
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

SENSITIVITY ANALYSIS OF NETWORK RELIABILITY USING MONTE CARLO

G. Rubino

IRISA-INRIA
Campus Universitaire de Beaulieu
35042 Rennes Cedex, FRANCE
ABSTRACT

We analyze the computation of sensitivities in network re-
liability analysis. The associated models are graphs whose
components are weighted by probabilities (their reliabili-
ties) and they are widely used, for instance, in the design
of communication networks. The paper deals with the sen-
sitivities of usual reliability network metrics, with respect
to the reliabilities of the components. The importance of
sensitivities in this context is discussed and it is shown
how to efficiently estmate the vector of sensitivities using
Monte Carlo procedures. A first result allows to evaluate
sensitivities using the standard Monte Carlo approach. A
second method is then presented to deal efficiently with the
rare event case. The ideas presented here can be applied to
other classes of reliability problems and/or methods.

1 INTRODUCTION

1.1 The Model

Stochastic graphs are widely used models for representing
complex multi-component systems subject to component
failures. They consist of graphs whose elements (nodes
and arcs or edges) are weighted by probabilities. The
output usually obtained from this type of structure is the
probability of events representing a desired behavior of the
system modeled. In this paper we consider the problem of
the computation of reliability measures and we focus on a
fundamental family of metrics, called K-terminal reliability,
in the following version: the input is a stochastic undirected
graph G = (V, E) where V is the set of vertices and E is the
set of edges. We denote by E the number of edges: E = |E |.
The graph may represent, for instance, a communication
network. In this case, the vertices correspond to nodes
sending and receiving information and the edges model
communication lines. This application is used as a reference
in the paper. For instance, the terms vertex and node
are used as synonymous, and the same with edge or line
or link. At a fixed time τ , each line is in one of two
491
states: either working (operational) or completely down
(unoperational, behaving as if it did not exist in the network).
To simplify the presentation, we assume that nodes are
perfect and that only lines can fail, but this is not critical
since we are using Monte Carlo techniques. The graph is also
assumed to be undirected, that is, the lines of the modeled
communication network are bi-directional (messages can
pass in both directions.) Finally, we assume that the graph
is connected and without loops.

The state of line or edge e at time τ is a binary random
variable Xe with value 1 if the line is working or 0 if it does
not work. A basic assumption now is that (Xe, e ∈ E) is
a family of independent random variables. The K-terminal
problem is the following: Given the probability re of the
event {Xe = 1} for each line e of the network and a subset
K of the set of vertices V , compute the probability R that,
at time τ , the nodes can communicate with each other. In
other words, if the first graph G = (V, E) is fixed, the
set E ′ of operational lines at time τ defines a subgraph
G′ = (V, E ′) of the previous one.

The number R is the probability that there exists at least
one path between every pair of nodes of K in G′, or, in other
words, that the nodes of K belong to the same connected
component of G′. The number re is the reliability of line e.
The set {re, e ∈ E} is the set of elementary reliabilities. In
the paper, we give the details for the basic case of K = {s, t},
the so-called 2-terminal case, but the methods are valid in
the general context, with the appropriate adjustments.

This problem (and several other related reli-
ability problems) has received considerable atten-
tion from the research community. Numerous
published papers have been devoted to its solu-
tion (see, for instance, (Locks and Satyarayana 1986,
Ball, Colbourn, and Provan 1995, Rubino 1998) for refer-
ences) mainly due to two reasons: the general use of these
models, in particular in the communication networks area,
and the fact that in the general case the problem is in
the #P-complete class (Valiant 1979), a family of NP -hard
problems not known to be in NP . Recall that a #P-complete
problem is equivalent to counting the number of solutions



Rubino
to an NP -complete one. This implies that a #P-complete
problem is at least as hard as an NP -complete one. This
last fact justifies the continuous effort to find more efficient
solution methods.

The main goal of this work is to show that sensitivities
can be efficiently computed using appropriate Monte Carlo
techniques, including in the rare event case, that is, when
the network is highly reliable. Before going to the Monte
Carlo context, let us recall in next subsection the interest
in computing sensitivities.

