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ABSTRACT

Screening experiments are performed to eliminate unim-
portant factors so that the remaining important factors can
be more thoroughly studied in later experiments. Sequen-
tial screening methods are specifically fit for simulation
experiments. They are usually more efficient than one-step
procedures. The challenge is to prove the “correctness” of
the result.

This paper proposes Controlled Sequential Factorial
Design (CSFD) for discrete-event simulations. It combines
sequential hypothesis-testing procedures with the traditional
factorial design to control the Type I Error and power
for each factor under heterogeneous variances conditions.
CSFD requires minimum assumptions and demonstrates
robust performance with different system conditions.

1 INTRODUCTION

Many screening strategies have been proposed for screening
purpose (Trocine and Malone 2000, 2001 and Campolongo,
et al. 2000). However, most research has concentrated on
designs for physical experiments. Because of the high cost
of conducting physical experiments, the traditional screen-
ing methods usually emphasize using the fewest number of
runs to estimate as many effects as possible, the correctness
of the results is considered secondary. In addition, simula-
tion experiments have many unique properties that are not
stressed in traditional screening design. One of the most
important ones is that sequential methods are favored in sim-
ulation due to the comparative ease of switching between
factor settings.

Controlled Sequential Bifurcation (CSB) (Wan, Anken-
man, and Nelson, 2003, 2005a) is a new factor-screening
method specifically designed for simulation experiments.
CSB incorporates a statistical hypothesis testing procedure
into sequential bifurcation and controls the probability of
Type I error for each factor and power at each bifurca-
tion step. Wan, et al. (2005b) later proposed an improved
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version of CSB, called CSB-X, using a fold-over design.
CSB-X has the same error control as CSB for main effects
even in the presence of even-order interaction effects. Both
methods allow heterogeneous variances but require all main
effects are positive (or negative) to avoid effect cancellation.

Although these CSB methods are attractive for many
simulation applications, there are also some limitations on
them. First, both CSB and CSB-X have restriction on
their response models, (CSB is based on a main-effect-
only regression model and CSB-X allows main effects and
even-order interaction effects), and are designed to classify
only main effects. When higher-order interactions exist,
the results of the classification can be misleading. Second,
in CSB methods the signs of the main effects have to
be known beforehand to avoid effect cancellation within
groups. Moreover, CSB methods prefer important effects
being clustered and sorted to obtain higher efficiency. But
neither of these is applicable in some cases. Third, CSB
methods do not fully utilize the information available before
and during the experiment. Most simulation replications
generated in previous design points will not be useful in the
later screening procedure and new simulation replications
are usually needed after each bifurcation step.

The limitations of CSB inspire us to propose a new
approach which can overcome these limitations while still
keeping the error rate control. It is well known that facto-
rial experiment design can estimate all main and interaction
effects and needs no prior information of the effects. How-
ever, factorial design has typically been used in physical
experiments and the major concern is the limitation on the
number of runs available. So in most cases, factorial design
is a one-stage procedure and assumes equal variance for
different factor settings. Our purpose here is to propose a
sequential factorial design which can take full advantage of
previously generated information and provide desired error
control for simulation experiments.

Sequential factorial design was first mentioned by
Davies and Hay (1950) in their guideline for the use of
factorial designs in industrial research. They briefly dis-
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cussed how the features of industrial experiments make it
necessary to have sequential factorial designs and the pos-
sible benefits of using it. Hunter (1964) used a sequential
factorial approach to estimate the coefficients of a linear re-
gression model. With an initial set of orthogonal estimates,
least square estimates of all the coefficients are updated by
a “predictor-corrector” equation at the conclusion of each
run. This method has the flexibility to stop the experiment
early and to increase the model and block size when further
investigation is necessary. However, no discussion of the
stopping rules of the sequential procedure was provided.
Zacks (1968) tried to obtain the optimal sequential designs
of fractional factorial experiments using Bayesian analysis.
Assuming that the prior distribution of the parameters is
normal and the loss function is quadratic, the Bayesian
analysis concludes that the best sequential procedure is a
fixed sample procedure. Gilmour and Mead (1995) pre-
sented Bayesian-approached stopping rules for sequential
fractional factorial designs in which the purpose is to find
the optimal combination of factor levels. By computing
the Bayesian estimation of the regression coefficients, the
method obtains the posterior distribution of the difference
between the optimal response and the response from the
predicted optimum. The sequential procedure stops when
some given criterion is satisfied by the posterior distribution.
Sensitivity analysis showed that the procedure performance
depends on the variance information of the prior distribution.

