
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

THE SIMSCRIPT III PROGRAMMING LANGUAGE FOR MODULAR OBJECT-ORIENTED SIMULATION

Stephen V. Rice

Department of Computer & Information Science
The University of Mississippi
University, MS 38677, U.S.A.

Harry M. Markowitz

1010 Turquoise Street, Suite 245
San Diego, CA 92109, U.S.A.

 Ana Marjanski

CACI Products Company
1455 Frazee Road, Suite 700

San Diego, CA 92108, U.S.A.

Stephen M. Bailey

P.O. Box 20812
El Cajon, CA 92021, U.S.A.

ABSTRACT

SIMSCRIPT III is a programming language for discrete-
event simulation. It is a major extension of its predecessor,
SIMSCRIPT II.5, providing full support for object-oriented
programming and modular software development.

1 INTRODUCTION

SIMSCRIPT was among the first programming languages
for computer simulation. SIMSCRIPT I was developed by
the RAND Corporation for the U.S. Air Force in 1962
(Markowitz, Hausner, and Karr 1963) and was followed by
SIMSCRIPT I.5 from CACI in 1965. The SIMSCRIPT II
language was also developed by RAND for the U.S. Air
Force (Kiviat, Villanueva, and Markowitz 1968). Its suc-
cessor was SIMSCRIPT II.5, introduced by CACI in 1971.

The SIMSCRIPT II.5 language (CACI 1997) has been
enhanced by CACI over the past 30 years, and implemen-
tations of the language have been developed for many
computing platforms ranging from mainframes to personal
computers. SIMSCRIPT II.5 facilitates the programming
of simulation models by its:

• language features—built-in timing routine and
scheduling mechanism, sets, random-number gen-
eration, and statistics gathering;

• language syntax—English-like self-documenting
syntax to facilitate the communication and verifi-
cation of simulation models;

• support libraries—for animation, graph genera-
tion, graphical user interfaces, and database ac-
cess;

621
• integrated development environment—for pro-
gram editing, creating graphical elements, and
automatic project building.

The SIMSCRIPT III programming language is the

successor to SIMSCRIPT II.5. It is a superset of
SIMSCRIPT II.5, with significant new features for object
orientation and modularity.

The object-oriented paradigm provides a powerful and
elegant way to represent real-world objects in a simulation
program. In fact, the need to represent real-world objects
in a simulation program inspired the development of the
first object-oriented programming language, SIMULA, in
the 1960s (Nygaard and Dahl 1978).

Despite the popularity of the object-oriented approach
and its applicability to simulation programming, there are
few object-oriented simulation programming languages.
SIMULA, ROSS, and MODSIM are examples. RAND
developed the ROSS language, based on Lisp, for the U.S.
Air Force in the early 1980s (McArthur, Klahr, and Narain
1984). CACI developed the MODSIM language, based on
Modula-2, for the U.S. Army in the late 1980s (CACI
1996).

SIMSCRIPT III is a new object-oriented simulation
programming language based on the venerable
SIMSCRIPT II.5. Its object-oriented features were influ-
enced by C++, Eiffel, Java, MODSIM, and SIMULA.
SIMSCRIPT III is also a general-purpose object-oriented
programming language.

This paper introduces the SIMSCRIPT III language to
readers unfamiliar with SIMSCRIPT II.5. A previous pa-
per by the authors focuses on how SIMSCRIPT II.5 was
extended to create SIMSCRIPT III (Rice et al. 2004).

Rice, Marjanski, Markowitz, and Bailey

2 LANGUAGE BASICS

A SIMSCRIPT III main module consists of a block of dec-
larations known as the “preamble,” followed by one or
more routines, one of which is named main. Declarations
in the preamble are “global,” i.e., they apply to every rou-
tine in the module. Declarations within a routine are “lo-
cal,” i.e., they apply only to the routine in which they are
declared. Program execution begins with the first state-
ment in main and continues until main returns or a stop
statement is executed.

Programmer-defined names and language keywords
are case insensitive. A programmer-defined name is a se-
quence of letters, digits, periods, dollar signs, and under-
scores. Except for and, there are no reserved words. A
numeric constant is a sequence of digits with an optional
period (i.e., decimal point) and optional scientific notation.
A comment begins with consecutive apostrophes '' and
continues to the end of the line or until a second pair of
apostrophes is encountered.