1.2 Motivation for Sensitivity Analysis

If we consider the reliability R of the network as a function
of the individual reliabilities re of the lines, it is of interest
to know the value of the sensitivity σe of R with respect
to each independent variable re which are defined as

σe
def= ∂R

∂re
.

Several reasons make the computation of this set of
derivatives (that is, the vector ∇R) interesting. First,
it is involved in optimizations, as pointed out in
(Barlow and Proschan 1975), when, for instance, each ele-
mentary reliability is a function of some local cost measure
ce: re = re(ce). Assume that a fixed capital C is available
to improve an existing communication network by investing
into the lines. If the criterium is to increase the reliability
of the network, we have to maximize R = R(ce, e ∈ E)

under the constraint
∑

e ce = C. The rate �e = ∂R/∂ce is
the instantaneous variation of R with respect to the variation
of the local cost of line e. Since only re depends on ce, we
have

�e = σe

dre

dce

.

Once the vector ∇R is computed, the rates �e can be obtained
using only the local derivates dre/dce, i.e., without explicitly
constructing and computing the function R = R(ce, e ∈ E).
This is a rather classical application of sensitivity analysis.
It can be mentioned that many authors propose the compu-
tation of a symbolic expression of the function R(re, e ∈ E)

(that is, a formal expression) in order to perform optimiza-
tions (see for instance (Hariri and Raghavendra 1987).) Of
course, symbolic expressions are not only used for this.
When the topology is fixed and the user wants to evalu-
ate its model for different values of the reliabilities of its
components, it is very useful to obtain such a symbolic
expression first and to perform just variable substitutions
by different numerical values. However, the price to pay is
a considerably higher computational cost.

We performed some experiments in order to com-
pare these two approaches. We chose an exact com-
49
binatorics method (adapting the algorithm proposed in
(Cancela, Rubino, and Urquhart 2001) to the 2-terminal
case). This algorithm is an improved version of the method
proposed in (Ahmad 1982), having the property of using a
bounded amount of memory which is known before running.
The program written in C runs approximately over 100 times
faster than the same algorithm coded in the formal system
Maple. This ratio varies considerably as a function of the
sizes of the coefficients and the formal simplifications that
Maple is able to perform.

The computation of ∇R may also be useful if there is
a temporal dimension in the problem. Assume that each
individual reliability is considered as a known function of
time, that is, re = re(τ ), τ measuring the time elapsed
since some reference point in the past. The instantaneous
variation of R with time can be obtained without considering
explicitly R = R(τ). Applying elementary differentiation
rules, we have

dR

dτ
=

∑
e

σe

dre

dτ
.

If we know how to calculate ∇R efficiently, this approach
is better than the computation of dR/dτ directly from the
function R = R(τ) since this leads to the computation of
R(s) for different values of s in some neighborhood of
τ . Moreover, we necessarily get a numerical approxima-
tion of dR/dτ , whereas using the previous formula, the
(numerically) exact value is obtained.

A more specific and relevant application of the compu-
tation of sensitivities in our context is the following. The
reliability measure R quantifies the ability of the whole net-
work to transmit messages between the two selected nodes
at a fixed point in time (for instance, in steady state.) This
number depends, of course, on the precision of input data
which also consists of measured (or calculated) reliabilities.
The possible (and probable) errors in the input induce an
error in the output R. Although this numerical output R

may not be very precise, the order induced on the set of
edges by sensitivities is a much more robust information
about the properties of the network. It allows the identifi-
cation of the most critical parts of the structure, taking into
account both the topology and the stochastic behavior of the
system (Barlow and Proschan 1975). It is clear that this
order is significantly less dependent on the errors arising
from each individual reliability re. As an example, consider
the network of Figure 1.