In this paper, we propose a controlled sequential facto-
rial design (CSFD) for stochastic simulations. In addition
to the simultaneous Type I error and power control, CSFD
has the flexibility to classify any desired main effect or
interaction effect. The resolution (which effects can be in-
dependently screened) only depends on the factorial design
initially selected. No prior information of the effects is
required. Unlike CSB which usually needs to generate new
replications at each bifurcation, CSFD uses all previously
generated replications in the later classification. In most
cases, after first several effects are classified, there is enough
data to classify all the other effects. Moreover, with the
option of a fractional factorial design, CSFD can be more
efficient than CSB in many cases.

The paper is organized as follows: The underlying
response model and the objective of screening are discussed
in Section 2. Section 3 describes CSFD methods and two
hypothesis testing procedures. Section 4 presents empirical
evaluations of CSFD comparing to CSB (and CSB-X). Future
research is discussed in Section 5.
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2 MODEL DESCRIPTION

Suppose there are in total of L factors, a general metamodel
includes all main effects and interactions is given as follows:

Y = β0 + β1z1 + β2z2 + · · · + βLzL

+β12z1z2 + · · · + βL−1,LzL−1zL (1)

+ · · · + β12...Lz1z2 . . . zL + ε

Here β = {β1, β2, . . . , β12...L} are the effect coeffi-
cients of corresponding effects. The level settings, z =
(z1, z2, . . . , zL), are assumed to be deterministic. The er-
ror term, ε, on the other hand, is a random variable; in
this paper we assume it is a Nor(0, σ 2(z)) random variable
where σ 2(z) is unknown and may depend on z. In practice,
the model may include any subset of the effects. Usu-
ally if an interaction exists, the main effects and low-order
interactions of all factors involved should also be included.

The objective of our screening procedure is to classify
desired effects into two groups: important ones and unim-
portant ones. For those effects with effect coefficients ≤ �0,
CSFD should control the Type I Error of declaring them
important to be ≤ α; and for those effects with effect coef-
ficients ≥ �1, the power of identifying them as important
should be ≥ γ . Those factors whose effect coefficients fall
between �0 and �1 are considered important and we want
CSFD to have reasonable, though not guaranteed, power to
identify them. �0 and �1 are the thresholds of importance
and critical respectively; α and γ are user-specified con-
fidence parameters. In practice, the determination of both
thresholds and the factor settings are usually associated with
the cost to achieve the system changes. Wan, et al. (2005a)
proposed a cost model using the cost of changing factor
to determine the thresholds and factor levels. The model
guarantees that the comparison of effects are based on the
same cost. For more details, the readers is referred that
paper. The selections of levels and thresholds, on the other
hand, will not influence the performance of CSFD. After
determining the levels of factors, CSFD will then code them
from -1 to +1 (Montgomery 2001).

3 CONTROLLED SEQUENTIAL FACTORIAL
DESIGN (CSFD)

The first step of CSFD is to select a factorial design which will
be sequentially implemented. The design will determines
which effects can be screened and which cannot. Factorial
design is the most widely used experiment design in practice.
We will only give a short introduction here for 2-level
factorial design, which is the most common one. For
detailed description of factorial design and analysis, please
refer to Montgomery (2001).
8
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For L factors with two levels (low and high) each,
there are in total 2L possible treatment combinations. If a
design includes all 2L treatment combinations, it is a full
factorial design; if only a fraction of those are included, it
is a fractional factorial design. The key to factorial design
is the design matrix X. For the 3-factor full factorial design
given in Table 1, the design matrix is as below.

