
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

BUILDING MODELING TOOLS THAT SUPPORT
VERIFICATION, VALIDATION, AND TESTING FOR THE DOMAIN EXPERT

Nicholas A. Allen
Clifford A. Shaffer
Layne T. Watson

Department of Computer Science
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061-0106, U.S.A.
ABSTRACT

Successfully building a model requires a combination of
expertise in the problem domain and in the practice of
modeling and simulation (M&S). Model verification, vali-
dation, and testing (VV&T) are essential to the consistent
production of models that are useful and correct. There
are significant communities of domain experts that build
and use models without employing dedicated modeling spe-
cialists. Current modeling tools relatively underserve these
communities, particularly in the area of model testing and
evaluation. This paper describes several techniques that
modeling tools can use to support the domain expert in
performing VV&T, and discusses the advantages and dis-
advantages of this approach to modeling.

1 INTRODUCTION

The successful construction of a model requires combining
expertise in the domain being modeled with expertise in
the practice of building models. Many domain experts that
practice modeling have at least some background knowl-
edge in the area of modeling and simulation (M&S). This
knowledge is gained somewhat through formal learning,
but mostly from the experience of building models in the
problem domain.

Although domain experts are often not modeling spe-
cialists, they can successfully complete modeling projects
by using the right tools. Modeling tools are software pro-
grams built from the knowledge and experiences of modeling
specialists that assist with M&S tasks. The domain expert
draws upon these resources by using modeling tools to solve
a problem in their domain. Unfortunately, current modeling
tools relatively underserve these communities, particularly
in the area of model testing and evaluation.

Model verification, validation, and testing activities are
often referred to jointly as model VV&T. These activities
419
assess the accuracy of a model. The practice of VV&T
is essential to the consistent production of models that are
useful and correct. Balci (1998) and Sargent (2004) provide
a comprehensive overview of model VV&T.

Verification is the process of certifying that the fidelity
of a model is maintained when the model is transformed
from one form to another. This ensures that the model is
transformed as intended, and that the model’s accuracy is
preserved over time. Model verification checks the process
of building the model.

Validation is the process of determining whether a model
sufficiently approximates the real system. The definition
of “sufficiently” depends upon the purpose of the model.
Increasing the validity of a model has cost, so it is most
efficient to evaluate the model with respect to its intended
application (Balci and Sargent 1981). Therefore, the purpose
of the model dictates which aspects are important to validate,
and what standards to apply.

Testing is the process of checking for errors in the
model. Model testing determines if the model is functioning
properly by subjecting the model to controlled inputs. A
model test is designed to perform verification, validation,
or both activities.

Domain experts often do not perform sufficient model
VV&T due to a lack of accessible support for these activities
in modeling tools. An increase in model VV&T would
improve the likelihood of success for modeling efforts.
This paper describes several techniques by which modeling
tools can be adapted to better support the domain expert.
Section 2 presents several usage scenarios in which domain
experts find themselves needing to perform model VV&T.
Section 3 describes techniques that modeling tools can use
to support the domain expert. Section 4 gives potential
consequences of having a domain expert perform VV&T.
Concluding remarks are given in Section 5.



Allen, Shaffer, and Watson
2 USAGE SCENARIOS

The target audience for general purpose modeling tools is
often the modeling specialist. These tools can be inadequate
for the domain expert because of assumptions made for the
target community. Assumptions include the languages used
for expressing models and modeling concepts, support for
features not relevant to the expert’s problem domain, and
lack of modeling guidance for the tool user.

A software modeling tool is unlikely to accommodate
domain expert users unless the software designer includes
domain experts as a user class. If actual user representatives
are not available, it is helpful to construct personas that typify
how a user class might use a software product (Kujala and
Kauppinen 2004). Software builders can employ these
personas when considering how development decisions will
impact users of the modeling tool. We include here a
small sample of scenarios that demonstrate domain experts
performing VV&T.

Scenario 1: The domain expert wants to use a model
created by someone else, and needs to check that the model
is suitable.

Abel is a biochemist trying to understand signaling
in a tissue culture. He has researched the literature for
suitable models, and has obtained electronic versions of
several models that appear interesting. The documentation
does not include enough details about how the models were
validated and tested, so Abel wants to make sure that their
performance is acceptable for his application. Also, Abel
knows that integrating the published models together is
likely to be an error-prone process, so he will need to verify
that the integration is performed correctly.

Scenario 2: The domain expert is acting as an indepen-
dent agent to perform verification and validation activities
on a model under development.

