
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

SIMSOLUTION - AN OPEN SIMULATION ENVIRONMENT FOUNDED ON EXTREME MULTITASKING

 Thomas Wiedemann

University of Applied Science Dresden

Friedrich List Platz 1
Dresden, 01069, GERMANY

ABSTRACT

There is no universal standard for discrete simulation.
Models, created with leading simulation tools can not be
exchanged between the systems. In result, there are very
high investments and maintenance costs for simulation
studies and some additional problems with portability and
performance in large simulation studies. This paper dis-
cusses in detail, a special approach by using an assembler
based, very fast multitasking routine combined with effi-
cient discrete event scheduling algorithms. The basic sys-
tem approach is realized with Standard C/C++ and Delphi-
compilers and offers an unlimited flexibility and very good
runtime performance. Language independent, XML-based
code generators convert simulation models between differ-
ent run-time platforms without manual changes.

1 INTRODUCTION

The main algorithms and mathematical foundations of
simulation systems are well defined and efficient
(Wiedewitsch and Heusmann 1995). Nevertheless, the real
application of simulation systems is still difficult (Kuljis
and Paul 2000). Not more than 10% of all industrial firms
use simulation tools by a number of reasons:

• Unlike the continuous simulation marketplace there is

no leading discrete simulation system. The market
shares of the existing tools (AutoMOD, TAYLOR ED,
Arena, SLX) are very different in the global regions
and industrial branches. As a result, there is no uni-
versal standard for discrete simulation. Models can not
be exchanged between the systems.

• As a result of the small market, the prices of the sys-
tems are very high. Typical prices of more than
$50,000 are too high for medium-sized firms.

• Especially in the area of optimization with simulation
models exists a performance problem. It seems like a
paradox, that an older simulation language like GPSS
is significantly faster than modern simulation systems.
631
These problems indicate the need of a new strategy for
the development of simulation tools. Like in the database
software domain, we need powerful standards for mod-
eling and simulation. A first step will be the application
of Open-Source-ideas, which was very effective and suc-
cessful in the LINUX-development. The main advantage
of Open-source software consists in free access to all parts
of a software, which gives a high degree of flexibility of
such a system. First Open-Source simulation systems with
interesting concepts were presented, like DSO (Jacobs
2004) or SILK (Kilgore 1998).

The main ideas of Open Source and the advantages
for simulation tools are discussed in detail by Kilgore in
the original paper outlining the OpenSML-project during
the Winter Simulation Conference 2001 (Kilgore 2001).

2 THE MAIN PROBLEMS IN SIMULATION

The actual problems of simulation are already 30 years old.
They are based on the basic principles of simulation, which
are explained in detail in other sessions of the conference
(see former “How it works” sessions at the WSC, e.g.
(Schriber 2003)) In short terms, modeling and simulation
of the real world systems requires a parallel execution of a
large number of processes in a specific order. This task is
solved by all simulation systems. But the absolute speed of
calculation often decreases with each new system. It is
useful to discuss some details, although some simulation
experts do not spent much attention to this question.
 Process switching is the first task of parallel execu-
tion. The executing processor must switch from one proc-
ess to an other process by preserving all states for the fu-
ture re-switching. Often there are thousands of small
processes with a high switching rate. Some operations are
also conditionally. Switching inside basic functions is
called co-routine switching. After a first realization in
SIMULA such switching technologies were not integrated
in C / C++ or similar languages. Other technologies, like
pointer based functions calls and multi-threading are too
slow and too complicated.

Wiedemann

Parallel execution of simulation processes
(e.g. each process represents one product in a large production scenario)

...

over
1000

processes
...

Program -
pointer P1

Simulation control with process-multitasking and scheduling and
management of all processes in an event list

P2

Main
simulation
program

(starting &
initializing
processes)

P3 P4

Figure 1 : Parallel Execution and Switching of Simulation Processes

 Process scheduling is the second task. The sequence
of the process switching must be determined by the simula-
tion control unit ! This is uncritical, if the schedule is sim-
ply determined by time or priority. It is critical, if the
scheduling order depends on conditions, like blocking
states in sequential organized queues.

Performance problems with simulation systems are
often based on bad or non adequate switching and schedul-
ing algorithms:

• Using standard multitasking algorithms from C/C++

or Delphi libraries are critical, because they are de-
signed for switching a small number of large proc-
esses. Often, the maximum number of threads is lim-
ited and the scheduling order can not be changed by
the developer.

• The number of threads inside Java is limited and the
performance of switching a large number of threads is
critical (see Kilgore 2001).

