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ABSTRACT

We examine properties of linear combinations of overlap-
ping standardized time series area estimators for the variance
parameter of a stationary stochastic process. We find that
the linear combination estimators have lower bias and vari-
ance than their overlapping constituents and nonoverlapping
counterparts; in fact, the new estimators also perform par-
ticularly well against the benchmark batch means estimator.
We illustrate our findings with analytical and Monte Carlo
examples.

1 INTRODUCTION

Simulations are used to analyze a variety of compli-
cated stochastic systems. A common goal is to estimate
the unknown mean µ of the steady-state output process,
Y1, Y2, . . . , Yn. In this case, the sample mean Ȳn is the
estimator of choice for µ; and to provide a measure of the
precision (variability) of the sample mean, one might also
attempt to estimate the quantity σ 2

n ≡ nVar(Ȳn), or almost
equivalently, the variance parameter, σ 2 ≡ limn→∞ σ 2

n . Of
course, it is well known that steady-state simulation output
is rarely amenable to elementary statistical analysis, for it
is almost never independent, identically distributed (i.i.d.),
and normal—thus rendering as untrustworthy “standard”
estimators such as the sample variance estimator for σ 2.

There are many techniques in the literature concerning
the estimation of σ 2. Popular methods include: nonoverlap-
ping batch means (NBM), overlapping batch means (OBM),
and standardized time series (STS) (see Law and Kelton
2000 for a quick synopsis). These methodologies all use
some form of batching, as will be explained in more detail
later. Batching tends to increase variance estimator bias (a
drawback), but decrease variance (an advantage)—though
its effects on mean-squared error require more-careful anal-
ysis (cf. Song and Schmeiser 1995). The use of overlapping
batches yields variance estimators having the same bias as,
but lower variance than, the analogous estimators arising
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from nonoverlapping batches (Meketon and Schmeiser 1984,
Alexopoulos et al. 2005ab).

The present paper discusses a generalization of over-
lapping variance estimators that can be used in the analysis
of steady-state simulations. The article is organized as
follows. We present background material in §2, where
we introduce a number of benchmark estimators that use
traditional batching. §3 reviews properties of certain esti-
mators that employ overlapping batches; and we find that
the overlapping estimators almost always outperform their
nonoverlapped counterparts in terms of mean-squared er-
ror. §4, which contains our main contributions, shows how
to apply overlapping batch techniques to the STS area es-
timator using different batch sizes and then to construct
a variance-optimal linear combination of these estimators.
The resulting estimators have lower bias and variance than
their constituent overlapping predecessors. We illustrate
these findings on a number of simple analytical and Monte
Carlo examples. We end with concluding remarks in §5.

2 BACKGROUND

This section reviews relevant assumptions, definitions, and
background results.

2.1 Fundamentals

To get things going, we briefly discuss some basics. First
of all, throughout this paper, we shall consider a stationary
stochastic process {Yi, i ≥ 1}, which we assume satisfies a
Functional Central Limit Theorem (FCLT).

Assumption FCLT There exist constants µ and positive
σ such that as n → ∞, Xn ⇒ σW , where W is a standard
Brownian motion process, “ ⇒ ” denotes weak convergence
as n → ∞, and

Xn(t) ≡ �nt�(Ȳ�nt� − µ)√
n

for t ≥ 0,
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where Ȳj ≡ ∑j
k=1 Yk/j , j = 1, 2, . . ., and �·� is the greatest

integer function.
This assumption applies to a broad class of processes,

and will allow us to determine the limiting properties of
the various variance estimators under consideration in this
paper. Glynn and Iglehart (1990) list several different sets
of sufficient conditions for Assumption FCLT to hold—
usually in the form of moment and mixing conditions. The
constants µ and σ 2 in the assumption can be identified with
the process mean and variance parameter, respectively.

In this section, we will work with b contiguous,
nonoverlapping batches of observations, each of length
m, from the simulation output, Y1, Y2, . . . , Yn (where
we assume that n = bm). Obviously, the observa-
tions Y(i−1)m+1, Y(i−1)m+2, . . . , Yim constitute batch i, i =
1, . . . , b.