We have R = rarb + rc − rarbrc, σa = rb(1 − rc),
σb = ra(1 − rc) and σc = 1 − rarb. If ra = rb = rc = 0.9
then σa = σb = 0.09 and σc = 0.19, that is, link c is the
critical one. It is clear that c will remain the critical link if
the “real” values of the elementary reliabilities are “near”
0.9. If we let ra = rb = 0.9 and we decrease the value of
rc, while rc > 71/90 ≈ 0.7889 we will have σc > σa = σb.
For instance, if rc = 0.7, σa (and σb) changes to 0.27
2



Rubino
Figure 1: A Small “Triangle‘” to Illustrate Some Uses of
Sensitivities

and c is the least critical link in the network. To illustrate
the robustness, the reader can verify for instance that if
ra < 0.5, then for any rb < ra and for any rc we have
σa < σb < σc.

To complete the introduction, let us mention that
another pioneering work on the importance of a com-
ponent in a complex system is (Birnbaum 1969). In
(Barlow and Proschan 1975), the analysis of sensitivities
is considered in the general framework of coherent binary
systems. In the case of reliability network theory, the compu-
tation of sensitivities for the particular case of series-parallel
topologies has been done in (Bobbio and Premoli 1982).

The rest of this paper is devoted to the analysis of
the sensitivities of these basic network reliability measures
using Monte Carlo. In next section, some general remarks
about sensitivities are given. Section 3 contains the main
contributions of the paper. In Subsection 3.1 we propose a
new estimator allowing evaluating ∇R as a byproduct of the
estimation of the system reliability R. In Subsection 3.2,
this estimator leads to a specific algorithm designed to work
in the rare event case, that is, when R ≈ 1. Section 4 provide
some examples. Finally, Section 5 concludes the paper.

2 DEFINITIONS AND BASIC PROPERTIES

Let Y be the binary random variable defined by Y = 1
iff there exists at least one path between s and t in which
all the links are working. The reliability of the network
is R = Pr(Y = 1), Pr() being the underlying probability
measure. The sensitivity vector is

∇R
def=

(
. . .

∂R

∂re
. . .

)
= ( . . . σe . . . ) .

As this model is a particular case of a binary mono-
tone system (see (Rubino 1998), it is well known that for
every line e we have σe ≥ 0 (see the basic reference
(Barlow and Proschan 1975)). This means that we cannot
improve the reliability of the whole system by decreasing
the (elementary) reliability of one of its components.

The contraction of line e = {x, y} of G consists of
eliminating line e and “merging” its two extremities x and
y: the resulting graph has |V| − 1 nodes and E − 1 edges
493
and it is denoted by Gc
e . Just deleting line e gives Gd

e with
the same node set and E − 1 edges. Let us define

Rc
e

def= R|re=1 and Rd
e

def= R|re=0 . (1)

The number Rc
e (respectively Rd

e ) is the reliability of the
connection between s and t in Gc

e (respectively in Gd
e .) If

line e is {s, t}, then Rc
e is defined as 1. Between these

quantities the following order relation holds:

for all lines e, 0 ≤ Rd
e ≤ R ≤ Rc

e ≤ 1. (2)

This is simply a consequence of the fact that we deal with
a monotone system. Conditioning with respect to the state
of line e we obtain the following useful relation:

for all lines e, R = reR
c
e + (1 − re)R

d
e . (3)

Relation (3) is usually called the “factoring theorem” and
it is the basis of a powerful family of algorithms designed
to compute network reliability exactly (see for instance
(Rubino 1998)). Deriving it with respect to re gives

for all lines e, σe = Rc
e − Rd

e . (4)

This last relation can be found in
(Barlow and Proschan 1975). From relations (2) and
(4) we have the following trivial bounds:

for all lines e, σe ≤ Rc
e and σe ≤ 1 − Rd

e .

Now, formula (4) together with (3) give the two following
expressions of σe:

for all e s.t. 0 < re < 1, σe = Rc
e − R

1 − re
(5)

= R − Rd
e

re
. (6)

Relations (5) or (6) allow us to compute ∇R by means of
|E | + 1 reliability computations. They also lead to the two
following bounds of sensitivities:

for all lines e, σe ≤ R

re
and σe ≤ 1 − R

1 − re
.