Between switching and scheduling are main differences:
process switching is a quite simple task and defines the
main performance, process scheduling is quite complex,
and less critical in performance. Although it seems possi-
ble to develop a very efficient switching implementation, it
is nearly impossible to develop a optimal scheduling algo-
rithm for all applications, because there are dozens of
Scheduling algorithms on trees, sorted lists etc.
632

From this view, a main design decision was made:

The switching should be separated from scheduling by
using an open and flexible interface, which allows the
simulation model builder a free choice of possible switch-
ing and scheduling modules.
 Because of the fact, that nearly all existing computers
are based on sequential (non-parallel) processors, the
switching will always change from the actual to the next
process. If the scheduler has determined the next process,
the switching will need only the information of the actual
and next process by using the following interface (see Fig-
ure 2).

Figure 2 : Separation of Switching and Scheduling

This simple interface allows a wide spectrum of different
switching and scheduling algorithms. The following pages
will present some first implementations.

Simulation Scheduler

Simulation Switcher

switchprocesses (ProcId , NewProcID);

Wiedemann

3 SWITCHING BY EXTREME MULITASKING

3.1 Options for Switching Processes

The switching algorithm must save all local variables and
the state of the processor of the current process, then he
should load the new program and stack pointer address and
must restore the processors register and local variables of
the new process. Traditionally, the saving and restoring of
the local variables is done by copying all memory blocks to
backup areas, which is very time consuming.

Because of the fact, that in standard programming
languages like C++ or Delphi all local variables are located
on the stack, it seems possible to switch all local data and
the return address for the new process by only chang-
ing the actual stack pointer address. This simple change
of the Stack pointer value reduces the time for process
switching significantly and allows very high rates of proc-
ess multitasking. Otherwise there are some critical points
of this approach:

• The change of the Stack context is non trivial, be-

cause all local variables of all calling functions are
switched off. In result, this method requires some spe-
cial initialization of the stack during the start of each
process.

• In general, the stack must provide memory space for
an unknown number of functions calls. The size of
stack space in standard implementations is between 16
Kbytes up to 64 Kbytes. The real used space is very
different – efficient simulation functions need only
some Hundred bytes of stack space, but Windows
functions often require dozen Kilobytes of stack
space. If any simulation process would use 64 Kilo-
bytes of stack space, there would not be enough mem-
ory in the computer. For this reason the stack space is
limited to 500 … 2000 Bytes per simulation process.
If any simulation function calls an expansive Windows
function, this call is mapped to a larger stack space.

• Changing the stack pointer address could be dangerous
for complex programming environments. The ap-
proach must be tested with each compiler and new
version for avoiding stability problems.

In conclusion, the switching of processes by only changing
the stack pointer is simple and very fast., but it has also
some smaller disadvantages. For this reason, the attribute
“extreme multitasking” is used to inform potential users
about this specific approach.

633
3.2 Implementation Results

The approach was tested by using DELPHI with the Object
Pascal language. The stack pointer addresses are moved
by assembler commands (see lines 7 – 10 of fig. 3) to and
from a process address table. The push and pop com-
mands save and restore the processor registers to the stack
before switching. The number of POP/PUSH-operations
depends on the specific processor and can change for other
versions of compilers and languages.

Figure 3 : The Code of the Process Switching Module

Because of the fact, that there was no secure information
about the possibility of changing the whole stack context
by such a direct way, the author was impressed by the fact,
that this code is also Debugger-safe. So if any application
developer uses this code, he can still see all steps in step-
wise execution: The old process enters this code sequence
and after ending the switching code with the end; - state-
ment (which is in practice a RETURN-assembler state-
ment), the high level code–pointer will continue with the
new process.
The necessary memory for this approach is simply the size
of the stack of each process multiplied by the maximum
number of processes. With a stack size of 2 Kilobytes
about 500 processes are possible per Mbyte memory. If
there are 100 Mbytes free memory, it allows 50.000 proc-
esses, which is a good value also for large models. If this
size is too small, the simulation user should spend 100$ for
an extra 1 Gigabyte RAM Memory.
 In conclusion, we PAY PERFORMANCE WITH
MEMORY, which is actually a cheap option !

procedure switchprocesses(OldProcId: integer;
NewProcID:integer);
begin asm push eax // save calling environment
 push ebx
 push ecx
 push edi
 mov stackold,esp; end; // store old STACKP
 stacknew := cal[NewProcID];
 cal[OldProcId]:= stackold;
 asm mov esp,stacknew; // get new STACKP
 pop edi
 pop ecx
 pop ebx
 pop eax // get old environment
 end;
end; //AT THIS POINT THE SWITCHING HAPPENS !