2.1 Basic Data Types

There are several basic data types, called “modes” in
SIMSCRIPT parlance: integer, real, double, alpha, text,
and pointer. Integer is implemented on most platforms as
a signed 32-bit value. Real and double are single- and
double-precision floating-point values, respectively.
Alpha holds one 8-bit character; an alpha constant is
surrounded by quotation marks, e.g., "B". Text is a
dynamic string holding a sequence of zero or more
characters; a text constant is also surrounded by quotation
marks: "Hello, world!". Built-in functions are available
for string operations and type conversions. Pointer is a
generic (untyped) reference value, usually implemented as
a 32-bit address.

2.2 Variables and Arrays

An integer variable named X is declared by the following
statement: define X as an integer variable. If the
statement is specified in the preamble, the variable is
global; if specified within a routine, the variable is local to
the routine. All variables are automatically initialized to
zero, except text variables which are initialized to the zero-
length string "".

A one-dimensional double array named Y is declared
by: define Y as a 1-dimensional double array. An
array is dynamically allocated, and its number of elements
determined at run time, by executing a reserve statement,
e.g., reserve Y as 100. The number of elements in an
array can be obtained by calling the built-in function
dim.f; for example, dim.f(Y) returns 100. The first
element of the array is stored at index 1. The elements of Y
therefore are Y(1), Y(2), …, Y(100). Each element is
622
automatically initialized to zero. Multi-dimensional arrays
may also be declared. The release statement de-allocates
an array, i.e., frees its storage.

2.3 Expressions

Arithmetic expressions may use any combination of arith-
metic operators: unary + and –; binary +, –, *, /, and **
(exponentiation). Built-in functions may be called to per-
form other arithmetic operations, including logarithms,
modulus, square root, and trigonometric functions.

Logical expressions may use relational operators, =,
<>, <, <=, >, >=, and logical operators and and or. Logical
negation is specified by appending is false to a logical ex-
pression. The expression J >= 1 and J <= dim.f(Y)
may be abbreviated as 1 <= J <= dim.f(Y). Logical ex-
pressions use “short-circuit” evaluation; that is, if the first
operand of and evaluates to false, or the first operand of or
evaluates to true, the second operand is not evaluated.

2.4 Basic Statements

Multiple statements may appear on one line, and one state-
ment may span multiple lines. A semicolon is not required
or allowed after a statement.

The following statement assigns the value 10 to the
variable named X: let X = 10. However, the let keyword
is optional and may be omitted: X = 10. The statement,
add 1 to X, is equivalent to X = X + 1. Likewise, X may
be decremented by subtract 1 from X.

The read statement reads free-form and formatted in-
put. The write and print statements produce formatted
output.

The if statement specifies a logical expression fol-
lowed by a sequence of statements to execute if the expres-
sion is true, and optionally by else and a sequence of
statements to execute if the expression is false. It is termi-
nated by the keyword always. For example:

define J as an integer variable

read J

if 1 <= J <= dim.f(Y)
 write Y(J) as "The value is ", d(7,2), /
else ''invalid entry
 write as "The index is out of bounds!", /
always

The select statement is a “case” statement in which

one of several blocks of statements is chosen for execution
based on the value of an expression.

Rice, Marjanski, Markowitz, and Bailey

2.5 Loops

A loop is specified by one or more control phrases fol-
lowed by the body of the loop, which is either a single
statement or a sequence of statements between the key-
words do and loop. A for phrase causes the body of the
loop to be executed once for each value assigned to a con-
trol variable, for example, for J = 1 to N. A while (or
until) phrase specifies a logical expression and terminates
the loop when the expression is false (or true). A with (or
unless) phrase specifies a logical expression and executes
the body of the loop for the current iteration when the ex-
pression is true (or false). These phrases may be combined
to control loop execution. In addition, leave and cycle
statements may be specified in the body of the loop: a
leave statement terminates the loop, and a cycle statement
terminates the current iteration of the loop.

A find or compute statement may be specified in the
body of a loop. A find statement terminates the loop when
the body is executed for the first time and is followed by an
if found (or if none) phrase which evaluates to true if the
body of the loop was (or was not) executed. For each exe-
cution of the body of the loop, a compute statement evalu-
ates an arithmetic expression and computes statistics (e.g.,
sum, mean, maximum, minimum) from the values of the
expression over the life of the loop.