Schruben (1983) defines the standardized time series
from batch i as

Ti,m(t) ≡ �mt�(Ȳi,�mt� − Ȳi,m)

σ
√

m
,

for 0 ≤ t ≤ 1 and i = 1, . . . , b, where

Ȳi,j ≡ 1

j

j∑
k=1

Y(i−1)m+k,

for j = 1, . . . , m and i = 1, . . . , b. Then we have
Theorem 1 (cf. Alexopoulos et al. 2005b, among

others) Define Zi(m) ≡ √
m(Ȳi,m −µ), i = 1, . . . , b. Then

under Assumption FCLT,

(Z1(m), . . . , Zb(m); σT1,m, . . . , σTb,m)

⇒ (σZ1, . . . , σZb; σB0,1, . . . , σBb−1,1), (1)

where the Zi’s are i.i.d. standard normal random variables,
and Bu,v denotes a Brownian bridge process on [u, u + v],
for u ∈ [0, b − v], i.e.,

Bu,v(t) = W(u + tv) − W(u) − t[W(u + v) − W(u)]√
v

,

for 0 ≤ t ≤ 1. It is easy to see that B0,1, . . . ,Bb−1,1 are
independent Brownian bridges.

2.2 Batched Area Estimator

This subsection deals with the (nonoverlapping) batched
area estimator for σ 2 (Goldsman et al. 1990; Goldsman and
Schruben 1990).
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We will work with the square of the weighted area
under the standardized time series from the ith batch,

Ai(f ; m) ≡
[

1

m

m∑
k=1

f (k/m)σTi,m(k/m)

]2

,

and its limiting functional

Ai(f ) ≡
[∫ 1

0
f (t)σBi−1,1(t) dt

]2

,

for i = 1, . . . , b, where f (t) is continuous on the interval
[0, 1] and normalized so that Var(

∫ 1
0 f (t)B0,1(t) dt) = 1.

Under mild conditions (see Alexopoulos et al. 2005b), one

can show that Ai(f ; m)
D→ Ai(f ), i = 1, . . . , b, where

“
D→ ” denotes convergence in distribution as m → ∞;

and further, A1(f ), . . . , Ab(f ) are i.i.d. σ 2χ2
1 . This result

motivates construction of the batched area estimator for
σ 2,

A(f ; b, m) ≡ 1

b

b∑
i=1

Ai(f ; m)
D→ σ 2χ2

b /b.

Denote the covariance function Rk ≡ Cov(Y1, Y1+k),
k = 0, ±1, ±2, . . ., and the associated quantity γ ≡
−2

∑∞
k=1 kRk (cf. Song and Schmeiser 1995). In addition,

the notation p(n) = o(q(n)) means that p(n)/q(n) → 0 as
n → ∞. The next theorem gives the expected value and
variance of the area estimator.

Theorem 2 (see, e.g., Foley and Goldsman 1999)
Suppose that {Yi, i ≥ 1} is a stationary process for which
Assumption FCLT holds,

∑∞
k=1 k2|Rk| < ∞, and σ 2 > 0.

Further, suppose that A2(f ; b, m) is uniformly integrable
(cf. Billingsley 1968). If we define F� ≡ [(F −F̄ )2+F̄ 2]/2,
then

E[A(f ; b, m)] = σ 2 + F�γ

m
+ o(1/m)

and

Var(A(f ; b, m)) → Var(σ 2χ2
b /b) = 2σ 4/b

as m → ∞, where the quantities F ≡ ∫ 1
0 f (t) dt and

F̄ ≡ ∫ 1
0

∫ t

0 f (s) ds dt . Note that the limiting variance
2σ 4/b does not depend on the form of the weighting function.

Example 1 Schruben (1983) studied the area es-
timator with constant weighting function f0(t) ≡ √

12,
for 0 ≤ t ≤ 1. In this case, Theorem 2 implies that
E[A(f0; b, m)] = σ 2 + 3γ /m + o(1/m).