Table 1: 3-Factor Full Factorial Design
Run Factorial Effect Response

A B C AB AC BC ABC
1 - - - + + + - Y1
2 + - - - - + + Y2
3 - + - - + - + Y3
4 + + - + - - - Y4
5 - - + + - - + Y5
6 + - + - + - - Y6
7 - + + - - + - Y7
8 + + + + + + + Y8

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+1 −1 −1 −1 +1 +1 +1 −1
+1 +1 −1 −1 −1 −1 +1 +1
+1 −1 +1 −1 −1 +1 −1 +1
+1 +1 +1 −1 +1 −1 −1 −1
+1 −1 −1 +1 +1 −1 −1 +1
+1 +1 −1 +1 −1 +1 −1 −1
+1 −1 +1 +1 −1 −1 +1 −1
+1 +1 +1 +1 +1 +1 +1 +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In general, the design matrix has the form of X =
(X′

R1
, X′

R2
, . . . , X′

RI
)′ = (XC1 , XC2 , . . . , XCJ

), where XRi

and XCj
stand for the ith row and the j th column of the

design matrix respectively. Each row of the design matrix
represents a treatment combination, i.e, a design point. Low
level are coded as -1s and high levels are coded as +1s. For
example, the first row represents a run with all three factors
at low level. It is easy to conclude that E[Yi] = XRi

β ′.
Each column is associated with the level settings of a spe-
cific effect (main or interaction) at all combinations. For
example, the fourth column of the design matrix is asso-
ciated with the interaction effect AB. The first column is
associated with β0 and are always all +1s. Notice that the
columns associated with main effects, in our case the second
to the fourth column, determine the experiments. The other
columns are simply the multiplication of the columns of
the involved factors. For example, the AB column is the
product of columns A and B. In the first combination, the
AB effect is at high level, and in the second combination,
the AB effect is at low level.

For a linear regression model Y = X′β, where
Y = {Y1, Y2, . . . , YI }′, the estimated effect coefficient
β̂j = 1

2L X′
CjY . In other words, the estimated coefficient

of j th effect is the half of the effect value, which is the
average of all response in which the effect is at high level
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minus the average of all responses in which the effect is
at low level. Notice that the estimation uses observations
from all design points. The matrix expression of the es-
timation is β̂ = (X′X)−1X′Y . For a full factorial design,
all main and interaction effects can be estimated indepen-
dently; for a fractional factorial design, some of the effects
are confounded with others. The resolution of a fractional
factorial design characterizes the degree of confounding.
For example, a resolution III design can independently esti-
mate all main effects, but some main effects are confounded
with two-factor or higher-order interactions. A resolution
V design has all main effects and two-factor interaction es-
timators independent to each others. On the other hand, the
higher the resolution, the more design points are required.
For more details of effect estimation in fractional factorial
design, please also refer to Montgomery (2001).

Many books (e.g. Wu and Hamada, 2000) and soft-
ware packages provide recommended designs for various
resolutions and various values of L, the number of factors
to be screened. If no recommended fractional factorial de-
sign is easily found for a particular value of L, there are
many ways to construct it. Below we will explain how
resolution III fractional factorial designs can be constructed
for a large number factor screening experiments where only
main effects exist. (This design will be used in the empir-
ical evaluation.) For more details of methods to construct
fractional factorial designs, please refer to Wu and Hamada
(2000).

For a L-factor main-effects-only model, a resolution
III fractional factorial design only needs 2m design points,
where m is an integer satisfying 2m−1 ≤ L < 2m, to provide
an estimate of each of the L main effect coefficients. We
will use a 6-factor example given in Table 2 to explain the
idea of constructing this design.

Table 2: Construction of Resolution III Fractional
Factorial Design

Run A B C D = AB E = AC F = BC
1 - - - + + +
2 + - - - - +
3 - + - - + -
4 + + - + - -
5 - - + + - -
6 + - + - + -
7 - + + - - +
8 + + + + + +

For L = 6, m = 3. As shown in Table 2, The full
23 factorial design is first based on the first 3 factors, A,
B and C. The rest of the main effects (D, E and F )
are assigned to the last three columns of AB, AC and
BC respectively so their main effects are confounded with
corresponding interaction effects. The level settings of main
effects confounded with interaction effects at each design
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point are set to be the same as the level settings of the
corresponding interaction effects. Thus, we have a design
matrix and all main effects can be estimated.