2.6 Functions and Subroutines

We shall distinguish a function, which is a routine that re-
turns a function result, from a subroutine, which does not
return a function result. Functions and subroutines may
have one or more given arguments; however, only subrou-
tines may have yielded arguments. The value of a given
argument is an input to the routine, whereas the value of a
yielded argument is an output from the routine. In the ter-
minology of programming languages, given arguments are
passed by value and yielded arguments are passed by result
(Louden 2003). Main is a special subroutine with no ar-
guments.

Each function and subroutine is declared by a define
statement in the preamble, which specifies the mode of
arguments, and the mode of the function result for
functions. To call a function with n given arguments, the
function name is followed by a parenthesized list of n
expressions. For example, F(2, I+1, J), invokes the
function named F with three given arguments. A
subroutine is invoked by a call statement, for example,
call Analyze given A, B yielding C, D. Recursion is
allowed. A function is terminated by a return with
statement, which specifies the function result. A
subroutine terminates when a return statement is executed
or the end of the subroutine is reached.

The following function has three given arguments: a
one-dimensional array of text values, a text key to look up
623
in the array, and a text value describing the order of values
in the array. The function searches for the key in the array.
If it is found, the index of the array element containing the
key is returned; otherwise, zero is returned to indicate that
the key was not found. If the third argument is
"ascending", the function uses binary search; otherwise,
the array is searched sequentially.

function Search(T, Key, Order)

 define First, Last, and Index
 as integer variables

 First = 1
 Last = dim.f(T)

 if Order = "ascending"

 ''binary search
 Index = (First + Last) / 2
 while First <= Last and Key <> T(Index)
 do
 if Key < T(Index)
 Last = Index – 1
 else
 First = Index + 1
 always
 Index = (First + Last) / 2
 loop
 if First > Last
 Index = 0 ''not found
 always

 else ''sequential search

 for Index = First to Last
 with Key = T(Index)
 find the first case
 if none
 Index = 0 ''not found
 always

 always

 return with Index

end

The function must be declared in the preamble:

define Search as an integer function
 given a 1-dimensional text argument
 and 2 text arguments

The following is an example of a function call:

if Search(A, "Jim", "ascending") > 0
 write as "Found Jim in array A", /
always

Rice, Marjanski, Markowitz, and Bailey

3 CLASSES AND OBJECTS

A class is defined in a preamble by a begin class block,
which specifies the name of the class and declares the at-
tributes, methods, and sets of the class. An instance of a
class, called an object, is identified by its reference value
which is stored in a reference variable. The mode of a ref-
erence variable is denoted by the name of the class fol-
lowed by the keyword reference. The create statement
allocates an object, initializes its attributes to zero, and
stores its reference value in the specified reference vari-
able. The destroy statement de-allocates the object identi-
fied by the specified reference variable. For example:

begin class Vehicle
 ''class declarations go here
 ...
end
...

define Car as a Vehicle reference variable

 ''allocate a Vehicle object and store its
 ''reference value in the reference
 ''variable named Car
create Car

 ''de-allocate the object
destroy Car

 ''create an array of Vehicle objects
define Fleet
 as a 1-dimensional Vehicle reference array
reserve Fleet as N
for J = 1 to N
 create Fleet(J)

3.1 Attributes

The fields of an object are called object attributes and are
declared by every statements in a begin class block.
Define statements declare the modes of the attributes. For
example:

begin class Vehicle

 every Vehicle
 has a Manufacturer,
 a Maximum_Speed,
 and a Current_Speed

 define Manufacturer as a text variable
 define Maximum_Speed and Current_Speed
 as double variables

end

An object attribute is accessed by specifying its name

followed by a parenthesized reference variable:

Manufacturer(Car) = "Chrysler"
Maximum_Speed(Car) = 100.0
Current_Speed(Car) = Maximum_Speed(Car) / 2
624
These statements are read as “the manufacturer of Car is
Chrysler,” “the maximum speed of Car is 100,” and “the
current speed of Car is half of its maximum speed.”

Fields that are associated with the class, and not with
each object of the class, are called class attributes. They
are declared by the class statements in a begin class block.
For example:

begin class Vehicle

 the class
 has a Count

 define Count as an integer variable

end

Within a method of the class, a class attribute may be ac-
cessed using its unqualified name, e.g., Count. Otherwise,
the attribute name must be qualified by the name of the
class, e.g., Vehicle'Count.

An attribute may be a scalar or array, and may be a
reference variable.