Joan is a process engineer with experience in semicon-
ductor fabrication. A manufacturer is using a simulation
study to reduce the cycle time of one of their products, and
has hired Joan to help validate the models that they are
creating. Joan will perform face validation (review of sim-
ulation output for reasonableness), and participate in model
reviews and walkthroughs. She will need to understand how
the models work, and test them by performing experiments.

Scenario 3: The domain expert has decided to develop
a model without the assistance of a modeling specialist.

Steven is a physicist working on a new theory of particle
interaction. It is difficult to predict some of the consequences
of his theory, so Steven has decided to use a discrete event
model to test his intuition. This is a side project for Steven
with little budget so he decides to build the model himself
rather than hiring a modeling specialist. Table 1 gives a
variety of other reasons that Steven may have for building
the model himself. The outcome of the simulation is a little
420
different than Steven had expected, but now he is unsure if
the error is in his model or his intuition.

Table 1: Why Steven Didn’t Employ a Modeling Specialist

• Cost of employing specialist
• Difficulty of finding specialist
• Value of employing specialist not understood
• Model turnaround time
• Confidentiality or secrecy of information
• Unable to transfer domain knowledge or requirements
• Modeling objectives in flux
• Prototype or experimental product
• Limited scale or scope of modeling project
• Expert learning from model behavior or construction

process

Each scenario describes a domain expert performing
VV&T. However, the users all have different M&S goals.
Abel is attempting to reuse an existing model. Joan is part of
a larger simulation study with a particular business objective.
Steven is constructing a new model. The scenarios for using a
modeling tool determine which techniques will help support
the domain expert. Therefore, it is important to consider
how the modeling tool will be used when deciding whether
to incorporate a particular technique.

3 SUPPORTING THE DOMAIN EXPERT

Many techniques exist for better adapting modeling tools to
a domain expert’s needs. The focus here is on techniques
that aid the performance of VV&T. Table 2 summarizes the
techniques included in this paper. This list is not intended to
be comprehensive. The authors have experimented with each
of these techniques as part of the simulation study described
by Allen et al. (2003A) and Allen et al. (2003B). Many
other modeling tools have also employed these techniques,
with a positive effect towards supporting the domain expert.

We estimate the impact, applicability, and difficulty of
using a technique based on our past experiences. There
are problem domains for which these estimates will be less
accurate. For example, the use of domain terms and concepts
for models has a difficulty rating of ‘high’ because we have
observed many problem domains that have rich vocabularies
for describing models with variation among domain experts.
Modeling tools aimed at a narrowly defined problem domain
with a controlled vocabulary for describing models would
find implementing this technique less difficult.

3.1 Using Domain Terms and Concepts For Models

The need for custom languages for M&S has been rec-
ognized for decades (Dahl and Nygaard 1966). Using a
language designed for M&S reduces the amount of infor-
mation that needs to be entered as compared to a general
purpose programming language. Moreover, raising the level



Allen, Shaffer, and Watson
Table 2: Summary of Impact, Applicability, and Difficulty of Implementing Techniques that Support a
Domain Expert in Verification, Validation, and Testing Activities (L = Low, M = Medium, H = High)
Technique Impact Applicability Difficulty
Using domain terms and concepts for models H H H
Using domain terms and concepts for modeling H M H
Structuring data and validating data entry H M M
Integrating modeling tools into an environment M M H
Maintaining a model test plan H H M
Actively monitoring model quality M L M
Diagnosing model errors with a knowledge base M L H
Keeping historical records of model development and testing M H L
Presenting multiple visualizations of models and model outputs M M M
of abstraction of a language removes some of the error-
prone and resource-intensive mappings that a user needs to
translate their ideas into the language. Many modeling lan-
guages are for general purpose modeling, or are specialized
according to a particular technique, such as discrete event
simulation (Wonnacott and Bruce 1996).

Introducing domain concepts into a modeling language
to produce a domain-specific modeling language (DSL) is
a powerful technique for making models accessible to the
domain expert. A DSL allows domain experts to better
understand, modify, develop, and test programs written in
the language (van Deursen, Klint, and Visser 2000). Testing
and debugging a model requires an in-depth understanding
of how the model is constructed and behaves. Using a DSL
makes the structure and function of a model more readily
apparent.