Example 2 If one chooses weights having F =
F̄ = 0, the resulting estimator is first-order unbiased for
σ 2, i.e., its bias is o(1/m). An example of such a weighting
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function is the quadratic f2(t) ≡ √
840(3t2 − 3t + 1/2)

(Goldsman et al. 1990; Goldsman and Schruben 1990).
Example 3 Foley and Goldsman (1999) give an

“orthonormal” sequence of first-order unbiased weights,
fcos,j (t) = √

8πj cos(2πjt), j = 1, 2, . . .. It can be
shown that the orthonormal estimators’ limiting functionals
Ai(fcos,1), Ai(fcos,2), . . . are i.i.d. σ 2χ2

1 .

2.3 NBM Estimator

The quantities Ȳi,m, i = 1, . . . , b, are referred to as the
batch means of the process {Yi}, and are often assumed to
be i.i.d. normal random variables, at least for large enough
batch size m. This assumption immediately suggests the
NBM estimator for σ 2,

N (b, m) ≡ m

b − 1

b∑
i=1

(Ȳi,m − Ȳn)
2 D→ σ 2χ2

b−1

b − 1
,

as m → ∞ with b fixed (cf. Glynn and Whitt 1991,
Schmeiser 1982, and Steiger and Wilson 2001). The NBM
estimator is one of the most popular for σ 2, and serves as
a benchmark for comparison with other estimators.

Theorem 3 (Chien et al. 1997, Goldsman and
Meketon 1986, Song and Schmeiser 1995, among others)
Under mild conditions,

E[N (b, m)] = σ 2 + γ (b + 1)

bm
+ o(1/m).

Further, for fixed b,

lim
m→∞(b − 1)Var(N (b, m)) = 2σ 4.

So we see from Theorems 2 and 3 that as m → ∞, the
STS batched area and NBM estimators are all asymptotically
unbiased for σ 2; and the batched area estimator with certain
weighting functions can outperform NBM in terms of first-
order bias. We also notice that the variances of these
estimators are all about equal and inversely proportional to
the number of batches (at least for sufficiently large batch
size). In the next section, we will show that the use of
overlapping batches with respect to any particular estimator
preserves its expected value, while reducing its variance.

3 OVERLAPPING ESTIMATORS

Here we review estimators based on overlapping batches,
first proposed by Meketon and Schmeiser (1984) in the
context of OBM estimators. See Goldsman and Meketon
(1986), Welch (1987), Song (1988), Damerdji (1991, 1994,
1995), Song and Schmeiser (1993), Pedrosa and Schmeiser
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(1993, 1994), and Alexopoulos et al. (2005ab) for additional
discussions.

3.1 Overlapping Fundamentals

Suppose we have n observations Y1, Y2, . . . , Yn on hand
and that we form n − m + 1 overlapping batches, each of
size m. In particular, the observations Yi, Yi+1, . . . , Yi+m−1
constitute batch i, i = 1, . . . , n − m + 1. We will continue
to denote b ≡ n/m as before, though b can no longer be
interpreted as “the number of batches.”

To parallel the discussion in §2.1, the standardized time
series from overlapping batch i is

T O
i,m(t) ≡

�mt�
(
Ȳ O

i,�mt� − Ȳ O
i,m

)
σ
√

m
,

for 0 ≤ t ≤ 1 and i = 1, . . . , n − m + 1, where

Ȳ O
i,j ≡ 1

j

j−1∑
k=0

Yi+k,

for i = 1, . . . , n − m + 1 and j = 1, . . . , m. Under the
same mild conditions as before,

σT O�um�,m ⇒ σBu,1, 0 ≤ u ≤ b − 1, u fixed.

3.2 Overlapping Area Estimator

The square of the weighted area under the standardized time
series from the ith overlapping batch is

AO
i (f ; m) ≡

[
1

m

m∑
k=1

f (k/m)σT O
i,m(k/m)

]2

,

i = 1, . . . , n − m + 1. The overlapping area estimator for
σ 2 is

AO(f ; b, m) ≡ 1

n − m + 1

n−m+1∑
i=1

AO
i (f ; m).

