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ABSTRACT

We apply the recently introduced approach of model refer-
ence adaptive search to the setting of stochastic optimization
and report on simulation results.

1 INTRODUCTION

We consider an optimization problem of the form:

x∗ ∈ arg max
x∈X

Eψ [H(x, ψ)], x ∈ X ⊆ �n, (1)

where X is the solution space, which can be either continuous
or discrete, H(·, ·) is a deterministic, real-valued function,
and ψ is a random variable (possibly depending on x)
representing the stochastic effects of the system. We let
h(x) := Eψ [H(x, ψ)], and assume h(x) cannot be obtained
easily, but instead, only the random variable H(x, ψ) can
be observed, e.g., via simulation, which makes (1) much
more difficult to solve than its deterministic counterpart
(cf. Fu 2002). We assume (1) has a unique global optimal
solution.

In general, depending on the structure of the underlying
solution space, the techniques for stochastic optimization
problems could be quite different. When the solution space
is continuous, there is a well-known class of methods called
stochastic approximation (SA) for solving such problems.
These methods rely on the estimation of the gradient of the
objective function with respect to the decision variables;
thus they generally find local optimal solutions. In terms
of the different gradient estimation techniques used, the SA
methods can be further characterized into different cate-
gories. Detailed reviews can be found in e.g., Fu (1994,
2005).

For problems with discrete decision variables, various
randomized search methods have been suggested, including
the stochastic ruler method (Yan and Mukai 1992; Alrefaei
and Andradòttir 2001), random search methods (Andradòttir
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1995, 1996; Hong and Nelson 2005), simulated annealing
(Alrefaei and Andradòttir 1999), and nested partitions (Shi
and Òlafsson 2000). Andradòttir (2005) and Òlafsson (2005)
contain recent reviews of these techniques.

This paper presents a new unified approach called
Stochastic Model Reference Adaptive Search (SMARS) for
solving simulation-based optimization problems with either
continuous or discrete solution spaces. SMARS is the gener-
alization of the Model Reference Adaptive Search (MRAS)
method for deterministic optimization introduced in Hu,
Fu, and Marcus (2005a) with some appropriated modifi-
cations and extensions required for the stochastic setting.
The method works with a parameterized probability distri-
bution on the solution space and generates at each iteration
a group of candidate solutions. These candidate solutions
are then used to update the parameters associated with the
distribution so that the future search will be biased toward
the region containing high quality solutions. For complete
technical developments of the approach and convergence
proofs, the interested readers are referred to Hu, Fu, and
Marcus (2005b).

The rest of the paper is structured as follows. In
Section 2, we describe the proposed SMRAS method. In
Section 3, we present the global convergence property of
SMRAS. Illustrative numerical examples on both continu-
ous and discrete domains are given in Section 4. Finally
Section 5 contains some concluding remarks.

2 ALGORITHM

The algorithm is summarized in Figure 1. For a specified pa-
rameterized family of distributions {f (·, θ), θ ∈ �}, where
� is the parameter space, the main body of the algorithm
consists of the following steps:

(1) generate candidate solutions according the current
distribution, say f (·, θk);
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Stochastic Model Reference Adaptive Search (SMRAS)

• Initialization: Specify ρ0 ∈ (0, 1], initial sample size N0 > 1, α > 1, ε > 0, a simulation allocation rule {Mk}, a function S(·) : � → �+,
a sequence of mixing coefficients {λk.k = 0, 1, . . .} satisfying λk ≥ λk+1 and λk ∈ (0, 1) ∀ k, and an initial p.d.f. f (x, θ0) > 0 ∀x ∈ X .
Set k ← 0.

• Repeat until a specified stopping rule is satisfied:

1. Generate Nk samples Xk
1, . . . , Xk

Nk
according to f̃ (·, θk) := (1 − λk)f (·, θk) + λkf (·, θ0).

2. Compute the sample (1 − ρk)-quantile γ̃k+1(ρk, Nk) := H̄k,(
(1−ρk)Nk�), where 
a� is the smallest integer greater than a, and

H̄k,(i) is the ith order statistic of the sequence
{
H̄k(Xk

i
), i = 1, . . . , Nk

}
.