CellML (Cuellar et al. 2003) and Systems Biology
Markup Language (SBML) (Hucka et al. 2003) are DSLs
for biophysical models. Both languages are structured,
textual languages that support the description of models
using domain concepts, such as molecular counts, chemical
reactions, and cellular compartments. Previously, models
intended for simulation were primarily developed in com-
puter code, and then converted to text, figures, and equations
for publication. This conversion frequently introduces errors
that impede the replication of results and further develop-
ment of a published model (Lloyd, Halstead, and Nielsen
2004). Domain experts benefit from the use of a DSL by
having access to the original model description in a more
readily apparent form.

Building a DSL requires selecting a problem domain,
gathering knowledge about the domain, and reducing that
knowledge to semantic objects and operations. DSLs can be
textual languages, graphical languages (Balci et al. 1998),
spreadsheet languages, or other forms convenient for the
domain expert. The language is constructed by hand, or by
using meta-modeling tools (Agrawal, Karsai, and Ledeczi
2003).

Selecting a problem domain involves making a tradeoff
between the focus and size of the language. A language
that represents a large domain or scope can only weakly
421
specialize to any particular aspect of the domain. In contrast,
a language that tightly focuses on a small domain may
have a limited number of interested users. Developing a
DSL often requires several iterations between prototyping
a language and having experts in the targeted domain give
feedback about the applicability and ease-of-use of the
language (Kienle 2001).

The development of SBML is a good example of the
tradeoff between focus and size. There is continuous pres-
sure to directly support additional types of models in the
language, such as flux-balance models. However, the com-
mittee responsible for designing SBML must struggle with
the problem of adding this support without placing an un-
due burden on the tool builders using the language. There
is also concern that making the language too broad will
lead to communities using disjoint subsets of the language
with no real communication between them. As SBML be-
comes larger and more complicated, it becomes harder to
understand models written in the language.

3.2 Using Domain Terms and Concepts For Modeling

Along with customizing the modeling language, it is also
desirable to use the language of the domain expert in model-
ing tools. When using a DSL, model editing tools naturally
adopt domain terms as the easiest way to express the model
to the user. The DSL is unlikely to describe the inputs
and actions of model testing tools however. DSLs typically
describe models rather than activities done with a model,
although problem solving environments are specifically in-
tended to do both (Allen et al. 2003A, Watson et al. 2002).
It may be necessary to elicit the preferred terminology from
the domain expert.

The model and modeling tools must be able to accom-
modate the types of experiments that the domain expert
wishes to perform on the model. Valentin and Verbraeck
(2002) present guidelines for creating a DSL that include
consideration of this issue. Using domain terms and con-
cepts in modeling tools aids the domain expert in matching
the functionality of the tool to their needs.



Allen, Shaffer, and Watson
JigCell (Allen et al. 2003B) is a modeling environment
designed for cell cycle modeling and research. Users of early
versions of JigCell found the terminology used for modeling
activities confusing. In particular, JigCell used M&S terms,
such as “experimental model”, that were too similar to terms
used in the domain, causing conflicts. Renaming the terms
displayed in the user interface improved user understanding
of the modeling tools’ capabilities. Additionally, some of
the sequences of steps involved in modeling activities were
restructured to be more analogous to the process that the
domain experts used when evaluating a model by hand.

3.3 Structuring Data and Validating Data Entry

Desk checking, inspections, reviews, and walkthroughs are
verification and validation methods that involve the careful
scrutiny of a model. Syntactic and typographic errors are
a distraction during these model testing activities, and can
potentially hide serious errors. After fixes are applied for
the syntactic and typographic errors, the model must be
retested to make sure that the errors were corrected and
that no new errors were introduced. Prevention or early
detection of these types of errors reduces the testing burden
of the domain expert. Once all of the superficial errors
have been corrected, the domain expert can search for more
fundamental errors in the model.

Two important techniques for preventing the introduc-
tion of syntactic and typographic errors are the use of
validating and structured data editors. Validating editors
check that user input is reasonable before applying it to the
model. Structured editors break the task of entering data
into a predefined collection of attributes, values, and rela-
tions (Frank and Szekely 1998, Hsieh and Shipman 2002).
A structured editor changes the organization of data from
text to a more communicative form. Schank and Hamel
(2004) indicate that this has the additional benefit of making
model modification more accessible to the domain expert.
Since it is difficult to validate input unless the class of valid
inputs is restricted and well-defined, validating editors are
frequently also structured editors.