3.1 CSFD Procedure

A generic structure of CSFD methods is given in Figure 1.
Like other sequential factorial designs, CSFD first generates
a small number of random samples at the beginning of the
screening. Hypothesis testings are then performed sequen-
tially to classify desired effects. Each hypothesis testing is
based on all then available samples and new observations
will be generated whenever larger sample size is needed to
guarantee the specified Type I error and power control.

Initialization

(1) Form a queue of all desired effects.

(2) Generate n0 replications.

While queue is not empty, do

(1) Remove an effect from the queue.

(2) Use factorial design to obtain the sample
estimates and sample variance of the effect
coefficient.

(3) Classify the effect using a testing pro-
cedure with error control. Generate new
replications if necessary.

End While
Figure 1: Structure of CSFD

In CSFD, the observations are generated in batches
with one observation from each design point. Each batch
is called one replication and each replication can provide
one estimate for every desired effects. For example, for
a full factorial experiment with L factors, one replication
consists of 2L observations, one at each of the 2L design
points. Since CSFD classifies the desired effects one at a
time, no assumption of the signs of the effects is required.
For each effect, CSFD first computes an estimate of the
effect coefficient from each available replication. An overall
estimate of the effect coefficient and its sample variance
are then computed based on these estimates. Finally, a
hypothesis testing procedure will be used to classify this
effect and determine if more replications are necessary. The
notation used to define CSFD are given below.

• There are in total L indexed factors and there are
K effects of interest, 1 ≤ K < 2L.

• βk: kth effect coefficient, k = 1, . . . , K

• n0: Number of initial replications generated at the
beginning of the screening procedure

• nk: Number of available replications at the begin-
ning of the classification of kth effect. n1 = n0.
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• j : Index of available replications, j = 1, . . . , nk

• Bj (k) : The j th estimate of kth effect coefficient
• B̄k = ∑nk

j=1 Bj (k)/nk

• S2(k) = ∑nk

j=1

(
Bj (k) − B̄k

)2
/(nk − 1): Sample

variance S2(k) is computed based on the first nk

replications. S2(k) will not be updated when more
replications are generated.

3.2 Performance of CSFD

The process to classify an effect is actually to sequentially
test the following hypotheses to determine if each effect is
important.

H0 : βk ≤ �0 vs. H1 : βk > �0.

We say a testing procedure is qualified if it guarantees that
for any k = 1, . . . , K ,

• Pr{Declare kth effect important | βk ≤ �0} ≤ α,
and

• Pr{Declare kth effect important | βk ≥ �1} ≥ γ .

Then it is easy to prove the following result.
Theorem 1 Given a qualified testing procedure,

CSFD guarantees that

Pr{Declare effect k important | βk ≤ �0} ≤ α

and

Pr{Declare effect k important | βk ≥ �1} ≥ γ

for any k = 1, . . . , K .
The selection of the testing procedure determined the

efficiency of CSFD. Two qualified tests, 2-stage test and
fully sequential (FSQ) test, have been proposed before and
are introduced below. These testing procedures are given
in Figures 2 and 3 respectively. For more details of 2-stage
test, please refer to Wan, et al. (2005a); for FSQ test, please
see Wan, et al. (2005b) and Kim and Nelson (2001).

(1) If B̄I (k) ≤ UI (k) and nk ≥ N(k), then classify
the kth effect as unimportant,

(2) else if B̄I (k) ≤ L(k), then classify the effect as
unimportant,

(3) else if B̄I (k) > UI (k), then classify the effect as
important,

(4) else generate (N(k) − nk)
+ replications,

(a) If B̄II (k) < UII (k), then classify the
effect as unimportant,

(b) else classify the effect as important.

Figure 2: 2-stage Testing Procedure
0
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(1) Set r(k) = nk .
(2) If r(k) > M(k),

(a) If B̄(k) < (�1 + �0)/2, then classify
the effect as unimportant,

(b) else classify the effect as important.