3. If k = 0 or γ̃k+1(ρk, Nk) ≥ γ̄k + ε, then do step 3a.

3a. Set γ̄k+1 ← γ̃k+1(ρk, Nk), ρk+1 ← ρk, Nk+1 ← Nk , X
†
k+1 ← X1−ρk

, where X1−ρk
represents the sample that

achieves the sample (1 − ρk)-quantile of the sequence
{
H̄k(Xk

i
)
}

.

else, find the largest ρ̄ ∈ (0, ρk) such that γ̃k+1(ρ̄, Nk) ≥ γ̄k + ε.

3b. If such a ρ̄ exists, then Set γ̄k+1 ← γ̃k+1(ρ̄, Nk), ρk+1 ← ρ̄, Nk+1 ← Nk , X
†
k+1 ← X1−ρ̄ .

3c. else if no such ρ̄ exists, set γ̄k+1 ← H̄k(X
†
k
), ρk+1 ← ρk, Nk+1 ← 
αNk�, X

†
k+1 ← X

†
k

.

endif

4. Compute θk+1 as

θk+1 = arg max
θ∈�

1

Nk

Nk∑
i=1

[S(H̄k(Xk
i
))]k

f̃ (Xk
i
, θk)

Ĩ [H̄k(Xk
i ), γ̄k+1] ln f (Xk

i , θ), (2)

where Ĩ (x, γ ) :=
⎧⎨
⎩

1 if x ≥ γ ,
(x − γ + ε)/ε if γ − ε < x < γ ,
0 if x ≤ γ − ε.

5. Set k ← k + 1.

Figure 1: Stochastic Model Reference Adaptive Search (SMRAS)
(2) compute a new parameter θk+1 according to a
specified rule by using the samples generated in
the previous step in order to concentrate the future
search toward more promising regions.

There are two simulation allocation rules in SMRAS: the
sampling allocation rule {Nk, k = 0, 1 . . .}, which deter-
mines the number of candidate solutions to be generated
from the current sampling distribution f (·, θk), and the
observation allocation rule {Mk, k = 0, 1, . . .}, which allo-
cates Mk simulation observations to each of the candidate
solutions generated at the kth iteration. We require both Nk

and Mk to increase as the number of iteration grows for
convergence. We use a parameter α > 1 to control the rate
of increase in {Nk}, and leave the sequence {Mk} as user-
specified. When Mk observations are allocated to a solution
x at iteration k, we use Hj(x) to denote the j th random

observation of H(x, ψ), and use H̄k(x) = 1
Mk

∑Mk

j=1 Hj(x)

to denote the sample average of all Mk observations made
at x.

The performance of the SMRAS algorithm depends
on another sequence of quantities {ρk, k = 0, 1 . . .}. The
motivation behind the sequence is to concentrate the compu-
tational effort on the set of elite samples rather than the entire
set of samples. At successive iterations of the algorithm,
a sequence of thresholds {γ̄k, k = 1, 2, . . .} are generated
according to the sequence of sample (1−ρk)-quantiles, and
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only those samples that have performances better than these
thresholds will be used in parameter updating. Thus, each
ρk determines the proportion of Nk samples that will be
used to update the probabilistic model at iteration k.

During the initialization step of SMRAS, a continuous
and strictly increasing function S(·) : � → �+ is specified.
The function S(·) is used to account for the cases where
the sample average approximations H̄k(x) are negative for
some x.

At each iteration k, random samples are drawn from
the density/mass function f̃ (·, θk), which is a mixture of
the initial density f (·, θ0) and the density calculated from
the previous iteration f (·, θk). Intuitively, mixing in the
initial density enables the algorithm to explore the entire
solution space and thus maintain a global perspective during
the search process.

At step 2, the sample (1 − ρk)-quantile γ̃k+1 with
respect to f̃ (·, θk) is calculated by first ordering the sample
performances H̄k(X

k
i ), i = 1, . . . , Nk from smallest to

largest, H̄k,(1) ≤ H̄k,(2) ≤ · · · ≤ H̄k,(Nk), and then taking
the 
(1 − ρk)Nk�th order statistic. We use the function
γ̃k+1(ρk, Nk) to emphasize the dependencies of γ̃k+1 on
both ρk and Nk , so that different sample quantile values
can be distinguished by their arguments.