3.4 Integrating Modeling Tools Into an Environment

Integrated modeling environments supply tools that support
multiple parts of the M&S life cycle. An integrated envi-
ronment also supplies a modeling methodology by selecting
a particular set of tools and controlling how those tools are
used in concert (Balmer and Paul 1990).

Comprehensive environments reduce the need to locate
a modeling tool for a particular activity. Carefully selecting
the available tools in a comprehensive environment also re-
duces the risk of the domain expert using an inappropriate
M&S technique. Errors from using an inappropriate tech-
nique are normally difficult to detect and correct. Cohesive
422
environments have well-tested exchange of model informa-
tion between tools, reducing the loss of fidelity when the
model is transformed.

The integration of tools in a modeling environment is
a continuum from loose to tight coupling. Loosely coupled
environments are easier to make comprehensive. Tightly
coupled environments are easier to make cohesive.

The Simulation Model Development Environment
(SMDE) (Balci and Nance 1992) is an example of an
environment that is loosely coupled and intended to be
comprehensive. SMDE is designed to support the conical
methodology by selecting tools appropriate for each step
of that methodology’s model life cycle. Tools are included
for model generation, translation, verification, analysis, and
management. The environment can be specialized by adding
tools for a particular modeler or domain. As a research en-
vironment, SMDE uses loose coupling to ease the creation
and testing of prototype modeling tools.

Integrating modeling tools is a requirement for inte-
grating the verification and validation functions of those
tools (Caughlin 2000). Having integrated verification and
validation is important because it improves the coverage of
VV&T activities along the model life cycle. As modeling
work moves from tool to tool, the domain expert never loses
the ability to evaluate model quality. Transferring model
testing information between tools also reduces the startup
costs of using the VV&T capabilities of a modeling tool.

3.5 Maintaining a Model Test Plan

The core of a model test plan is a repeatable collection of
scenarios for model testing. A scenario, called a test case,
describes a sequence of actions to perform on the model,
and an expected outcome for each action. Failure to observe
the expected outcome implies that the model contains an
error.

A description of the expected outcome may be com-
plex if the model contains stochastic components. Non-
deterministic models can produce many equally correct
outputs from a single set of inputs. In this case, the obser-
vations of model behavior must be treated as coming from
a sample space and statistically analyzed.

Model credibility is improved by documenting that the
model passes the test plan and justifying why these test
cases demonstrate that the model is suitable for a particular
purpose. By maintaining a model test plan, the next user
of the model benefits from the body of evidence developed
during model accreditation (Conwell, Enright, and Stutzman
2000). Balci et al. (2000) give an organization for a formal
and comprehensive plan of testing and accreditation. This
level of detail is not necessary for all uses of a model,
although it is instructive to review the types of information
that can be collected about model testing.



Allen, Shaffer, and Watson
Maintaining a model test plan also assists the domain ex-
pert in developing a model. During the model development
process, much iteration will be made between refinement
and evaluation of the model. Without a repeatable test plan,
model VV&T is a scatter shot approach that is unlikely to
add significant value. Including support for a test plan in
a modeling tool provides a way to measure progress made
during model development.

3.6 Actively Monitoring Model Quality

VV&T of a model must be performed throughout the model
life cycle. Detecting and fixing errors as early as possible
reduces the total cost of producing a correct model. Errors
left uncorrected can cascade until it is too late to do any-
thing but restart the modeling process. Modeling tools that
continuously and actively search for model errors aid the
domain expert by reducing the need to diagnose and debug
the cause of an error.

Ideally, an error is detected and reported immediately
after it is introduced, allowing the user to fix the error before
it spreads to other parts of the model. Balci (1998) gives
a comprehensive list of model verification and validation
techniques and their applicability to the model life cycle.
Since many of these techniques can only be used during a
specific part of the model life cycle, it is often necessary
to combine several techniques to provide full coverage.

Having a computer-understandable model test plan al-
lows for automation of testing. Automatic test plan eval-
uation encourages the modeler to perform testing more
frequently and can be incorporated into the continuously
run tests for model quality (Allen et al. 2003B). How-
ever, automatic evaluation has cost in terms of the time
required to specify the test plan and the run time required
for execution. Overstreet (2002) notes that these costs can
make automatic evaluation unattractive even when model
correctness is crucial.

3.7 Diagnosing Model Errors With a Knowledge Base

Determining the reason that a model test fails and localizing
the model fault is particularly difficult. Improving the skill
of diagnosing or debugging the source of error in a model is
hard. In general software programming, fault localization is
the most difficult part of debugging and requires extensive
knowledge to perform (Ducasse and Emde 1988). For a
domain expert working on a model, this can result in an
excessive expenditure of time correcting model errors.