Alexopoulos et al. (2005b) use the continuous mapping
theorem to show that as m → ∞,

AO(f ; b, m)
D→ AO(f ; b)

≡ σ 2

b − 1

∫ b−1

0

(∫ 1

0
f (t)Bu,1(t) dt

)2

du. (2)

It is easy to see that the expected value of the overlapping
area estimator equals that of the corresponding batched area
estimator. Thus, Theorem 2 gives



Aktaran-Kalaycı and Goldsman
Theorem 4 Under mild conditions similar to those
of Theorem 2,

E[AO(f ; b, m)] = σ 2 + F�γ

m
+ o(

1

m
).

Calculation of the variance of the overlapping area
estimator can be undertaken using the right-hand side of
Equation (2) along with some algebraic elbow grease. Some
examples from Alexopoulos et al. (2005b) reveal that the
limiting (m → ∞) variance of the overlapping area estimator
depends on the choice of weighting function.

Example 4 For the overlapping area estimator with
constant weight f0(t) from Example 1, we have that as
m → ∞,

Var(AO(f0; b, m)) → Var(AO(f0; b)) = 24b − 31

35(b − 1)2 σ 4.

This compares favorably to the batched constant-
weighted area estimator’s asymptotic (m → ∞) variance,
Var(A(f0; b)) = 2σ 4/b (see Theorem 2).

Example 5 For the overlapping area estimator with
first-order unbiased quadratic weighting function f2(t) from
Example 2, we have an asymptotic (m → ∞) variance of

Var(AO(f2; b)) = 3514b − 4359

4290(b − 1)2 σ 4.

This compares well to the analogous batched quadrat-
ically weighted area estimator’s asymptotic variance,
Var(A(f2; b)) = 2σ 4/b.

Example 6 For the overlapping area estimators
from the family of orthonormal first-order unbiased weights
fcos,j (t), j = 1, 2, . . ., from Example 3, we have

Var(AO(fcos,j ; b))
.= 8π2j2 + 15

12π2j2b
σ 4.

Yet again, the analogous batched weighted area estimator
has asymptotic variance Var(A(fcos,j ; b)) = 2σ 4/b.

Remark 1 One can average the orthonormal esti-
mators AO(fcos,j ; b, m), j = 1, 2, . . ., and use knowledge
of the covariances of these estimators to obtain estimators
with even smaller variance (cf. Alexopoulos et al. 2005b).

3.3 OBM Estimator

The ith overlapping batch mean is given by Ȳ O
i,m, i =

1, . . . , n − m + 1. The OBM estimator for σ 2, originally
studied by Meketon and Schmeiser (1984) (with a slightly
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different scaling constant), is

O(b, m) ≡ nm

(n − m + 1)(n − m)

n−m+1∑
i=1

(Ȳ O
i,m − Ȳn)

2.

Theorem 5 Under mild conditions, Goldsman and
Meketon (1986) and Song and Schmeiser (1995) show that,
for large b,

E[O(b, m)] = σ 2 + γ

m
+ o(1/m).

Further, Meketon and Schmeiser (1984), Damerdji (1995),
and Alexopoulos et al. (2005b) find that as m → ∞,

Var(O(b, m)) → (4b3 − 11b2 + 4b + 6)σ 4

3(b − 1)4
.= 4σ 4

3b
,

with the approximate result holding for large b.
We see from Theorems 4 and 5, along with the accom-

panying examples, that as m → ∞, the overlapping area
and OBM estimators are asymptotically unbiased for σ 2. In
fact, the overlapping estimators preserve the bias properties
of their nonoverlapping counterparts. Thus, we find that the
overlapping area estimator with certain weighting functions
is first-order unbiased, whereas OBM is not. An added
feature is that the overlapping estimators also defeat their
nonoverlapped counterparts in terms of variance, sometimes
by quite a bit.

4 LINEAR COMBINATIONS OF
OVERLAPPING ESTIMATORS

We show how to apply overlapping batch techniques to the
area estimator using different batch sizes, with the intent of
constructing a variance-optimal linear combination of these
estimators.

4.1 Motivation

The idea behind the new estimators is simple.