(3) If r(k) ≤ M(k),

(a) If r(k)(B̄(k)− (�1 +�0)/2) ≤ λr(k)−
a(k), then classify the effect as unimportant,

(b) else if r(k)(B̄(k) − (�1 + �0)/2) ≥
a(k) − λr(k), then classify the effect as
important,

(c) else generate one more replication; up-
date B̄(k); set r(k) = r(k) + 1; go to Step
(3).

Figure 3: Fully Sequential Testing Procedure

Below notations are used exclusively for CSFD methods
with 2-stage testing procedure.

• h: A constant satisfying Pr(T ≤ t1−√
1−α,nk−1 −

h) = (1−γ )/2, where T is a t-distributed random
variable with nk − 1 degrees of freedom

• N(k) = �h2S2(k)/(�1 − �0)
2�: The minimum

number of replications required to achieve the spec-
ified type I error and power

• B̄I (k) = ∑nk

j=1
Bj (k)

nk
and B̄II (k) = ∑N(k)

j=1
Bj (k)

N(k)
:

The overall estimates of kth effect coefficient in
first and second stages

• UI (k) = �0 + t1−√
1−α,nk−1S(k)/

√
nk and

UII (k) = �0 + t1−√
1−α,nk−1S(k)/

√
N(k)

• L(k) = �0 − t 1−γ
2 , nk−1S(k)/

√
nk

The following notations are used exclusively for CSFD
methods with FSQ testing procedure.

• λ = (�1 − �0)/4
• η = (exp(ϕ) − 1) /2, where ϕ = 2 ln(2α)/(1−nk).
• a(k) = 2η(nk − 1)S2(k)/(�1 − �0)

• M(k) = �a(k)/λ	
• B̄(k) = ∑r(k)

j=1 Bj (k)/r(k), where r(k) is the num-
ber of current available replications

4 EMPIRICAL EVALUATION

In this section, we present some numerical results of ar-
tificial examples to compare CSFD and CSB (CSB-X).
The results demonstrated below are based on fully sequen-
tial tests, which usually requires less simulation observa-
tions than two-stage tests. For comparison of the two tests
see Wan, Ankenman and Nelson (2005b). If two-stage
tests are used, similar conclusion can be made. Normal
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errors are assumed with mean 0 and standard deviation,
σ = m ∗ (1 + size of the group effect). That is, the stan-
dard deviation is proportional to the size of the effect being
screened. Common random numbers were not employed.
For each case considered, both CSFD and CSB procedures
are applied 1000 times and the percentage of times the kth
effect is declared important is recorded; this is an unbiased
estimate of Pr{Declare effect k important}. The number of
runs reported for each method is the multiplication of num-
ber of replications used and number of observations for
each replication, i.e., the number of design points. It is the
total computational effort required for screening.

4.1 CSFD vs. CSB in Presence of Interactions

In this section, we compare the effectiveness and efficiency
of CSFD and CSB (or CSB-X) methods on two sets of factors
(L = 10) with interactions. The simulation parameters are
listed in Table 3. In the implementation of CSB methods,
the number of initial simulation runs at each bifurcation
step is set to be 25, which is the same as in Wan, et al.
(2005a). The numbers of initial simulation replications for
CSFD ranges from 2 to 5. The influence of initial sample
size on the efficiency of the method will be discussed in
Section 4.3.

Table 3: Parameters for Small Scale Cases
Parameter Value

�0 2
�1 4
α 0.05
γ 0.95
σ m∗(1 + size of the group effect)
m 0.1, 1

4.1.1 Second-Order-Interaction Cases

We first apply CSFD, CSB and CSB-X on cases where only
main effects and second-order interaction effects exist. For
those cases, a 210−3

V fractional factorial design is sufficient
for CSFD.
Case 1. Main effects: (β1, β2, . . . , β10) =(2, 2, 2,
2.44, 2.88, 3.32, 3.76, 4.2, 4.64, 5). Interaction effects:
(β12, β46, β58) = (1.75, -2.5, 3.9). All other second or
higher order interactions are zero. For an effective screening
procedure, the probability that β1, . . . , β3 is declared im-
portant should be smaller than α = 0.05, but for β8, . . . , β10
it should be greater than γ = 0.95.