The tenet of knowledge bases is that a model built to
solve a particular problem is not constructed from scratch and
then discarded. Instead, modelers can reuse the knowledge
generated by building a model in a domain by treating the
creation of successive models as an ongoing process (Delen,
Benjamin, and Erraguntla 1998). A knowledge base records
423
the experience gained by a domain expert or modeling spe-
cialist when performing model diagnosis. This information
can then be passed on and researched by another domain
expert attempting to build or modify a model.

Birta and Ozmizrak (1996) describe using a knowledge
base to generate new experiments and model tests. This
provides similar support for model diagnosis while reducing
the need for the domain expert to construct a comprehensive
suite of model test cases.

3.8 Keeping Historical Records of Model
Development and Testing

Historical records of model development and testing provide
crucial information about the modeling process. Keeping a
historical record assists with the credibility of a model, and
is useful for planning future modeling tasks. Information is
added to the historical record when the model is transformed,
modified, or tested. The historical record can be used in
support of automated testing, and helps the domain expert
review VV&T methods. Having a historical record makes
the model more accessible to experimentation. A historical
record lists past experiments done with a model, and makes
it easier to undo model changes when an error is detected.

WBCSim (Goel et al. 1999) is a simulation package
for wood-based composite models. The intended users
of WBCSim are manufacturers and wood scientists. Users
construct a wood composite model, perform experiments on
the model, and receive visualizations of the experimental
results. The addition of a historical record to WBCSim
improved usability by allowing searches and comparisons
of past model experiments (Shu et al. 2004). A database
stores the user’s notes, model modifications, simulation
setup, and simulation results.

3.9 Presenting Multiple Visualizations of
Models and Model Outputs

Visualizations are graphical representations of models and
model results. Graphical model representations, such as
block diagrams, are useful for communicating the high-
level relationships in a model (Sargent 1986). Animations
and plots are common examples of visualizations of model
outputs. Graphical representations are often combined with
textual representations; the structure of the model is depicted
by the graphical representation, but the details are filled out
in the textual representation. Sanchez and Langley (2003)
present an example of this hybrid modeling approach.

The use of visualizations improves understandability by
distinctively representing patterns that the modeler considers
important. VV&T is aided when visualizations are used by
making models and model results more understandable,
and by clearly showing the incorrect behavior when the
model is not working correctly (Bishop and Balci 1990).



Allen, Shaffer, and Watson
Visualizations reduce the need for the domain expert to
master the technical and abstruse specification languages
often used for models. However, it is important to remember
that the simplicity of visualization can come from hiding
important model details. A poorly chosen visualization may
give a misleading impression of the model.

One concern about providing multiple visualizations
for a model is the expense of maintaining multiple model
representations. This expense can be avoided by maintain-
ing a single model from which multiple presentations are
generated. Padmanaban, Benjamin, and Mayer (1995) il-
lustrate the use of a knowledge base to store pertinent data
about a model, which is then used to create different model
views. This approach prevents the introduction of incon-
sistencies between model representations. Otherwise, it is
necessary to evaluate whether the improvement to model
understandability is worth the increased cost of develop-
ment and execution. Nance, Overstreet, and Page (1999)
report that the redundancy of multiple model representations
can be automatically eliminated in some cases, significantly
improving the execution time.

4 DISADVANTAGES

Although we strongly believe that keeping domain experts
in mind when building modeling tools is beneficial to the
modeling community, it would be unfair to omit discussion
of some of the costs of including this support. The most
obvious cost of modeling tools that support domain experts
is the cost of designing, building, and maintaining these
tools. Including domain experts as a targeted user class may
require sacrifices in quality, timeliness, efficiency, reliability,
robustness, testability, and usability for other user classes.
These tradeoffs make it important to consider how, and why,
domain experts would want to use a modeling tool.

A domain expert acting alone also incurs cost in the form
of risk of failure of the modeling project. Modeling projects
that fail have opportunity costs in addition to the expense of
the project. Starting the process over again drains resources
from other worthwhile activities and delays the return on
investment of using M&S. Finally, producing an incorrect
model is costly. Detecting model errors through operational
use is difficult and time-consuming. In the meantime, money
and credibility may be spent on the results of a model that
is later found to be invalid.