3.2 Methods

The routines of an object are called object methods and are
declared by every statements in a begin class block. A
define statement declares the mode of a method’s
arguments, and the mode of the function result if the
method is a function. If the define statement is omitted,
then the method is assumed to be a subroutine with no
arguments. A method specified in an after creating
statement is called automatically after each object of the
class is created. Likewise, a method specified in a before
destroying statement is called automatically before each
object of the class is destroyed. For example:

begin class Vehicle

 every Vehicle
 has a Construct method,
 a Destruct method,
 and a Status method

 after creating a Vehicle, call Construct
 before destroying a Vehicle, call Destruct

 define Status as a text method
 given an integer argument

end

In the implementation of a method, the name of the

method must be qualified (e.g., Vehicle'Status) unless it
follows a methods heading identifying its class. In the fol-
lowing example, we use the Construct and Destruct
methods to update the class attribute named Count to hold
the current number of Vehicle objects. The Status

Rice, Marjanski, Markowitz, and Bailey

method accepts a speed limit argument and returns a text
description of the vehicle’s status.

methods for the Vehicle class

method Construct
 add 1 to Count
end

method Destruct
 subtract 1 from Count
end

method Status(Speed_Limit)
 define S as a text variable
 if Current_Speed = 0
 S = "stopped"
 else
 if Current_Speed > Speed_Limit
 S = "speeding"
 else
 S = "traveling"
 always
 always
 return with S
end

An object method is called by following its name with

a parenthesized reference variable and then its arguments,
if any. For example:

if Status(Car)(45) = "speeding"
 Current_Speed(Car) = 45 ''slow down
always

The reference value is passed by value to the method

and is accessible within the method as a local reference
variable having the same name as the class—Vehicle in
our example. (This variable is called self, this, or cur-
rent in other object-oriented languages.) This variable is
used implicitly as the reference variable when accessing
object attributes and calling object methods without an ex-
plicit reference variable. For example, in the Status
method above, Current_Speed is interpreted as Cur-

rent_Speed(Vehicle).
Routines that are associated with the class, and not

with an object of the class, are called class methods. They
are declared by the class statements in a begin class block,
for example, the class has a Speedometer method. A
class method is invoked without a reference variable.

3.3 Sets

A set is a doubly-linked list with a programmer-defined
name. The owner of a set of objects named List has three
owner attributes: reference variables f.List and l.List,
which identify the first and last objects in the set, and
n.List, which holds the number of objects in the set. Each
member of this set has three member attributes: reference
variables p.List and s.List, which identify the predeces-
625
sor and successor objects in the set, and m.List, which in-
dicates whether this object currently belongs to a set
named List.

An object may own and belong to any number of sets.
Each belongs phrase in an every statement names a set in
which an object may be a member. Each owns phrase in
an every statement names a set owned by an object. An
owns phrase in the class statement names a set owned by
the class. The set named in an owns phrase is qualified by
the name of the member class. It is possible to own an ar-
ray of sets.

A file statement inserts an object into a set. Variations
of this statement permit the object to be inserted first or
last in the set, or immediately before or after a specified
object. If the position is unspecified, the object is placed
into the set according to the “set discipline,” which may be
FIFO, LIFO, or “ranked,” i.e., ordered according to attrib-
ute values of the members. The set discipline is declared
by a define statement in the begin class block of the mem-
ber class and is FIFO by default.

A remove statement removes an object from a set.
Variations of this statement remove the first or last object,
or a specific object from the set. A for each loop control
phrase traverses a set in the forward or reverse direction,
executing the body of the loop once for each member of
the set. Special logical expressions test whether an object
is in a set and whether a set is empty. For example:

begin class Vehicle

 every Vehicle
 belongs to a Service_Queue

 define Service_Queue as a FIFO set

end

begin class Repair_Shop

 every Repair_Shop
 owns a Vehicle'Service_Queue

end
...

define EZ_Auto and Ferrari_Depot
 as Repair_Shop reference variables
...

for each Car in Service_Queue(EZ_Auto)
with Manufacturer(Car) = "Ferrari"
do
 remove Car from Service_Queue(EZ_Auto)
 file Car in Service_Queue(Ferrari_Depot)
loop

if Service_Queue(EZ_Auto) is empty
 write as "Time for a coffee break", /
always

Rice, Marjanski, Markowitz, and Bailey

3.4 Inheritance

A child class may be derived from one or more parent
classes, which are specified using the is a phrase of the
every statement in the child class declaration. The child
class inherits all of the attributes, methods, and sets of its
parent classes. In addition, the child class may declare at-
tributes, methods, and sets of its own. A child class may
override any inherited object method, providing its own
implementation of the method, which may invoke the over-
ridden implementation.