Observe that

R

re
� 1 ⇐⇒ 1 − R

1 − re
� 1,

so only one of the preceding bounds is really relevant.
For completeness, let us mention another measure of



Rubino
the importance of a component on the reliability of the
whole system, proposed in (Fussell 1975). Its definition is

ξe
def= Pr(Xe = 0 | Y = 0),

that is, ξe is the probability that line e has failed, given
that the network itself has failed. The author proposes this
measure as a tool for diagnostic analysis, when the network
is observed to fail. After some transformations, we have

ξe = (1 − Rd
e )(1 − re)

1 − R
,

and using (6),

ξe = (1 − R + reσe)(1 − re)

1 − R
,

so that this measure can be directly derived from sensitivities.
Lastly, remark that as in physics, it can be useful to

consider the elasticity he of R with respect to re, instead
of the sensitivity. The elasticity is defined here by

he
def= reσe

R
. (7)

From (6), we have that

σe ≤ R

re
, (8)

so that we always have he ≤ 1 and it is immediate to verify
that he = 1 if and only if line e is in series with the rest
of the network. This quantity reflects the same kind of
property as σe in a normalized way.

3 SENSITIVITY ESTIMATION WITH MONTE
CARLO TECHNIQUES

As stated before, network reliability computations are ex-
pensive (since we are generally dealing with NP -hard prob-
lems). This means that, very often, it is not possible to solve
exactly the models in reasonable time (this is usually the
case in a good workstation if the network has, say, more than
50 or 60 links after possible simplifications such as series-
parallel, etc., see (Rubino 1998)). An efficient alternative
is the Monte Carlo approach. Instead of getting the exact
(numerically speaking) answer, we accept an approximated
one but with a (probabilistic) control on the accuracy. The
gain is in the size of the models that can be solved.

The naive implementation of the standard Monte Carlo
technique consists of sampling from the random variable G′
(with the type “subgraph of G”) for, say, N times, checking
the criteria defining the operational state of each sample
(that is, checking if nodes s and t are connected in G′,
494
in the 2-terminal situation, or if the nodes in K are in
a same connected component of G′ in the general case)
and computing the ratio between the number of samples in
operational state and the total number of samples N as an
estimate of the reliability of the network.

Next, we show that sensitivities can also be obtained
by Monte Carlo simulations without using relations (5) or
(6), that is, using the standard method and with a small
overhead. Then, we propose a specific algorithm applying
this idea but designed to operate in the rare event case.

3.1 General Approach to Estimate Derivatives

Recall that the random variable Xe has value 1 if line e

is working in G′, 0 otherwise, and that Y has value 1 if s

and t are connected in G′, 0 otherwise, so that R = E(Y ).
A basic Monte Carlo estimation of R consists of building
N independent replications of Y , which we denote here by
Y (1), · · · , Y (N), and estimating R by

R̃ = 1

N

N∑
i=1

Y (i).

Now, if sensitivities are to be computed, the first contribu-
tion of this paper is to propose an estimator allowing the
evaluation of ∇R as a byproduct of the evaluation of R.

For any line e, define the r.v.

Ze
def= XeY.

The N corresponding replications in the considered sample
are denoted by Z

(1)
e , · · · , Z

(N)
e . Observing that

Ze = 1 ⇐⇒ Xe = 1 and Y = 1

we have

Pr(Ze = 1) = Pr(Xe = 1, Y = 1)

= Pr(Y = 1 | Xe = 1) Pr(Xe = 1)

= Rc
ere.

We define now

Se
def= Ze − reY

re(1 − re)
= Y (Xe − re)

re(1 − re)



Rubino
(and the corresponding replications S
(1)
e , …, S

(N)
e ). We

have

E(Se) = Rc
ere − reR

re(1 − re)

= Rc
e − R

1 − re
= σe (from (5)).

This means that, to estimate σe, we can estimate the expec-
tation of the random variable Se by means of the unbiased
estimator

σ̃e
def= 1

N

N∑
n=1

S(n)
e

where S
(n)
e is the value of Se in the nth replication of G′.