Step 3 of the algorithm is used to construct a se-
quence of thresholds {γ̄k, k = 1, 2, . . .} from the sequence
of sample quantiles {γ̃k}, and to determine the appropri-
2
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ate values of the ρk+1 and Nk+1 to be used in subsequent
iterations. This is carried out by checking whether the con-
dition γ̃k+1(ρk, Nk) ≥ γ̄k + ε is satisfied. If the inequality
holds, then both the current ρk value and the new sample
size Nk are satisfactory, and γ̃k+1(ρk, Nk) is used as the
current threshold value. Otherwise, we fix the sample size
Nk and try to find if there exists a smaller ρ̄ < ρk such that
the above inequality can be satisfied with the new sample
(1 − ρ̄)-quantile. If such a ρ̄ does exist, then the current
sample size Nk is still deemed acceptable, and the new
threshold value is updated by the sample (1 − ρ̄)-quantile.
On the other hand, if no such ρ̄ can be found, then the
sample size Nk is increased by a factor α, and the new
threshold γ̄k+1 is calculated by using an additional variable
X

†
k to remember the particular sample that achieves the

previous threshold value γ̄k , and then simply allocating Mk

observations to X
†
k . It is important to note that in step 4,

the set
{
x : H̄k(x) > γ̄k − ε, x ∈

{
Xk

1, . . . , X
k
Nk

}}
could be

empty, since it could happen that all the random samples
generated at the current iteration are much worse than those
generated at the previous iteration. If this is the case, the
right hand side of equation (2) will be equal to zero, so any
θ ∈ � is a maximizer; we define θk+1 := θk in this case.
Also note that a “soft” threshold function Ĩ (·, ·), as opposed
to the indicator function, is used in parameter updating.

In practice, different stopping rules can be used. The
simplest method is to stop the algorithm when the total
computational budget is exhausted or when the prescribed
maximum number of iterations is reached; see Hu, Fu, and
Marcus (2005b) for further details.

3 THEORETICAL CONVERGENCE

Hu, Fu, and Marcus (2005b) establishes convergence prop-
erties of the SMRAS algorithm for a particular family of
distributions called the natural exponential family (NEF),
which includes many common distributions, including the
normal, Poisson, binomial, geometric, and certain multi-
variate forms of them.

Under appropriate assumptions on the objective func-
tion, the input parameters, the random variable Hj(x), and
the observation allocation rule {Mk, k = 0, 1, . . .}, the fol-
lowing result is established in Fu, Hu, and Marcus (2005b).

Theorem 1 Let ϕ be a positive constant satisfying
the condition that the set

{
x : S(h(x)) ≥ 1

ϕ

}
has a strictly

positive Lebesgue measure. If there exist δ ∈ (0, 1) and
Tδ < ∞ such that α ≥ [ϕS∗]2/[λ2/k

k δ] ∀ k ≥ Tδ , then

lim
k→∞ Eθk

[�(X)] = �(x∗) w.p.1, (3)

where Eθk
[·] represents the expectation taken w.r.t. the

distribution f (·, θk).
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In particular, for the multivariate normal case with mean
vector μk and variance-covariance matrix 
k ,

lim
k→∞ μk = x∗, lim

k→∞ 
k = 0n×n w.p.1,

where 0n×n represents a n-by-n zero matrix.

4 SIMULATION RESULTS

In this section, we test the performance of SMARS on
both continuous and combinatorial stochastic optimization
problems. In the former case, we first illustrate the global
convergence of SMRAS by testing the algorithm on two
multi-extremal functions; then we apply the algorithm to an
inventory control problem. In the latter case, we consider
the problem of optimizing the buffer allocations in a tandem
queue with unreliable servers, which has been previously
studied in e.g., Vouros and Papadopoulos (1998), and Allon
et al. (2005).

In actual implementation of the algorithm, a smoothed
parameter updating procedure (cf. De Boer et al. 2004) is
used, i.e., first a smoothed parameter vector θ̂k+1 is computed
at iteration k according to

θ̂k+1 := υ θk+1 +(1−υ)θ̂k, ∀ k = 0, 1, . . . , and θ̂0 := θ0,

where θk+1 is the parameter vector derived at step 3 of
SMRAS, and υ ∈ (0, 1] is the smoothing parameter. Then
f (x, θ̂k+1) instead of f (x, θk+1) is used in step 1 to gen-
erate new samples. This modification does not affect the
theoretical convergence.

4.1 Continuous Optimization

For continuous problems, we use multivariate normal p.d.f’s
as the parameterized probabilistic model.

4.1.1 Global Convergence

We consider the following two multi-extremal test functions

(1) Goldstein-Price function with additive noise

H1(x, ψ) =(1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2

+ 6x1x2 + 3x2
2 ))(30 + (2x1 − 3x2)2(18−

32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2 )) + ψ,

where x = (x1, x2)
T , and ψ ∼ N(0, 102). The

function h1(x) = Eψ [H1(x, ψ)] has four local
minima and a global minimum h1(0, −1) = 3.