Wiedemann

4 FLEXIBLE SCHEDULING

4.1 Options for Scheduling

As defined by the interface (see fig. 2), the scheduler must
“only” select the next process for execution. This selection
should be very fast for large numbers of processes and
without long calculation times for inserting and deleting
processes from the selection table. The kind of selection of
course depends from the kind of simulation. In result, there
will be different scheduling options for different simulation
types.

4.1.1 Simple Sequential Scheduler

 A simple sequential scheduler selects all processes one by
one in the table and activates them. This kind of scheduler
is only useful, if nearly all processes are executed in a
strong periodic way. Related simulation models are used in
traffic simulations, where all simulations objects (like cars
or humans) are moving with small steps in every time step
of simulation. The disadvantage of this scheduler is the bad
performance in systems with very different activation rates.
The implementation of such a sequential scheduler is sim-
ple (see Figure 4).

Figure 4 : The Code of the Simple Sequential Scheduler

Together with the switching module this scheduler allows a
first test scenario for building up a simulation model. The
resulting time for one whole cycle, measured over 1 Mil-
lion switching / scheduling sequences was about 13 – 17
Nano-seconds on a 1,3 GHz Centrino PC and less than 10
Nano-seconds on a 2,5 GHz Desktop PC´s. In fact, that
this time corresponds to about 30 basic assembler opera-
tions this cycle time seems to be the lowest possible multi-
tasking time cycle time. Thread switching has cycle times
from 500 ns up to some Mikro-seconds.

function scheduler_enumall();
begin
 newsimobid := actsimobid +1; // processes counter
 if newsimobid> SimobCount then
 newsimobid :=1;

// check for inactive process
 if sobs[newsimobid].State <> Active then exit;
 actsimobid := newsimobid; // get new process ID
 actsimob :=sobs[actsimobid];
 // now switch from MAIN to next process
 switchprocesses(0,newsimobid);
end;

634
4.1.2 Future Event List Schedulers

For complex simulation models the sequential scheduler is
not good enough. Better characteristics are possible with
Future event list schedulers. They manage all processes in
a sorted list. New processes are inserted by using their
next activation time as the sort value. In result, the entry at
the start of the list is always the next process for execu-
tion.
 A simple list is critical for large amounts of processes,
because the time for finding the place for insertion is linear
growing with the number of processes. The actual imple-
mentation task consists in finding algorithms with a better
performance characteristic.
 One option is an array-based tree with only 4 levels.
In this scenario the time value is represented as a 32 bit
long integer value. Each byte of this time is used as an in-
dex in one of the four levels (see fig. 5). With this ap-
proach, the insert time does not increase with a growing
number of processes. The disadvantage is the same as be-
fore with the switcher – a high memory consumption. A
test implementation shows, that about 3 Mbytes of RAM is
necessary for running a typical production scenario.

Figure 5 : A Improved Future Event Scheduler

The main difference to existing simulation systems is the
freedom of choice in the area of schedulers. While switch-
ing is assembler based and not very comfortable for High-
level programmers, the development of new and much
more improved scheduling algorithms is quite simple for
experienced simulation kernel developers. After an initial
time of building up different schedulers, the simulation
user can select one of already existing schedulers. It is also
possible to use different schedulers for different areas of a
simulation model.

B1 B3 B2 B1

Level 4 - Array
(1 x 256 *4 Byte)

Time
Level 3 - Array

(2..5 x 256 *4 Byte)

Level 2 - Array
(20..100 x 256 *4 Byte)

Level 1 - Array
(? x 256 *4 Byte)

Wiedemann

5 THE SIMSOLUTION SYSTEM

All described basic routines will generate the kernel for a
larger simulation environment, called “SIMSOLUTION”.
The whole picture of the future “SIMSOLUTION”-
simulation environment shown in Figure 6 and is based on
former development of the author (Wiedemann 2000 ,
Wiedemann 2002). Above the Code-level are the GUI-
interfaces or interfaces to other information systems. The
large block in the center of the system controls all proc-
esses. It is also an interfacing layer between the specific
tools at the tool level and the universal and standardized
modules at the Model level.
635
 The communication between all modules is based on
file or network techniques. The communication protocol
uses XML-coded information. In many cases the content of
the XML-databases or XML-encoded simulation results is
only wrapped by an additional XML-layer and transported
over the network. Larger amount of data, for example
simulation results, will be compressed by well-known
compression algorithms for better transportation speed.
For the end user this data conversions will be transparent.