The performance of an estimator is related to the cost
in computing it and to its variance. In particular, the size of
the confidence intervals is proportional to the square root
of its variance. In the case of R̃, its standard unbiased
estimator can be written as

R̃(1 − R̃)

N − 1
.

For a given significance level of 1−ε, the confidence interval
for R̃ is⎡⎣ R̃ − ξ(ε)

√
R̃(1 − R̃)

N − 1
, R̃ + ξ(ε)

√
R̃(1 − R̃)

N − 1

⎤⎦
where

ξ(ε) = �−1
(

1 − ε

2

)
, �(x) = 1√

2π

∫ x

0
e
− t2

2 dt

(for instance, ξ(0.05) ≈ 1.96.)
To estimate the variance of σ̃e we use

ν̃e
def= 1

N − 1

N∑
n=1

(S(n)
e − σ̃e)

2

which can be written after some algebra

ν̃e = N

N − 1

[
(1 − 2re)Z̃e + r2

e R̃

r2
e (1 − re)

2 − σ̃ 2
e

]

where

Z̃e
def= 1

N

N∑
n=1

Z(n)
e .
495
The corresponding confidence interval (level 1 − ε) for σe

is [
σ̃e − ξ(ε)

√
ν̃e

N
, σ̃e + ξ(ε)

√
ν̃e

N

]
.

3.2 A Specific Algorithm in Case of Rare Events

Assume now the usual situation in which R ≈ 1. In this
case, a naive implementation of the method described in
the previous subsection can be difficult or impossible to
apply because of its computational cost. Consider instead
the following technique, whose inspiration lies in previous
work (Rubino 1998, Section 11.5).

Imagine a naive implementation of the previously
described approach working the following way. Since
the estimators are built from sequences (Y (n))n=1···N and
(X

(n)
e )n=1···N for all edges e, or equivalently, from sequences

(Y (n))n=1···N and (Z
(n)
e )n=1···N , assume we fill a (huge) ta-

ble having N rows and E +1 columns, the first E of which
are associated with the edges of the graph. At row n, the
value of the column associated with edge e is X

(n)
e , and

the last value of the row at column E + 1 has value Y (n).
Imagine we first fill the table row by row, and then compute
from it R̃ and σ̃e for all edge e. Now, look at the column
associated with edge e: this is a Bernoulli sequence of 1s
and 0s having length N , with a “majority” of 1s (in the
rare case, the reliability of line e, re, is supposed to be
close to 1). Now, to simplify the presentation, consider
N = ∞ (an infinite table), and denote by Fe the random
variable “first row of the table with value 0 at column e”.
Variable Fe is geometric:

Pr(Fe = f ) = r
f −1
e (1 − re), f ≥ 1.

Denote by M the minimum of the Fes: M = min{Fe, e ∈
E}. Variable M is also geometric, with distribution

Pr(M = m) = rm−1(1 − r), m ≥ 1,

where r = ∏
e∈E re. The mean of M is E(M) = (1 − r)−1.

The proposed method works as follows: we first sample
variable M . Assume we get a value m > 1. This intuitively
means that in rows 1 to m − 1 we have only 1s in the
table, and implies that without any supplementary sampling
(and a fortiori, of computation), we have m − 1 values of
the network state and of the E lines for free. At row m,
we must just perform a DFS (Depth First Search) to see
if the network works. Of course, if m = 1 we come
directly to this step. Now, for next step, assume that
Fe1 = Fe2 = · · · = Fek

= m < Fe if e �∈ {e1, e2, · · · , ek}
for some k, 1 ≤ k ≤ E. For these edges e1, e2, · · · , ek we
sample again from the respective geometric distributions,
in order to have, as at the beginning, a new set of values



Rubino
containing for each edge e, the next row in the table where
that edge is down. Then, again the minimum of these E

geometric values is computed and the process is repeated. A
detailed presentation of the algorithm together with formal
proofs can be found in (Rubino 2005).