(2) Rosenbrock function with additive noise

H2(x, ψ) =
4∑

i=1

100(xi+1 − x2
i )2 + (xi − 1)2 + 1 + ψ,
3
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where x = (x1, . . . , x5)
T , and ψ ∼ N(0, 102).

The function h2(x) = Eψ [H2(x, ψ)] has a global
minimum h2(1, 1, 1, 1, 1) = 1 and many local min-
ima.

For both problems, the same set of parameters is used:
β = 1.02, ε = 0.1, mixing coefficient λk = 1√

k+1
∀ k, initial

sample size N0 = 100, ρ0 = 0.9, α = 1.03, observation
allocation rule Mk = 1.1k , smoothing parameter υ = 0.2.
The initial mean vector is taken to be a vector of all 10s
(which is very far from the optimal solution), and the initial
variance-covariance matrix is a diagonal matrix with all
diagonal elements equal to 100.

For each function, we performed 50 independent sim-
ulation runs of SMRAS. The averaged performance of the
algorithm is shown in Table 1, where Navg is the average
total number of function evaluations needed to satisfy the
stopping criteria, H∗ and H ∗ are the worst and best func-
tion values obtained in 50 trials, and H̄ is the averaged
function values over the 50 replications. Figure 2 plots the
progression of the average function values for (a) function
H1 through 45 iterations, and (b) function H2 through 100
iterations.

Table 1: Performance of SMRAS on Two Test Functions
(Standard Errors in Parentheses)

Hi Navg(std err) H∗ H ∗ H̄ (std err)

H1 5.4e+04(3.9e+02) 3.05 3.00 3.01(1.64e-3)
H2 1.0e+07(4.9e+05) 1.31 1.02 1.09(9.10e-3)

4.1.2 An Inventory Control Example

To further illustrate the algorithm, we consider an (s, S)

inventory control problem with i.i.d exponentially distributed
continuous demands, zero order lead times, full backlogging
of orders, and linear ordering, holding and shortage costs.
The inventory level is periodically reviewed, and an order
is placed when the inventory position (on hand plus that on
order) falls below the level s, and the amount of the order is
the difference between S and the current inventory position.
Let Dt denote the demand in period t , Xt the inventory
position in period t , p the per period per unit demand lost
penalty cost, h the per period per unit inventory holding
cost, c the per unit ordering cost, and K the set-up cost
per order. The inventory position {Xt } evolves according
to the following dynamics:

Xt+1 =
{

S − Dt+1 Xt < s,

Xt − Dt+1 Xt ≥ s.
81
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The goal is to choose values of s and S to minimize the
steady-state average cost per period:

(s∗, S∗) = arg min J (s, S) := arg min lim
t→∞ Jt (s, S),

where Jt (s, S) := 1
t

∑t
i=1

[
I {Xi < s}(K + c(S − Xi))

+hX+
i + pX−

i

]
, I {·} is the indicator function, x+ =

max(0, x), and x− = max(0, −x). Although the cost func-
tion is convex, this property is not exploited.

Eight cases taken from Fu and Healy (1997) were used
to test the performance of the SMRAS algorithm. Shown in
Table 2 are the cost coefficients and the optimal solutions,
with c = h = 1 and exponentially distributed demands with
mean E[D].

Table 2: (s, S) Inventory Control Example Test Cases

Case E[D] p K J ∗ (s∗, S∗)
1 200 10 100 740.9 (341,541)
2 200 10 10000 2200.0 (0,2000)
3 200 100 100 1184.4 (784,984)
4 200 100 10000 2643.4 (443,2443)
5 5000 10 100 17078 (11078,12078)
6 5000 10 10000 21496 (6496,16496)
7 5000 100 100 28164 (22164,23164)
8 5000 100 10000 32583 (17582,27582)

In our simulation experiments, the initial mean vector
is taken to be (2000, 4000)T for all eight cases, and the
covariance matrices are initialized as diagonal matrices with
all diagonal elements equal to 105 for cases 1 − 4 and 106

for cases 5 − 8. The other parameters are: β = 1.05,
ε = 0.1, λk = 1√

k+1
∀ k, N0 = 100, ρ0 = 0.95, α = 1.05,

Mk = 1.2k , smoothing parameter υ = 0.3. The steady-state
cost per period is simulated by averaging the accumulated
cost over 50 periods after a warm-up period with length 50.