A child class is a specialization of its parent classes.
In our example, we derive a Gas_Vehicle class from the
Vehicle class. Each Gas_Vehicle object thereby acquires
the attributes and methods of a Vehicle (Manufacturer,
Maximum_Speed, Current_Speed, Construct, Destruct,
and Status) and may be a member of a Service_Queue
set. We declare new attributes Current_Gallons and
Tank_Capacity, and a new method Gas_Gauge that returns
the current fuel level. We override the Status method to
append the current reading of the gas gauge to the status
message. The implementation of the Status method calls
the built-in function int.f, which rounds its floating-point
argument to the nearest integer.

begin class Gas_Vehicle

 every Gas_Vehicle
 is a Vehicle,
 has a Current_Gallons,
 a Tank_Capacity,
 and a Gas_Gauge method, and
 overrides the Status

 define Current_Gallons and Tank_Capacity
 as double variables
 define Gas_Gauge as a double method

end
...

methods for the Gas_Vehicle class

method Gas_Gauge
 return with
 Current_Gallons / Tank_Capacity
end

method Status(Speed_Limit)
 define S as a text variable

 select case int.f(4 * Gas_Gauge)
 case 4 S = "full"
 case 3 S = "3/4 full"
 case 2 S = "1/2 full"
 case 1 S = "1/4 full"
 case 0 S = "empty"
 endselect

 return with
 Vehicle'Status(Speed_Limit) +
 ", gas tank is " + S
end
626
The reference value of a child object may be assigned
to a reference variable of any of its parent classes. This
allows specialized objects to be treated more generally. In
our example, a Vehicle reference variable may contain a
Vehicle reference value or a Gas_Vehicle reference value.
If the Status method is called using this variable,
Vehicle'Status is invoked for a Vehicle object and
Gas_Vehicle'Status is invoked for a Gas_Vehicle object.

4 SIMULATION FEATURES

4.1 Random-Number Generation

SIMSCRIPT III utilizes a linear congruential generator
(LCG) to produce uniform pseudo-random 31-bit values
ranging from zero to 2,147,483,647. A predefined array
named seed.v contains ten seed values equally spaced
throughout the period of the LCG; however, any seed val-
ues may be assigned by the program to this array. A
“stream” number between 1 and 10 selects a seed value
from this array.

The values from the LCG are transformed by built-in
functions into pseudo-random numbers from the following
probability distributions: beta, binomial, Erlang, exponen-
tial, gamma, lognormal, normal, Poisson, triangular, uni-
form (continuous and discrete), and Weibull.

4.2 Process Methods

A process method is a subroutine that can be executed im-
mediately by calling it (using the call statement) or can be
executed at some future simulation time by scheduling it
(using the schedule statement). An attribute is implicitly
defined having the same name as the process method. This
attribute is an object attribute if the process method is an
object method and is a class attribute if the process method
is a class method. A process method that is an object
method is invoked on behalf of an object and can be
thought of as describing an activity of the object. For ex-
ample:

begin class Vehicle

 every Vehicle
 has a Trip process method

 define Trip as a process method
 given ''miles to travel and
 ''average speed in miles per hour
 2 double arguments
 yielding ''duration of trip in hours
 1 double argument

end

The schedule a statement creates a process notice and

inserts it into the future-events set. The time.a attribute of
the process notice is assigned the simulation time at which

Rice, Marjanski, Markowitz, and Bailey

the process method is to begin execution. The units of
simulation time may be defined by the programmer; by de-
fault, one unit of simulation time is equal to one day.

The global variable named time.v contains the current
simulation time and is initially zero. The start simulation
statement passes control to the built-in timing routine.
While the future-events set is not empty, the timing routine
removes the process notice with the smallest time.a value
from the future-events set, updates time.v to the value of
time.a, and calls the corresponding process method.