Let us now look at the gain of this method with respect
to the method of previous subsection. First of all, observe
that running a direct implementation of the standard Monte
Carlo method as described at the beginning of Section 3 for
N samples has average computational complexity ≈ αNE,
where αE is the cost of the DFS (a task linear in the size
of the graph). Thus, using (4) the mean cost is ≈ 2αNE2,
and using relations (5) or (6) we get a mean cost ≈ αNE2.

Now, implementing the result presented in Subsec-
tion 3.1, the average computational complexity is ≈ (α +
β)NE, where βE is the overhead due to the computation
of the sensitivities.

Finally, consider the technique proposed in Subsec-
tion 3.2. The gain, with respect to the previous approach,
lies in the fact that the DFS is performed just in a (hopefully
small) part of the potential set of N samples. The average
number of samples for which we don’t need to do any
computation is E(M) − 1 = r(1 − r)−1. This leads to an
average complexity ≈ (1 − r)N(α + β)E/r .

To get a feeling of the gain of our algorithm, consider a
model for which re = 1−ε for all edge e, where ε 
 1 (we
are in the rare event case). The resulting average complexity
of the algorithm is ≈ (α′ + β)εNE2. We represent by α′
the coefficient associated with the cost of the DFS because
on the average the graphs are different than in the standard
case: in the latter, the typical situation for the rare event
case is having all lines ‘up’. Here, we will have at least
one line ‘down’ each time the DFS runs.

To compare the cost of the technique in Subsection 3.2
with the cost of the direct implementation of the result in
Subsection 3.1, let us divide (α +β)NE by (α′ +β)εNE2.
We obtain the ratio � = γ (εE)−1, where γ = (α+β)/(α′+
β). For instance, in the example given in next section, we
have E = 18. If the elementary reliabilities of the edges
are re = 0.9999 for all edges e, we have ε = 10−4 and
the theoretical analysis says that the second algorithm runs
≈ 500γ times faster for the same accuracy (since both
are implementations of the standard estimator, and thus the
variances are the same!) Let us add that in all our experiences
we got γ > 1 (see next section for some details).

4 EXAMPLE

Consider the model shown in Figure 2, having 14 nodes
and 18 edges.

The example has been chosen because when s = 1 and
t = 14, the reliability of the model can be easily computed
by conditioning with respect to the state of line 10 (that is,
by applying the factoring theorem with r10 as the pivot):
4

Figure 2: An Example for Illustrating Sensitivity Analysis.
The Source is 1 and the Terminal is 14.

the graphs obtained by contracting (respectively by delet-
ing) line 10 in the given model are both s, t-series-paralel,
which implies that the computation of their reliabilities is
straightforward and can even be done formally. This allows
the reader to check the numerical values given by the sim-
ulators. In (Rubino 1998) there are some examples having
sizes slightly larger and with no hope of even a numerical so-
lution (using any of the numerous combinatorial algorithms
available). This is because of the combinatorial explosion
in the number of possible vectors X = (. . . Xe . . .).

The network reliability R for s = 1 and t = 14 is given
by the following expressions:

α = r1(r4r8 + r5r9 − r4r5r8r9),

β = r13r14r18,

γ = r2r6 + r3r7 − r2r3r6r7,

δ = r11r15 + r12r16r17 − r11r15r12r16r17,

R = r10Rc + (1 − r10)Rd, where

Rc = (α + γ − αγ )(β + δ − βδ) and

Rd = αβ + γ δ − αβγ δ.

For instance, Table 1 gives some (exact) values of
1−R, the unreliability of the system, in the case re = 1−ε

for all edge e, as a function of ε. Using a well-known
approximation arising in this case where all lines have the
same reliability, we have 1 − R = νcε

c + o(εc) where c

is the minimal size of a mincut in the graph (c is called
the breadth of the graph) and νc is the number of mincuts
with c edges (see (Rubino 1998, Section 11.6) for details).
The third column in Table 1 gives the value of νcε

c (in the
example, c = 3 and ν3 = 22). This example is intended to
illustrate that there are other possible techniques in particular
cases, and because this parameter c will be used in a further
improvement of the method.