4.1 Cost Of Not Having Independence in Model Testing

Independent verification and validation (IV&V) is the per-
formance of these activities by someone other than the
model developer. Arthur and Nance (2000) emphatically
conclude that IV&V is an important technique for mitigating
risk in model development. Reducing this risk lowers the
expected cost of model development, use, and maintenance.
424
Additionally, it can be expected that model quality and op-
erational correctness are improved by the incorporation of
independence into the modeling process.

A domain expert that is developing a model might find
that employing outside help for VV&T is cost-effective.
This is particularly true if the model is of “critical” nature,
has a high cost of failure, or has a cost for error detection and
maintenance that exceeds the cost of IV&V. However, the
use of independence does not preclude the need for modeling
tools that support domain experts. The independent agent
may also be a domain expert instead of a modeling specialist.

4.2 Cost Of Selecting Inappropriate
Modeling Techniques

When not employing a modeling specialist, the domain
expert increases the risk of selecting an inappropriate M&S
technique. Although modeling tools provide guidance about
which techniques to employ, it is ultimately the tool user that
must make the decision. Using inappropriate techniques can
introduce model errors that are difficult to detect. Correcting
these errors may require discarding some of the work done
on the model. This is an expense of time and money that
can lead to the failure of the modeling project.

5 CONCLUSIONS

Domain experts have long struggled to make use of model-
ing tools designed for the modeling specialist. In particular,
domain experts lack accessible modeling tools that support
model verification, validation, and testing. This paper de-
scribed several techniques that modeling tools can employ
to aid the domain expert in model testing and evaluation.
The list of techniques is not intended to be comprehensive.
Modeling tool builders should consider the needs of domain
experts and provide additional support whenever possible.
Although building modeling tools that support the domain
expert can be costly, these tools have high utility and are
vital to the successful completion of modeling projects.

ACKNOWLEDGMENTS

The work reported herein was partly sponsored by the
DARPA and AFRL, Air Force Materiel Command, USAF,
under agreement number F30602-01-2-0572, by AFOSR
grant F49620-02-1-0090, and by NSF grants DMI-0422719
and DMI-0355391.

REFERENCES

Agrawal, A., G. Karsai, and A. Ledeczi. 2003. An end-to-
end domain-driven software development framework. In
Companion of the 18th Annual ACM SIGPLAN Confer-



Allen, Shaffer, and Watson
ence on Object Oriented Programming, Systems, Lan-
guages, and Applications, 8–15: ACM Press.

Allen, N. A., L. Calzone, K. C. Chen, A. Ciliberto, N. Ra-
makrishnan, C. A. Shaffer, J. C. Sible, J. J. Tyson, M. T.
Vass, L. T. Watson, and J. W. Zwolak. 2003A. Mod-
eling regulatory networks at Virginia Tech. OMICS: A
Journal of Integrative Biology 7 (3): 285–299.

Allen, N. A., C. A. Shaffer, N. Ramakrishnan, M. T. Vass,
and L. T. Watson. 2003B. Improving the development
process for eukaryotic cell cycle models with a model-
ing support environment. SIMULATION: Transactions
of The Society for Modeling and Simulation Interna-
tional 79 (12): 674–688.

Arthur, J. D., and R. E. Nance. 2000. Verification and
validation without independence: a recipe for failure. In
Proceedings of the 2000 Winter Simulation Conference,
ed. J. A. Joines, R. R. Barton, K. Kang, and P. A.
Fishwick, 859–865: Society for Computer Simulation
International.

Balci, O. 1998. Verification, validation, and accreditation. In
Proceedings of the 1998 Winter Simulation Conference,
ed. D. J. Medeiros, E. F. Watson, J. S. Carson, and
M. S. Manivannan, 41–48: IEEE Computer Society
Press.

Balci, O., and R. E. Nance. 1992. The Simulation Model
Development Environment: an overview. In Proceed-
ings of the 1992 Winter Simulation Conference, ed. J. J.
Swain, D. Goldsman, R. C. Crain, and J. R. Wilson,
726–736: ACM Press.

Balci, O., W. F. Ormsby, J. T. Carr III, and S. D. Saadi. 2000.
Planning for verification, validation, and accreditation
of modeling and simulation applications. In Proceedings
of the 2000 Winter Simulation Conference, ed. J. A.
Joines, R. R. Barton, K. Kang, and P. A. Fishwick, 829–
839: Society for Computer Simulation International.

Balci, O., and R. G. Sargent. 1981. A methodology for cost-
risk analysis in the statistical validation of simulation
models. Communications of the ACM 24 (4): 190–197.