Code

SIMSOLUTION
Simulation Model

specification

C++ Compiler

SIMSOLUTION
Control Manager

SIMSOLUTION
Simulation Experiment

specification

SIMSOLUTION
Simulation Results

specification

Delphi Compiler + GUI

SIMSO-> DELPHI
Interface

SIMSO -> C++
Interface

Result Analysis
Tools

Results
Interface

Simulation program
for C++

Simulation program
for DELPHI

SIMSOLUTION
specifications

System specific results

Model
Level

Control
level

Tool Level

The SIMSOLUTION
Project

Figure 6 : The Main Architecture of the SIMSOLUTION - System

Code Level

Wiedemann

6 SUMMARY

The new approach of dividing switching and scheduling of
simulation processes could be a potentially beneficial evo-
lution in the development of simulation software.

The first advantage is the larger flexibility from the
use of different scheduling algorithms. Instead of having
only one fixed kernel system the end-user can select the
best solution depending on the needed interfaces and per-
formance aspects.

The second advantage is a distribution with the Open
Source Lesser/Library General Public License licensing
model. This license model is a good mix of the Open
source principles and the requirements of simulation cus-
tomers.

The third advantage is the usage of an universal, lan-
guage independent XML-description. Code parsers and
generators convert SIMSOLUTION-models to programs
in C++, Delphi or .NET-languages. With two sequential
transformation processes a simulation model can be trans-
ferred between different platforms without manual
changes.
 The usage of some specific Assembler-routines for
switching could be seen as some disadvantage. But the re-
sulting simulation speed is very high and offers new solu-
tions especially in the area of optimization and simulation.
For that reason, the actual goal of development is to make
the SIMSOLUTION-system the fastest simulation system,
even if there are some disadvantages or missing functions
compared to other simulation systems.

The actual state of the SIMSOLUTION-project is on-
going and further information is available at
(SIMSOLUTION). Its future development will provide a
universal and open simulation system. Any interested
simulation expert or user is invited by the author for shar-
ing his ideas, experience and cooperation inside the
SIMSOLUTION-consortium.

636
REFERENCES

Kilgore, R. A., Healy, K. J. and Kleindorfer, G. B. 1998.
The future of Java-based simulation. Proceedings of
the 1998 Winter Simulation

Kilgore, R. A. 2001. Open source simulation modeling
language (SML). In Proceedings of the 2001 Winter
Simulation Conference, ed., B. Peters,J. Smith. Pis-
cataway, NJ: 2001

Kuljis, Jasna and Ray J. Paul, 2000: A Review of web
based simulation: whiter we wander?, Proceedings of
the 2000 Winter Simulation Conference, Orlando Flor-
ida, page 1872-1881

Jacobs, Peter, 2004: The DSO Simulation System. Pro-
ceedings of the European Simulation Symposium, Bu-
dapest, Hungary, October 2004

Phillips, Lee Ann 2001. Special Edition using XML. Que
Bestseller Edition, 2000

Schriber, Thomas J.; Brunner , Daniel T. : Inside Discrete-
Event Simulation Software: How It Works and Why It
Matters Proceedings of the 2003 Winter Simulation
Conference, December 7-10, 2003, New Orleans, LA

SIMSOLUTION: Simulation Environment . Available on-
line via http://www.simsolution.net [ac-
cessed April 1, 2005].

Wiedemann, T., 2000. VisualSLX – an open user shell for
high-performance modeling and simulation, Proceed-
ings of the 2000 Winter Simulation Conference, Or-
lando Florida, 1865-1871

Wiedemann, T., 2002. Next generation simulation envi-
ronments founded on open source software
and XML-based standard interfaces, Proceedings of
Proceedings of the 2002 Winter Simulation Confer-
ence

Wiedewitsch J.; and Heusmann J. 1995. "Future Directions
of Modeling and Simulation in the Department of De-
fense", Proceedings of the SCSC'95, Ottawa, Ontario,
Canada, July 34-26, 1995

AUTHOR BIOGRAPHY

THOMAS WIEDEMANN is a professor at the Depart-
ment of Computer Science at the University of Applied
Science Dresden (HTWD). He has finished a study at the
Technical University Sofia and a Ph.D. study at the Hum-
boldt-University of Berlin. His research interests include
simulation methodology, tools and environments in dis-
tributed simulation and manufacturing processes. His
teaching areas include also intranet solutions and database
applications. His e-mail address is
wiedem@informatik.htw-dresden.de.

http://www.wintersim.org/abstracts03/AT.htm#schribert49791i
http://www.wintersim.org/abstracts03/AT.htm#schribert49791i
http://www.wintersim.org/abstracts03/AT.htm#schribert49791i
http://www.simsolution.net/
mailto:wiedem@informatik.htw-dresden.de

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