Figure 3 shows the typical performance of SMRAS for
the first four test cases when the total number of simulation
periods is set to 106. The locations of the optimal solutions
are marked by �. We see that the algorithm converges rapidly
to the neighborhood of the optimal solution in the first few
iterations and then spends most of the computational effort
in that small region. Numerical results for all eight test
cases are given in Table 3. In the table, Np indicates the
total number of periods (including the warm-up periods)
simulated, and the entries represent the averaged function
values J of the final sample solutions obtained for different
choices of Np, each one based on 25 independent simulation
replications.
4
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Figure 2: Average Performance of SMRAS on (a) Goldstein-price Function; (b) 5-D Rosenbrock Function

Table 3: Performance of SMRAS on (s, S) Inventory Example (Each Case Based on 25
Independent Simulation Runs; Standard Errors in Parentheses)

Case Np = 105 Np = 106 Np = 5 × 106 Np = 107 J ∗
1 1169.7(43.5) 742.6(0.32) 741.6(0.14) 741.2(0.06) 740.9
2 2371.6(37.8) 2223.9(3.57) 2202.0(0.20) 2200.8(0.17) 2200.0
3 1413.1(28.0) 1213.8(5.90) 1188.8(0.78) 1185.8(0.28) 1184.4
4 2709.0(13.4) 2667.2(4.89) 2647.2(0.61) 2645.0(0.42) 2643.4
5 18694.6(195.5) 17390.4(48.5) 17245.5(32.81) 17119.3(9.25) 17078
6 24001.7(340.8) 21808.5(53.6) 21780.0(34.00) 21520.9(5.80) 21496
7 32909.1(579.5) 28778.5(82.2) 28598.8(50.25) 28290.1(33.45) 28164
8 36520.0(538.0) 32881.7(216.9) 32860.2(52.56) 32682.8(36.68) 32583
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Figure 3: Typical Performance of SMRAS on the First Four
Test Cases (Np = 106)

4.2 Combinatorial Optimization

To illustrate the performance of SMRAS on discrete stochas-
tic optimization problems, we consider the buffer allocation
problem (BAP) in a service facility with unreliable servers.
The system consists of m servers in series, which are sepa-
815
rated by m−1 buffer locations. Each job enters the system
from the first server, goes through all intermediate servers
and buffer locations in a sequential order, and finally ex-
its from the last server. The service times at each server
are independent exponentially distributed with service rate
μi, i = 1, . . . , m. The servers are assumed to be unreliable,
and are subject to random failures. When a server fails, it
has to be repaired. The time to failure and the time for re-
pair are both i.i.d. exponentially distributed with respective
rates fi and ri, i = 1, . . . , m. A server is blocked when
the buffer associated with the server coming next to it is
full and is starved when no jobs are offered to it. Thus, the
status of a server (busy/broken) will affect the status of all
other servers in the system. We assume that the failure rate
of each server remains the same, regardless of its current
status. Given n limited buffer spaces, our goal is to find an
optimal way of allocating these n spaces to the m−1 buffer
locations such that the throughput (average production rate)
is maximized.

When applying SMRAS, we have used the same tech-
nique as in Allon et al. (2005) to generate admissible buffer
allocations, and the basic idea is to choose the probabilistic
model as an (n + 1)-by-(m − 1) matrix P , whose (i, j)th
entry specifies the probability of allocating i − 1 buffer
spaces to the j th buffer location.
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For the numerical experiments, we consider two cases:
(i) m = 3, n = 1, 2, . . . , 10, μ1 = 1, μ2 = 1.2 μ3 = 1.4,
failure rates fi = 0.05 and repair rates ri = 0.5 for all
i = 1, 2, 3; (ii) m = 5, n = 1, . . . , 10, μ1 = 1, μ2 =
1.1, μ3 = 1.2, μ4 = 1.3, μ5 = 1.5, fi = 0.05 and
ri = 0.5 for all i = 1, . . . , 5.