Balci, O., C. Ulusarac, P. Shah, and E.A. Fox. 1998.A library
of reusable model components for visual simulation of
the NCSTRL system. In Proceedings of the 1998 Winter
Simulation Conference, ed. D. J. Medeiros, E. F. Watson,
J. S. Carson, and M. S. Manivannan, 1451–1460: IEEE
Computer Society Press.

Balmer, D. W., and R. J. Paul. 1990. Integrated support
environments for simulation modelling. In Proceedings
of the 1990 Winter Simulation Conference, ed. O. Balci,
R. P. Sadowski, and R. E. Nance, 243–249: IEEE
Computer Society Press.

Birta, L. G., and F. N. Ozmizrak. 1996. A knowledge-
based approach for the validation of simulation models:
the foundation. ACM Transactions on Modeling and
Computer Simulation 6 (1): 76–98.
425
Bishop, J. L., and O. Balci. 1990. General purpose visual
simulation system: a functional description. In Pro-
ceedings of the 1990 Winter Simulation Conference,
ed. O. Balci, R. P. Sadowski, and R. E. Nance, 504–
512: IEEE Computer Society Press.

Caughlin, D. 2000. An integrated approach to verification,
validation, and accreditation of models and simulations.
In Proceedings of the 2000 Winter Simulation Confer-
ence, ed. J. A. Joines, R. R. Barton, K. Kang, and P. A.
Fishwick, 872–881: Society for Computer Simulation
International.

Conwell, C. L., R. Enright, and M. A. Stutzman. 2000.
Capability maturity models support of modeling and
simulation verification, validation, and accreditation. In
Proceedings of the 2000 Winter Simulation Conference,
ed. J. A. Joines, R. R. Barton, K. Kang, and P. A.
Fishwick, 819–828: Society for Computer Simulation
International.

Cuellar, A. A., C. M. Lloyd, P. F. Nielsen, D. P. Bullivant,
D. P. Nickerson, and P. J. Hunter. 2003. An overview of
CellML 1.1, a biological model description language.
SIMULATION: Transactions of The Society for Mod-
eling and Simulation International 79 (12): 740–747.

Dahl, O.-J., and K. Nygaard. 1966. SIMULA: an ALGOL-
based simulation language. Communications of the
ACM 9 (9): 671–678.

Delen, D., P. C. Benjamin, and M. Erraguntla. 1998. In-
tegrated modeling and analysis generator environment
(IMAGE): a decision support tool. In Proceedings of the
1998 Winter Simulation Conference, ed. D. J. Medeiros,
E. F. Watson, J. S. Carson, and M. S. Manivannan,
1401–1408: IEEE Computer Society Press.

Ducasse, M., and A.-M. Emde. 1988. A review of auto-
mated debugging systems: Knowledge, strategies and
techniques. In Proceedings of the 10th International
Conference on Software Engineering, 162–171: IEEE
Computer Society Press.

Frank, M. R., and P. Szekely. 1998. Adaptive forms: an
interaction paradigm for entering structured data. In
Proceedings of the 3rd International Conference on
Intelligent User Interfaces, 153–160: ACM Press.

Goel, A., C. Phanouriou, F. A. Kamke, C. J. Ribbens, C. A.
Shaffer, and L. T. Watson. 1999. WBCSim: A prototype
problem solving environment for wood-based compos-
ites simulations. Engineering with Computers 15 (2):
198–210.

Hsieh, H., and F. M. Shipman. 2002. Manipulating structured
information in a visual workspace. In Proceedings of
the 15th Annual ACM Symposium on User Interface
Software and Technology, 217–226: ACM Press.

Hucka, M., A. Finney, H. M. Sauro, H. Bolouri et al. 2003.
The Systems Biology Markup Language (SBML): a
medium for representation and exchange of biochemical
network models. Bioinformatics 19 (4): 524–531.



Allen, Shaffer, and Watson
Kienle, H. M. 2001. Using smgn for rapid protoptyping of
small domain-specific languages. SIGPLAN Notices 36
(9): 64–73.

Kujala, S., and M. Kauppinen. 2004. Identifying and se-
lecting users for user-centered design. In Proceedings
of the Third Nordic Conference on Human-Computer
Interaction, 297–303: ACM Press.

Lloyd, C. M., M. D. B. Halstead, and P. F. Nielsen. 2004.
CellML: its future, present and past. Progress in Bio-
physics and Molecular Biology 85 (2–3): 433–450.