• Form an overlapping area estimator using batch
size m, i.e., AO(f ; b, m).

• Change the batch size to rm, where r > 1, and
form AO(f ; b/r, rm). Generate several such over-
lapping area estimators with different batch sizes,
say m1, m2, . . . , mk .

• Form a linear combination of these k estimators
and scale appropriately. Denote this new estimator
by ALO(f ; M), where M ≡ {m1, . . . , mk}.

If m ≤ min{m1, . . . , mk}, then the bias of ALO(f ; M)

will be lower than that of AO(f ; b, m). In addition, if
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the k constituent overlapping area estimators used to form
ALO(f ; M) are all first-order unbiased, then ALO(f ; M)

will also be unbiased. Further, the linear combination
estimator will have lower variance, even if some of the
constituent estimators are correlated (which will likely be
the case).

4.2 Expected Value and Variance

As a simple example, we combine two overlapping area
estimators, one based on batches of size m, and the other
on batches of size 2m, i.e.,

ALO(f ; {m, 2m})
= αAO(f ; b, m) + (1 − α)AO(f ; b

2 , 2m).

Then

E[ALO(f ; {m, 2m})]
= αE[AO(f ; b, m)] + (1 − α)E[AO(f ; b

2 , 2m)]
= σ 2 + (1 + α)F �γ

2m
+ o(1/m).

If α ∈ [−3, 1] and we ignore small-order terms, we see that

∣∣∣Bias[ALO(f; {m, 2m})]
∣∣∣ ≤

∣∣∣Bias[AO(f ; b, m)]
∣∣∣ .

Further,

Var
(
ALO(f ; {m, 2m})

)
= α2 Var(AO(f ; b, m)) + (1 − α)2 Var(AO(f ; b

2 , 2m))

+2α(1 − α) Cov(AO(f ; b, m), AO(f ; b
2 , 2m))

.= α2 Var(AO(f ; b)) + (1 − α)2 Var(AO(f ; b
2 ))

+2α(1 − α) Cov(AO(f ; b), AO(f ; b
2 )), (3)

for large m. It would now be efficacious if we could choose
α to minimize Var(ALO(f ; {m, 2m})).

4.3 Minimizing the Variance

Motivated by the previous discussion, we will find a general
expression for

c(f ; b, m; r, s) ≡ Cov(AO(f ; b
r
, rm), AO(f ; b

s
, sm)).

First of all, we need the following theorem, which gener-
alizes (2).

Theorem 6 Fix r ∈ [1, b − 1]. As m → ∞,

AO(f ; b
r
, rm)

D→ σ 2

b − r

∫ b−r

0

(∫ 1

0
f (t)Bu,r (t) dt

)2

du.
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The theorem, along with a great deal of algebra, allows
us to make the necessary covariance calculations.

Example 7 For large b, m → ∞, and 1 ≤ s ≤ r ,
we have

c(f0; b, m; r, s)
.= 6s2(7r2 − 3s2)σ 4

35r3b
.

Example 8 For large b, m → ∞, and 1 ≤ s ≤ r ,
we have

c(f2; b, m; r, s)

.= 7(3003r5 − 3250r4s + 875r2s3 − 126s5)s3σ 4

4290 r7 b
.

We can use these results in conjunction with Equation
(3).

Example 9 From Examples 4 and 7, we have

Var
(
ALO(f0; {m, 2m})

)
= α2 Var(AO(f0; b, m)) + (1 − α)2 Var(AO(f0; b

2 , 2m))

+2α(1 − α) c(f0; b, m; 2, 1)

.= α2 24σ 4

35b
+ (1 − α)2 24σ 4

35(b/2)
+ 2α(1 − α)

15σ 4

28b
,

for large b and m → ∞. This quantity is minimized by
taking α = 0.8478, whence

Var(ALO(f0; {m, 2m})) .= 0.6629σ 4/b,

which compares to Var(AO(f0; b, m))
.= 0.6857σ 4/b from

Example 4.

