, II, III, and
IV yields the result of the stated lemma. �

Proof of Theorem 1 Let {Un, n ≥ 1} be defined as in
Lemma 3. Let A be a tight element of D[0, 1], satisfying
A(0) = A(1) = 0, whose marginal distributions are zero-
mean normal with a covariance function specified by

Cov(A(t), A(s)) =
∞∑

k=1

Cov(I (U1 ≤ s), I (Uk ≤ t)).
8

Define the ecdf of {Ui, 1 ≤ i ≤ n} by

Hn(x) = n−1
n∑

i=1

I (Ui ≤ x), x ∈ [0, 1],

and finally its n’th empirical process by

αn(x) = n1/2(Hn(x) − x), x ∈ [0, 1].

Then from Lemma 3 the conditions of Louhichi (2000),
Theorem 1, are fulfilled for the sequence {Un, n ≥ 1} and
it follows that

αn →D A in D[0, 1].

If we define h : D[0, 1] → D[0, ∞) by (hx)(t) = x(G(t))

and let Gn = h(Hn), the result follows from Corollary 1
to Theorem 5.1 in Billingsley (1968). �

Proof of Theorem 2 Use the same construction as in
the proof of Theorem 1. Now, from Lemma 3 {Un, n ≥ 1}
satisfies the conditions of Peligrad (1998), Theorem 2.4).
Again, as in the proof of Theorem 1 the result follows from
Corollary 1 of Theorem 5.1 in Billingsley (1968). �
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