Nance, R. E., C. M. Overstreet, and E. H. Page. 1999.
Redundancy in model specifications for discrete event
simulation. ACM Transactions on Modeling and Com-
puter Simulation 9 (3): 254–281.

Overstreet, C. M. 2002. Model testing: is it only a special
case of software testing? In Proceedings of the 2002
Winter Simulation Conference, ed. E. Yucesan, C.-H.
Chen, J. L. Snowdon, and J. M. Charnes, 641–647:
IEEE Computer Society Press.

Padmanaban, N., P. C. Benjamin, and R. J. Mayer. 1995.
Integrating multiple descriptions in simulation model
design: a knowledge based approach. In Proceedings
of the 1995 Winter Simulation Conference, ed. C. Alex-
opoulos, K. Kang, W. R. Lilegdon, and D. Goldsman,
714–719: ACM Press.

Sanchez, J. N., and P. Langley. 2003. An interactive environ-
ment for scientific model construction. In Proceedings
of the International Conference on Knowledge Capture,
138–145: ACM Press.

Sargent, R. G. 1986. The use of graphical models in model
validation. In Proceedings of the 1986 Winter Simulation
Conference, ed. J. Wilson, J. Henriksen, and S. Roberts,
237–241: ACM Press.

Sargent, R. G. 2004.Validation and verification of simulation
models. In Proceedings of the 2004 Winter Simulation
Conference, ed. R. G. Ingalls, M. D. Rossetti, J. S.
Smith, and B.A. Peters, 17–28: IEEE Computer Society
Press.

Schank, P., and L. Hamel. 2004. Hiding UML and promoting
data examples in NEMo. In Proceedings of the 2004
ACM Conference on Computer Supported Cooperative
Work, 574–577: ACM Press.

Shu, J., L. T. Watson, N. Ramakrishnan, F. A. Kamke, and
B. G. Zombori. 2004. An experiment management com-
ponent for the WBCSim problem solving environment.
Advances in Engineering Software 35 (2): 115–123.

Valentin, E. C., and A. Verbraeck. 2002. Guidelines for
designing simulation building blocks. In Proceedings of
the 2002 Winter Simulation Conference, ed. E. Yucesan,
C.-H. Chen, J. L. Snowdon, and J. M. Charnes, 563–
571: IEEE Computer Society Press.

van Deursen, A., P. Klint, and J. Visser. 2000. Domain-
specific languages: an annotated bibliography. SIG-
PLAN Notices 35 (6): 26–36.
426
Watson, L. T., V. K. Lohani, D. F. Kibler, R. L. Dymond,
N. Ramakrishnan, and C. A. Shaffer. 2002. Integrated
computing environments for watershed management.
Journal of Computing in Civil Engineering 16 (4):
259–268.

Wonnacott, P., and D. Bruce. 1996. The APOSTLE simu-
lation language: Granularity control and performance
data. In Proceedings of the Tenth Workshop on Parallel
and Distributed Simulation, 114–123: IEEE Computer
Society Press.

AUTHOR BIOGRAPHIES

NICHOLAS A. ALLEN is a PhD candidate in the Depart-
ment of Computer Science at Virginia Tech. He received
BS degrees (magna cum laude) in Mathematics and Com-
puter Science in 1999, and MS degrees in Mathematics and
Computer Science in 2001. His research interests include
software design, distributed computing, systems biology,
modeling and simulation, graph theory, and mathematical
software. His email address is <nallen@acm.org>.

CLIFFORD A. SHAFFER is an associate professor in the
Department of Computer Science at Virginia Tech since
1987. He received his PhD from University of Maryland
in 1986. His current research interests include problem
solving environments, bioinformatics, component architec-
tures, visualization, algorithm design and analysis, and data
structures. His email address is <shaffer@vt.edu>.

LAYNE T. WATSON is a professor of computer science
and mathematics at Virginia Tech. His research interests
include fluid dynamics, structural mechanics, homotopy al-
gorithms, parallel computation, mathematical software, and
image processing. He has worked for USNAD Crane, San-
dia National Laboratories, and General Motors Research
Laboratories and has served on the faculties of the Uni-
versity of Michigan and Michigan State University, East
Lansing, before coming to Virginia Tech. He received his
BA (magna cum laude) in psychology and mathematics
from the University of Evansville, Ind., and his PhD in
mathematics from the University of Michigan, Ann Arbor.
His email address is <ltw@cs.vt.edu>.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