Apart from their combinatorial nature, an additional
difficulty in solving these problems is that different buffer
allocation schemes (samples) have similar performances.
Thus, when only noisy observations are available, it could
be very difficult to discern the best allocation from a set of
candidate allocation schemes. Because of this, in SMRAS
we choose the performance function S(·) as an exponential
function with a relatively larger base β = 10. The other
parameters are as follows: ε = 0.001, λk = 0.01 ∀ k, initial
sample size N0 = 10 for case (i) and N0 = 20 for case (ii),
ρ = 0.9, α = 1.2, observation allocation rule Mk = (1.5)k ,
smoothing parameter υ = 0.7, and the initial P 0 is taken
to be a uniform matrix with each column sum equal to one,
i.e., P 0

i,j = 1
n+1 ∀ i, j . We start all simulation replications

when the system is empty. The steady-state throughputs
are simulated after 100 warm-up periods, and then averaged
over the subsequent 900 periods.

Tables 4 and 5 give the performances of SMRAS for
each of the respective cases (i) and (ii), where P MRAS

is the averaged total number of periods simulated over 16
independent trials, Alloc is the optimal allocation scheme,
NMRAS is the averaged total number of allocations gener-
ated, NA∗ is the number of times the best allocation was
found out of 16 runs, T MRAS is the averaged throughput
value calculated by the algorithm, and T ∗ represents the
exact optimal solution. In each table, we also included for
comparison the results of Allon et al. (2004), which are
based on 10 independent runs of the CE method, where
NCE is the averaged total number of allocations used by
CE and T CE is the averaged throughput value computed
by CE.

5 CONCLUSIONS

We have presented a unified approach for solving stochastic
optimization problems for both continuous and discrete
solution spaces. The approach is generic – requiring only a
few mild regularity conditions on the underlying problem –
and is provably convergent to the global optimal solution.
Preliminary simulation studies comparing its performance
with the cross-entropy method indicate the approach has
great promise.
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Table 4: BAP case (i): Performance of SMRAS vs. CE

n P MRAS(std err) Alloc (NA∗) NMRAS T MRAS(std err) NCE T CE T ∗
1 3.31e+4(4.87e+2) [1,0] (16) 33 0.634(4.06e-4) 12 0.634 0.634
2 4.68e+4(3.15e+3) [1,1] (16) 47 0.674(6.35e-4) 24 0.672 0.674
3 4.39e+4(1.51e+3) [2,1] (16) 44 0.711(6.11e-4) 47 0.700 0.711
4 4.98e+4(3.45e+3) [3,1] (14) 50 0.735(6.47e-4) 84 0.735 0.736
5 5.04e+4(3.68e+3) [3,2] (13) 50 0.758(1.06e-3) 114 0.757 0.759
6 6.40e+4(6.29e+3) [4,2] (12) 64 0.776(1.39e-3) 155 0.769 0.778
7 5.91e+4(4.27e+3) [5,2] (14) 59 0.792(1.04e-3) 260 0.781 0.792
8 6.39e+4(4.79e+3) [5,3] (10) 64 0.805(1.20e-3) 245 0.804 0.806
9 6.06e+4(3.46e+3) [6,3] (10) 61 0.817(6.53e-4) 491 0.814 0.818

10 6.37e+4(5.69e+3) [7,3] (12) 64 0.826(9.88e-4) 498 0.826 0.827

Table 5: BAP case (ii): Performance of SMRAS vs. CE

n P MRAS(std err) Alloc (NA∗) NMRAS T̄ (std err) NCE T CE T ∗
1 1.02e+5(7.49e+3) [0,1,0,0] (16) 102 0.523(6.79e-4) 26 0.521 0.521
2 1.29e+5(1.48e+4) [1,1,0,0] (16) 129 0.555(3.86e-4) 92 0.548 0.551
3 1.75e+5(1.57e+4) [1,1,1,0] (16) 175 0.587(4.57e-4) 108 0.582 0.582
4 2.51e+5(2.59e+4) [1,2,1,0] (11) 251 0.606(1.20e-3) 256 0.602 0.603
5 3.37e+5(4.20e+4) [2,2,1,0] (10) 337 0.626(6.57e-4) 450 0.620 0.621
6 4.69e+5(5.52e+4) [2,2,1,1] (8) 469 0.644(1.10e-3) 342 0.642 0.642
7 4.56e+5(5.82e+4) [2,2,2,1] (7) 456 0.659(1.10e-3) 539 0.657 0.659
8 4.45e+5(5.49e+4) [3,2,2,1] (7) 445 0.674(1.10e-3) 576 0.673 0.674
9 5.91e+5(5.61e+4) [3,3,2,1] (6) 591 0.689(1.39e-3) 828 0.689 0.689

10 5.29e+5(5.40e+4) [3,3,3,1] (8) 529 0.701(1.10e-3) 1070 0.700 0.701
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