In the following examples, a 200-mile car trip is
scheduled with an average speed of 50 miles per hour. We
can start the trip now,

schedule a Trip(Car) given 200, 50 now

or we might start the trip two days from now:

schedule a Trip(Car) given 200, 50 in 2 days

The schedule a statement assigns the reference value of a
newly-created process notice to the object attribute
Trip(Car). This process notice may later be referred to in
a cancel statement, which removes the process notice from
the future-events set to cancel the pending execution of the
process method. It may be rescheduled using the schedule
the statement, which puts the process notice back into the
future-events set. For example, to reschedule the trip for
next week:

cancel the Trip(Car)
schedule the Trip(Car) in 7 days

The routine that executes a schedule statement contin-

ues on without waiting for the process method to begin
executing. Eventually control passes to the timing routine,
which executes the process method when it becomes the
most imminent event. However, by using a call statement,
a routine can execute a process method immediately and
wait for it to complete before continuing on. For example:

call Trip(Car) given 200, 50
 yielding Trip_Duration

A routine that calls a process method receives the val-

ues yielded by the process method, if any. These values
are discarded when the process method is invoked through
the scheduling mechanism; however, the method may save
these values in attributes for other routines to access.

A process method, or a routine called by a process
method, may suspend its execution using a wait or
suspend statement, pass control back to the timing routine,
and later resume its execution, not at the beginning of the
routine, but immediately following the wait or suspend
statement. The wait statement inserts the process notice of
the suspended routine into the future-events set to schedule
627
its resumption. The suspend statement does not schedule
resumption; another routine must execute a schedule the
statement referring to the process notice of the suspended
routine to schedule its resumption.

In the following example implementation, the process
method Trip randomly generates an average speed that is
the given average speed plus or minus five miles per hour,
and computes the duration of the trip. It then executes a
wait statement, which suspends execution of the process
method, schedules its resumption after the duration has
elapsed, and passes control back to the timing routine.
Upon resumption, the actual duration of the trip is com-
puted and returned to the caller in the yielded argument.

methods for the Vehicle class

process method Trip
 given Distance, Avg_Speed
 yielding Actual_Duration

 define Duration, Start_Time
 as double variables

 Duration = Distance /
 uniform.f(Avg_Speed-5, Avg_Speed+5, 1)

 Start_Time = time.v

 wait Duration hours

 Actual_Duration =
 (time.v – Start_Time) * hours.v

end

The wait statement places the process notice in the fu-

ture-events set. Another routine may refer to this process
notice in an interrupt statement to remove it from the fu-
ture-events set; however, the remaining waiting time is
saved in a process notice attribute. A routine may later re-
fer to this process notice in a resume statement to insert it
back into the future-events set, scheduling the resumption
of execution to occur after the remaining waiting time has
elapsed.

In our example, Actual_Duration will be greater than
Duration if the trip is interrupted. Perhaps we are model-
ing mechanical breakdowns and repairs, and for a
Gas_Vehicle, stops at gas stations.

interrupt the Trip(Car)

... ''simulation time elapses

resume the Trip(Car)

Rice, Marjanski, Markowitz, and Bailey

4.3 Statistics

An accumulate or tally statement specifies one or more
statistics to compute automatically from the values
assigned to an object attribute (or class attribute). A name
is given to each statistic, and an object method (or class
method) by that name is generated that returns the value of
the statistic. Any of the following statistics may be
computed: the maximum, minimum, number, sum, mean,
mean square, sum of squares, variance, and standard
deviation of the values assigned to the attribute. A
histogram of the values may also be computed.

The statistics are weighted by simulation time if speci-
fied by an accumulate statement and are unweighted if the
tally statement is used. The statistics can be computed for
the entire simulation, or for particular time intervals, for
example, every day or every week of simulation time. The
reset statement is used to initialize the statistics at the be-
ginning of a time interval.

Suppose in our example we wish to measure how well
a repair shop is doing its job, and assume that after each
vehicle is serviced, the time required to service the vehicle
is assigned to an object attribute named Service_Time. A
tally statement specifies that the average and maximum
service time is to be computed from the values assigned to
this attribute. An accumulate statement indicates that the
time-weighted average of the length of the service queue is
to be computed. The number of vehicles in the queue is
maintained in the implicitly-defined object attribute named
n.Service_Queue, which is automatically updated when-
ever a vehicle is inserted into the queue by a file statement
or removed from the queue by a remove statement. A
Print_Statistics method displays the results.