Tables 4 and 5 presents P(DI) (probability of declaring
important) and average number of simulation runs of case
1, small variance and large variance cases respectively. We
can see that in the presence of second-order interaction,
both CSB-X and CSFD give desired screening results, CSB
on the other hand, gives misleading results for some fac-
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Table 4: Screening Results in Case 1 (m = 0.1)
Effect CSB CSB-X CSFD

β1 = 2 0.000 0.000 0.000
β2 = 2 1.000 0.000 0.000
β3 = 2 0.000 0.000 0.000
β4 = 2.44 0.031 0.000 0.000
β5 = 2.88 0.382 0.302 0.073
β6 = 3.22 0.000 0.872 1.000
β7 = 3.76 0.975 0.985 1.000
β8 = 4.2 1.000 1.000 1.000
β9 = 4.64 1.000 1.000 1.000
β10 = 5 1.000 1.000 1.000
β1,2 = 1.75 N/A N/A 0.000
β4,6 = −2.5 N/A N/A 0.000
β5,8 = 3.9 N/A N/A 1.000

# of runs 343 279 256

Table 5: Screening Results in Case 1 (m = 1.0)
Effect CSB CSB-X CSFD

β1 = 2 0.013 0.008 0.000
β2 = 2 0.958 0.009 0.004
β3 = 2 0.007 0.007 0.002
β4 = 2.44 0.098 0.074 0.051
β5 = 2.88 0.373 0.363 0.357
β6 = 3.22 0.000 0.785 0.865
β7 = 3.76 0.973 0.969 0.991
β8 = 4.2 1.000 0.995 0.999
β9 = 4.64 1.000 0.999 1.000
β10 = 5 1.000 0.999 1.000
β1,2 = 1.75 N/A N/A 0.000
β4,6 = −2.5 N/A N/A 0.050
β5,8 = 3.9 N/A N/A 0.992

# of runs 22247 10734 1569

tors. Even unimportant interaction effects may affect the
classification of the main effects in CSB. For example, in
both small variance and large variance cases, the existence
of unimportant interaction β1,2 affects the effectiveness of
CSB in classifying effect β2. The average numbers of
simulation runs show that CSFD is as efficient as CSB in
small variance case and is more efficient than CSB in large
variance case.

4.1.2 3rd-and-Higher-Order-Interaction Case

We then apply CSFD and CSB-X on a case where third
and higher order interaction effects also exist. A 210 full
factorial design is used in CSFD for the general case.
Case 2. Parameter settings and effect coefficients of case
2 are the same as those of case 1 except for the addition of
two non-zero 3rd-order interaction effects, (β123, β789) =
(1.9, -4.5). All other 3rd-order and higher order interaction
effects are zero.
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Table 6 shows that CSFD is effective in classifying
both main effects and interaction effects, but CSB-X is
not effective when odd-order interaction effects exist. For
example, CSB-X misclassifies β3 and β9 in all 1000 trials.

Table 6: Screening Results in Case 2
m = 0.1 m = 1.0

Effect CSB-X CSFD CSB-X CSFD
β1 = 2 0.000 0.000 0.006 0.000
β2 = 2 0.000 0.000 0.009 0.000
β3 = 2 1.000 0.000 0.987 0.000
β4 = 2.44 0.004 0.000 0.083 0.008
β5 = 2.88 0.324 0.000 0.373 0.273
β6 = 3.22 0.855 1.000 0.789 0.918
β7 = 3.76 0.985 1.000 0.971 1.000
β8 = 4.2 0.998 1.000 0.993 1.000
β9 = 4.64 0.000 1.000 0.000 1.000
β10 = 5 1.000 1.000 1.000 1.000
β1,2 = 1.75 N/A 0.000 N/A 0.000
β4,6 = −2.5 N/A 0.000 N/A 0.005
β5,8 = 3.9 N/A 1.000 N/A 1.000
β1,2,3 = 1.9 N/A 0.000 N/A 0.000
β7,8.9 = −4.5 N/A 1.000 N/A 1.000

# of runs 279 2048 11632 3515

4.2 CSFD vs. CSB on Large-Scale Cases

In this section we compare the efficiency of CSFD and CSB
methods on screening problems with large scale number of
factors. We will consider two cases with 200 factors and
500 factors respectively and in all cases main-effects-only
model is assumed.