From the polynomial expression of R previously given,
the computation of ∇R is immediate and can be done
96



Rubino
Table 1: Some Values of the Unreliabil-
ity for the Symmetric Case in Which
for All Edge e We Have re = 1 − ε.
Third Column Gives an Approximation
of 1 − R Using the Concept of Min-
cut. The Graph Has 22 Mincuts with
3 Edges Each, and Any Other Mincut
Has at Least 4 Edges.

ε 1 − R 22 ε3

10−2 0.21846 10−4 0.22 10−4

10−3 0.21985 10−7 0.22 10−7

10−4 0.21998 10−10 0.22 10−10

Table 2: Exact Numerical Values of the Sensitiv-
ities (Multiplied by 106), When for All Edge e

We Have re = 0.99. Observe the Strong Impact
of the Topology on the Sensitivities, in Spite of
the Fact that Lines are Identical. The Reliability
of the System is R = 0.99997815.

e σe e σe e σe

1 401.460 2 210.516 3 210.516
4 7.83316 5 7.83316 6 21.0516
7 210.516 8 7.83316 9 7.83316

10 17.5902 11 876.285 12 581.249
13 583.064 14 583.064 15 876.285
16 581.249 17 581.249 18 583.064

formally. In Tables 2 and 3 we list the exact values of the
sensitivities in two cases. In Table 2, re = 0.99 for all
edge e. We see the huge differences that can appear on the
sensitivities. For instance, σ11 is over 100 times bigger than
σ3. In spite of the fact that the lines are identical (same
reliabilities), the topology induces large differences on the
importance of each line in the network.

In Table 3 we started from the same graph as in Table 2
and we changed the reliabilities of the two most critical
components in that system, lines 11 and 15, from 0.99 to
0.90. In the results, we now see the significant changes that
this modification of the elementary reliabilities induces in
the relative importance of the lines.

Now, if we run the algorithms derived from both sub-
sections in Section 3 on the graph associated with Table 3,
the gain of the second method is slightly larger than the fac-
tor given in the complexity analysis. When the reliabilities
verify re = 1− ε for all edge e, the gain is a little bit larger
than (18ε)−1. For instance, we got speedups higher than
600 for ε = 0.0001. One of the explanations of this is that
the implemented algorithm corresponding to the description
given in Subsection 3.2 has a supplementary improvement.
Before calling the DFS, the program checks if the number
of down lines is less than c, the breadth of the graph. In that
case, there is no need to run a DFS since, by definition of
497
Table 3: Exact Numerical Values of the Sensitiv-
ities (Multiplied by 106), When re = 0.99 for
All Edge e Except for Lines 11 and 15, Where
r11 = r15 = 0.9. Observe the Strong Changes
in the Sensitivities with Respect to the Values
Shown in Table 2. The Reliability of the System
is R = 0.99982759.

e σe e σe e σe

1 450.382 2 210.446 3 210.446
4 8.78773 5 8.78773 6 210.446
7 210.446 8 8.78773 9 8.78773

10 68.4540 11 796.622 12 5549.62
13 5534.11 14 5534.11 15 796.622
16 5549.62 17 5549.62 18 5534.11

mincut, the system is necessarily up. Recall that computing
the breadth is polynomial in the size of the graph.

As a last illustrative element, consider the model eval-
uated in Table 3. The elementary reliabilities are not very
close to 1 (0.99 or 0.90), leading to a value of R allowing
the reader to easily run the algorithm in Subsection 3.1,
and even the brute force approaches given at the beginning
of Section 3. The gain of the last specific algorithm over
the one in Subsection 3.1 is about 6 for N = 107 samples
and about 7 for N = 108. The respective execution times
of the former technique, using a Pentium 4 PC, are of 17s
if N = 107 and 2m30s for N = 108.