4.4 General Linear Combinations

Now consider the general linear combination of overlapping
estimators,

ALO(f ; M) ≡
k∑

i=1

αiAO(f ; b
ri

, rim),

where
∑k

i=1 αi = 1 and r1, r2, . . . , rk ≥ 1. Then

E[ALO(f ; M)] = σ 2 + F�γ

k∑
i=1

αi

rim
+ o(1/m)
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and

Var(ALO(f ; M)) (4)

=
k∑

i=1

α2
i Var(AO(f ; b

ri
, rim)) + 2

k∑
i=2

i−1∑
j=1

αiαj Covij ,

where Covij ≡ c(f ; b, m; ri, rj ).
For large b and m → ∞, one can (approximately)

minimize the variance given in Equation (4) subject to the
constraint that

∑k
i=1 αi = 1. Table 1 illustrates the asymp-

totic bias and minimized variance of our linear combination
estimators for a variety of choices of weights f and batch
size sets M . Note that the M = {m} case corresponds to
the basic overlapping estimator AO(f ; b, m).

Table 1: Approximate Performance of Various Variance-
Optimal Linear Combinations of Overlapping Estimators

ALO(f0; M) ALO(f2; M)

M m
γ

Bias b
σ 4 Var m

γ
Bias b

σ 4 Var
{m} 3.00 0.686 o(1) 0.819

{m, 2m} 2.77 0.663 o(1) 0.782
{m, 2m, 3m} 2.71 0.638 o(1) 0.731
{m, . . . , 4m} 2.67 0.630 o(1) 0.722
{m, . . . , 10m} 2.61 0.615 o(1) 0.695
{m, . . . , 20m} 2.59 0.610 o(1) 0.688

We see that the estimator ALO(f0; M) has bias of
the form c/m, where the constant c decreases a bit from
3.00 to 2.59 as we add more and more terms to the linear
combination; the estimator ALO(f2; M) only has o(1/m)

bias. Further, in this example, the standardized variance of
ALO(f0; M) decreases from 0.686 to 0.610 (about 12%) as
we add more terms, while that of ALO(f2; M) decreases
from 0.819 to 0.688 (about 16%). In any case, ALO(f0; M)

has higher bias but lower variance than ALO(f2; M)—the
familiar bias-variance tradeoff. Finally, for comparison
purposes, we note that the NBM and OBM estimators both
have an analogous bias constant of about 1, and respective
variance constants of 2.000 and 1.333.

A simple Monte Carlo example shows that the estimators
perform as advertised.

Example 10 Consider an i.i.d. standard normal se-
quence Y1, Y2, . . . , Yn, with n = 20,000. Based on 10,000
replications of this process, we estimated the expected val-
ues and variances for a variety of linear combinations of
overlapping area variance estimators, ALO(f0; M). Repre-
sentative results are given in Table 2, where b = 20 and
m = 1000. The last column in the table provides the asymp-
totic (m → ∞) variance of each variance estimator that
we have obtained analytically. We see that the empirical
results match up with the theory.
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Table 2: Empirical Performance of Variance Estimators
ALO(f0; M) for b = 20 and m = 1000

M Sample Var True Var
{m, 2m} 0.0344 0.0346

{m, 2m, 3m} 0.0334 0.0334
{m, 2m, . . . , 10m} 0.0324 0.0328

5 SUMMARY AND CONCLUSIONS

In this paper, we introduced linear combinations of over-
lapping versions of standardized times series area vari-
ance estimators for steady-state simulations. We obtained
asymptotic expressions for the expected values and vari-
ances of these linear combination variance estimators, and
we compared them with the corresponding nonoverlapping
and overlapping estimators as well as with the nonoverlap-
ping and overlapping batch means estimators. We showed
that the linear combination estimators have slightly smaller
bias than their nonoverlapping and overlapping counterparts
as well as lower variance—sometimes substantially lower.
We supported these asymptotic results by a simple empirical
example that showed that the linear combination variance
estimators perform as predicted by the theory.

Ongoing research includes a battery of analytical and
Monte Carlo examples, as well as the development of linear
combinations of other varieties of overlapping estimator,
e.g., those based on the Cramér–von Mises estimators from
Goldsman et al. (1999).
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