The simulation parameters are same as those of previous
cases given in Table 3 except that the variance factor m

takes values of 0.01, 0.1 and 0.3. For both 200 factors and
500 factors cases, the initial number of simulation runs at
each bifurcation step of CSB is 25 and the initial number
of replications of CSFD is 2. In both cases, there are 4% of
the factors which are important. The important factors have
effect coefficient equal to 5 and the unimportant factors
have effect coefficient equal to 0.

For each case, there are three scenarios. The first
scenario has all important factors clustered together with
the smallest indices so that the number of important groups
is as small as possible at each step of CSB. The second
scenario has the important factors evenly spread so there
are the maximum number of important groups remaining
at each step. The third scenario has the important factors
randomly spread.

Because there is no interaction exists, CSFD can use
resolution III fractional factorial designs discussed in Section
3. For these 200 factors and 500 factors cases, CSFD needs
256 and 512 simulation runs in each replication respectively.
Both methods provide the desired error control for main
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effects. The average numbers of total simulation runs of
CSB and CSFD methods on large scale cases are listed in
Table 7. We can see that the efficiency of CSFD is more
robust to different system configurations. When variance is
relatively large, CSFD is more efficient than CSB.

Table 7: Number of runs in Large Scale Cases
m = 0.01 m = 0.1 m = 0.3

Scenarios CSB CSFD CSB CSFD CSB CSFD
200, 1st 80 512 811 512 6440 515
200, 2nd 245 512 1828 512 12550 512
200, 3rd 220 512 1633 512 10652 512
500, 1st 145 1024 5676 1024 51903 1070
500, 2nd 598 1024 19036 1024 160916 1060
500, 3rd 521 1024 15183 1024 133799 1060

4.3 Further Discussions

1. The relationship of the number of total simulation
runs with the initial replication number n0, obtained
by applying CSFD with full factorial design and
FSQ testing procedure on case 2 when m = 1, is
demonstrated in Figure 4. This graph is consistent
with Figure 18.1 in Kim and Nelson (2006), which
presents the typical form of expected total simula-
tion runs as a function of n0. These figures show
that for each case there exists an “optimal” initial
replication number; a too small n0 usually leads to
huge penalty and a too large n0 is usually unnec-
essary. However this optimal number is usually
unknown because of the unknown variance.

2 3 4 5 6 7 8 9
3000

4000

5000

6000

7000

8000

9000

10000

Number of Initial Replication

To
ta

l N
um

be
r o

f R
un

s

Figure 4: Total Simulation Runs vs. n0

The reason of this “convexity” is that when n0 is too
small, it produces large S2(k) and N(k) which then
leads to a large total replication number. Also notice
that the right side of the curve is actually a straight
line. This implies that when n0 is too large, all of
the sequential testing procedures reach conclusion
in the first stage. This “convexity” property is also
true for the CSB methods.
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2. With other system parameters fixed, the larger the
variance, usually the larger the “optimal” number
of initial replications and the larger the total number
of simulation runs.

3. We observed that the number of total runs some-
times decreases as the number of factors increases.
This is because when the number of factors in-
creases, the number of simulation runs needed to
form one replication in factorial design increases
exponentially. The significantly larger number of
simulation runs in one replication produces more
accurate estimates of the effect coefficients and
smaller sample variance S2(k), which then leads
to smaller minimum required replication number
N(k). This property depends on the variance struc-
ture of different levels and will be explored further
in future.

5 CONCLUSION

CSFD offers a factor-screening approach which not only
provides simultaneous error and power control but also has
the flexibility to be applied to different situations. When
interaction effects exist, CSFD requires no prior effect infor-
mation and is able to classify any desired effect; when there
is no interaction or no high-order interaction, CSFD with
fractional design can perform the classification with high
efficiency. CSFD has also shown robust performance for
system with unknown variance. Future research will concen-
trate on developing hybrid methods of grouping screening
and factorial design for better performance.
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