begin class Repair_Shop

 every Repair_Shop
 has a Service_Time and
 a Print_Statistics method, and
 owns a Vehicle'Service_Queue

 define Service_Time as a double variable

 tally Avg_Service_Time as the mean and
 Max_Service_Time as the maximum
 of Service_Time

 accumulate Avg_Queue_Length as the mean
 of n.Service_Queue

end
628
methods for the Repair_Shop class

method Print_Statistics
 print 3 lines with
 Avg_Service_Time, Max_Service_Time, and
 Avg_Queue_Length as follows
 Average service time is **.**
 Maximum service time is **.**
 Average queue length is **.**
end

5 SUBSYSTEMS

A SIMSCRIPT III main module may utilize one or more
subordinate modules called subsystems. Each subsystem is
compiled separately and may be used by one or many
SIMSCRIPT III programs. It is easier to develop and
maintain a large program that has been divided into mean-
ingful units. Subsystems promote better source code or-
ganization and facilitate the re-use of code.

A subsystem consists of a public preamble, an optional
private preamble, and zero or more routines. The public
preamble contains declarations that apply to the rest of the
subsystem. More importantly, main modules and other
subsystems may access these public declarations by im-
porting the subsystem. Main modules and subsystems may
import any number of subsystems.

The public preamble is typically used to declare the in-
terface to public classes, which includes the public attrib-
utes, methods, and sets defined and inherited by the class.
The private preamble declares private classes, and the pri-
vate attributes, methods, and sets of public classes. These
private declarations are visible only to the routines of the
subsystem. The source code of the routines is also private.

A subsystem may be distributed as a source file con-
taining only the public preamble, and one or more binary
object files obtained by compiling the subsystem. The
source file documents the subsystem interface and is read
by the compiler when compiling a main module or subsys-
tem that imports this subsystem. An executable program is
built by linking the binary object files that were produced
by compiling the main module and each of its subsystems.

Each subsystem has a name which is used to qualify
the name of each class declared by the subsystem. For ex-
ample, if a main module imports subsystems named Army
and Navy and both subsystems declare a Vehicle class,
then the main module can distinguish them by their quali-
fied names, Army:Vehicle and Navy:Vehicle. The name
Army:Vehicle'Position refers to an attribute, method, or
set named Position of the Army:Vehicle class.

A subsystem may contain a special initialize routine
which is called once before the main routine is executed,
and is used to initialize class attributes and global variables
declared by the subsystem.

Rice, Marjanski, Markowitz, and Bailey

The following is an outline of a main module that im-
ports a subsystem named Transportation:

preamble
 importing the Transportation subsystem

 ''preamble declarations go here
 ...
end

''routines of the main module go here
...

main
 ''logic of the main routine goes here
 ...
end

The following is an outline of the subsystem named
Transportation:

public preamble
 for the Transportation subsystem

 begin class Vehicle
 ''public attributes, methods, and sets
 ''are declared here
 ...
 end

 ''other public declarations go here
 ...
end

private preamble
 for the Transportation subsystem

 begin class Vehicle
 ''private attributes, methods, and sets
 ''are declared here
 ...
 end

 ''other private declarations go here
 ...
end

''routines of the subsystem go here
...

initialize
 ''logic of the initialize routine
 ''goes here
 ...
end

6 CONCLUSION

For more than forty years, the SIMSCRIPT language has
been a valuable tool for programming simulation models.
SIMSCRIPT III is the latest version of the language. It is a
superset of the previous version, SIMSCRIPT II.5. Every
valid SIMSCRIPT II.5 program is a valid SIMSCRIPT III
main module. SIMSCRIPT III inherits from SIMSCRIPT
II.5 an expressive syntax and a rich collection of data
629
types, built-in functions, loop constructs, and executable
statements. The new features in SIMSCRIPT III interop-
erate with the inherited features.

SIMSCRIPT III introduces classes and objects and
their attributes and methods, using syntax that is similar to
that used by SIMSCRIPT II.5 for entities, attributes, and
routines. A SIMSCRIPT III process method acts as both a
method and a SIMSCRIPT II.5 process. Sets of objects in
SIMSCRIPT III are similar to sets of entities in
SIMSCRIPT II.5. The SIMSCRIPT II.5 statistics-
gathering feature is applied to attributes of objects and
classes in SIMSCRIPT III.

All global declarations in a SIMSCRIPT II.5 program
reside in a single preamble that is shared by every routine
of the program. Through the introduction of subsystems,
SIMSCRIPT III enables large programs to be divided into
modules. The public preamble specifies the module inter-
face and the implementation details are hidden. A program
may use many modules and a module may be used by
many programs.