5 CONCLUSIONS

In this paper, we pointed out the practical importance of
sensitivity analysis in network reliability computations and
we analyzed their estimations following a Monte Carlo
approach. More specifically, we provided a new estimator
allowing obtaining the sensitivities as a byproduct of the
estimation of the system reliability, and a second result
showing that in the rare event case, we can still use the
standard estimator with a smarter implementation, which
allows to obtain the same accuracy but much more efficiently.

The exploration of other reliability metrics is ob-
viously an immediate possible direction for further re-
search. The basic result presented in Subsection 3.1
can also be extended to other algorithms such as the
one proposed in (Khadiri and Rubino 1996) and used
in (Cancela, Rubino, and Tuffin 2005) for illustrating new
propositions in the analysis of the properties of rare events
estimators, so that a detailed analysis of those extensions
is the object of current efforts.

REFERENCES

Ahmad, S. 1982, Apr.. A simple technique for computing
network reliability. IEEE Trans. Reliab. R-31 (1).



Rubino
Ball, M., C. Colbourn, and S. Provan. 1995. Chapter 11:
Network reliability. In Handbooks in OR & MS 7, ed.
M. Ball, T. Magnanti, C. Monma, and G. Nemhauser,
673–762. Elsevier Science.

Barlow, B., and F. Proschan. 1975. Statistical theory of
reliability and life testing. New York: Holt, Rinehart
& Winston.

Birnbaum, Z. 1969. On the importance of different com-
ponents in a multicomponent system. In Multivariate
Analysis II, ed. P.R.Krishnaiah, 581–592. New York:
Academic Press.

Bobbio, A., and A. Premoli. 1982. Fast algorithm for un-
availability and sensitivity analysis of series-parallel
systems. IEEE Trans. Reliab. R-31 (4).

Cancela, H., G. Rubino, and B. Tuffin. 2005. New measures
of robustness in rare event simulation. In Proceedings
of the 2005 Winter Simulation Conference.

Cancela, H., G. Rubino, and M. Urquhart. 2001. An algo-
rithm to compute the all-terminal reliability measure.
OpSearch 38 (6): 567–579.

Fussell, J. 1975. How to hand-calculate system reliability
characteristics. IEEE Trans. Reliab. R-24 (3).

Hariri, S., and C. Raghavendra. 1987. Syrel: A symbolic
reliability algorithm based on path and cutset methods.
IEEE Trans. on Comput. C-36 (10): 1224–1232.

Khadiri, M. E., and G. Rubino. 1996. An efficient for-
mulation of the standard Monte Carlo simulation of
binary systems reliability. In 2nd International Confer-
ence on Monte Carlo and Quasi-Monte Carlo Methods
in Scientific Computing.

Locks, M., and A. Satyarayana. 1986. Network reliability
– the state of the art. IEEE Trans. Reliab. R-35 (3).

Rubino, G. 1998. Network reliability evaluation. In State-
of-the art in performance modeling and simulation, ed.
K. Bagchi and J. Walrand. Gordon and Breach Books.

Rubino, G. 2005. Sensitivity Analysis in Network Reliability
with Monte Carlo. Technical report, INRIA.

Valiant, L. 1979. The complexity of enumeration and reli-
ability problems. SIAM J. Comput. 8:410–421.

AUTHOR BIOGRAPHY

GERARDO RUBINO is a senior researcher at INRIA (the
French National Institute for Research in Computer Science
and Control) where he is the leader of the ARMOR (Archi-
tectures and Models of Networks) team at INRIA Unit of
Rennes. His research interests are in the quantitative analy-
sis of computer and communication systems, mainly using
probabilistic models. He also works on the quantitative eval-
uation of perceptual quality of multimedia communications
over the Internet. He is a member of the IFIP WG 7.3. His e-
mail address is <rubino@irisa.fr>, and his Web page
is <www.irisa.fr/armor/lesmembres/Rubino/
Rubino_en.htm>.
498

mailto:rubino@irisa.fr
http://www.irisa.fr/armor/lesmembres/Rubino/Rubino_en.htm
http://www.irisa.fr/armor/lesmembres/Rubino/Rubino_en.htm

	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