The SIMSCRIPT III programming language is sup-
ported by libraries for graphics, animation, and database
access, and by the “Simstudio” integrated development en-
vironment.

REFERENCES

CACI Products Company. 1996. MODSIM III: The lan-
guage for object-oriented programming. La Jolla,
California: CACI Products Company.

CACI Products Company. 1997. SIMSCRIPT II.5 refer-
ence handbook. La Jolla, California: CACI Products
Company.

Kiviat, P. J., R. Villanueva, and H. M. Markowitz. 1968.
The SIMSCRIPT II programming language. Engle-
wood Cliffs, New Jersey: Prentice Hall.

Louden, K. C. 2003. Programming languages: Principles
and practice. Pacific Grove, California: Brooks/Cole.

Markowitz, H. M., B. Hausner, and H. W. Karr. 1963.
SIMSCRIPT: A simulation programming language.
Englewood Cliffs, New Jersey: Prentice Hall.

McArthur, D., P. Klahr, and S. Narain. 1984. ROSS: An
object-oriented language for constructing simulations.
Technical Report No. R-3160-AF, RAND Corpora-
tion, Santa Monica, California.

Nygaard, K., and O.-J. Dahl. 1978. The development of
the SIMULA languages. ACM SIGPLAN Notices 13
(8): 245–272.

Rice, S. V., A. Marjanski, H. M. Markowitz, and S. M.
Bailey. 2004. Object-oriented SIMSCRIPT. In Pro-
ceedings of the 37th Annual Simulation Symposium,
178–186. Los Alamitos, California: IEEE Computer
Society.

Rice, Marjanski, Markowitz, and Bailey

AUTHOR BIOGRAPHIES

STEPHEN V. RICE is an assistant professor in the De-
partment of Computer and Information Science at the Uni-
versity of Mississippi. He is the lead designer of the
SIMSCRIPT III extensions to SIMSCRIPT II.5. Previ-
ously he designed and implemented SIMSCRIPT II.5 Da-
tabase Connectivity, which gives SIMSCRIPT programs
the ability to access relational databases. In the late 1980s,
he co-invented the MODSIM object-oriented simulation
programming language and wrote the first MODSIM com-
piler. His research interests also include pattern recogni-
tion and audio retrieval. His e-mail address is
rice@cs.olemiss.edu and his Web address is
www.cs.olemiss.edu/~rice.

ANA MARJANSKI is Head of the Technical Team at
CACI Products Company. She is leading the development
of SIMSCRIPT III and the MODSIM III-to-SIMSCRIPT
III language converter. For the past 15 years, she has been
Technical Manager for SIMSCRIPT II.5. Prior to joining
CACI, she was at research Institute Mihailo Pupin, Bel-
grade, where she developed Operating Systems for special-
ized computer systems, including a Kernel for Object-
Based Real-Time Simulation, and led several international
software projects at Philips Sweden and Ferranti England.
Her e-mail address is amarjanski@caci.com and her
Web address is www.caciasl.com.
630
HARRY M. MARKOWITZ has applied computer and
mathematical techniques to various practical decision mak-
ing areas. In an article in 1952 and a book in 1959, he pre-
sented what is now referred to as MPT, “modern portfolio
theory.” This has become a standard topic in college
courses and texts on investments, and is widely used by in-
stitutional investors for asset allocation, risk control, and
attribution analysis. He developed “sparse matrix” tech-
niques for solving very large mathematical optimization
problems. These techniques are now standard in produc-
tion software for optimization programs. He also designed
and supervised the development of the SIMSCRIPT pro-
gramming language. In 1989 he received The John von
Neumann Award from the Operations Research Society of
America for his work on portfolio theory, sparse matrix
techniques and SIMSCRIPT. In 1990 he shared The Nobel
Prize in Economics for his work on portfolio theory.

STEPHEN M. BAILEY is the lead implementor of
SIMSCRIPT III. He has worked on SIMSCRIPT II.5,
MODSIM II, and MODSIM III, and was a lead implemen-
tor of the SIMGRAPHICS II object-oriented graphics
package used by both SIMSCRIPT and MODSIM. He de-
veloped audio-related technology for the FindSounds Pal-
ette software and the FindSounds.com Web search engine.

mailto:rice@cs.olemiss.edu
http://www.cs.olemiss.edu/~rice
mailto:amarjanski@caci.com
http://www.caciasl.com/

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

