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ABSTRACT 

We design a generic framework to integrate distributed 
simulation and optimization models.  Many problems re-
quire the integration of these two types of models.  For ex-
ample, stochastic programming can use simulation models 
as a scenario generator for optimization models; in some 
other cases, simulation models need optimization models 
to help determine system parameters.  The framework is 
shown to be able to provide various services to help the in-
tegration of simulation and optimization models.  We illus-
trate our implementation with a product-mix example.  The 
example integrates a discrete event simulation of a prod-
uct-mix problem with a linear programming (optimization) 
model of such a system.  The simulation updates the pa-
rameters in the optimization model, which as a result will 
generate a new production plan.  

1 INTRODUCTION 

Simulation has become an important method of systems 
analysis, and is widely used in engineering and science.  
The application areas of this method include manufactur-
ing, financial engineering, military games, and many other 
fields.  Meanwhile, practical optimization has seen sus-
tained developments in all facets, including modeling, al-
gorithms, and software.  These developments, together 
with the need for advanced modeling and simulation in in-
dustry, military, and government have provided the impe-
tus for integrating simulation and optimization for complex 
engineered systems. 

There are several reasons motivating interactions be-
tween simulation and optimization models.  Fu (2002) cites 
the following interactions between optimization and simu-
lation models:  
• Simulation for Optimization.  Simulations work as a 

scenario generator which provides the optimization 
with a sample space.  One of the more common set-
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tings for this arises in stochastic programming, where 
the term “sample-path optimization” has been coined 
by Robinson and co-workers.  Plambeck, Fu, Robin-
son, and Suri (1996) apply sample-path optimization 
method to optimize convex stochastic performance 
functions.  Gürkan, Özge, and Robinson (1999) 
broaden the method’s applicability to include the solu-
tion of stochastic variational inequalities.  Such meth-
ods are also referred as “retrospective optimization”. 

• Optimization via Simulation.  In this category the op-
timization component orchestrates the simulation of a 
sequence of system configurations, so that the system 
configuration obtained eventually is an optimal or near 
optimal solution. Suri and Leung (1989) used a sto-
chastic approximation method to optimize a simula-
tion model in a single simulation run of an M/M/1 
queue problem.  Other methods include the stochastic 
ruler algorithm (Yan and Mukai, 1992), variants of 
simulated annealing altered to accommodate random-
ness (Gelfand and Mitter, 1989; Gutjahr and Pflug, 
1996; Alrefaei and Andradóttir, 1999), and Andradót-
tir’s (1996) random search algorithms.  Pichitlamken 
and Nelson (2003) report a combined procedure which 
consists of a global guidance system, a selection-of-
the-best procedure, and local improvement for use 
when the performance measure is estimated via a sto-
chastic, discrete-event simulation, and the decision 
variables may be subject to deterministic linear integer 
constraints.  This particular arena of research has also 
attracted the attention of simulation software vendors 
(AutoStat, OptQuest, OPTIMIZ, SimRunner, and 
WITNESS Optimizer) who already provide some op-
timization capability, although optimality in these sys-
tems is difficult to verify.  
Another setting in which it becomes important to pro-

vide services for data exchange between optimization and 
simulation is to enable models that accommodate multiple 
fidelities.  For instance, tractability of an optimization 
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model might require a coarse-grain stochastic model, 
whereas, a detailed (fine-grain) simulation model may be 
used to examine the consequences of the solution provided 
by the optimization model.  Such an approach was reported 
in Sen, Doverspike and Cosares (1994), and, with increas-
ing popularity of “fluid approximations” of queueing sys-
tems, this approach is becoming increasingly popular.  The 
fluid approximations relax discrete nature of the objects in 
a flow control system and may lead to efficient approxima-
tion or heuristics procedures and sometimes even to effi-
cient optimization algorithms.  Applications of “fluid ap-
proximations” can be found in papers reported by Chen 
and Mandelbaum (1991), Bertsimas and Gammarnik 
(1999), Boudoukh, Penn, and Weiss (2001), and others.  
Finer gain simulation models that capture detailed discrete 
object flow features are often used to evaluate the effi-
ciency of the method. 

In addition to the integration of simulation and optimi-
zation models, there are also needs to integrate simulation 
models or optimization models themselves respectively.  In 
large-scale system simulations, models can be partitioned 
and developed by different groups.  Simulations developed 
by each group are required to be able to integrate with 
those developed by other groups so that the entire system 
can be studied as a whole.  Similarly in large-scale optimi-
zation, problems are often decomposed so that smaller (and 
perhaps easier sub-problems) can be solved. Interesting re-
search results include Lee’s (2004) implementation of a 
disjunctive cutting-plane algorithm in a distributed mem-
ory environment, Blomvall’s (2003) parallel algorithm for 
multistage stochastic programming, and so on.  While there 
are many examples of efforts to solve optimization prob-
lems with distributed computing techniques, the software 
developed for these examples are rarely designed for re-use 
by different classes of models.  Such research often focuses 
on implementing a certain algorithm, rather than construct-
ing a generic architecture to enable a variety of algorithms.  
While it is clear that distributed computing is playing an 
increasingly important role for simulation and optimiza-
tion, software engineering practices remain limited to cus-
tomized implementation for specific applications.  The ef-
forts to develop a distributed computing system for a 
specific problem are usually difficult and time consuming; 
therefore it is necessary to develop a systematic architec-
ture for this purpose.  The architecture is required to be 
composable such that different models, including decision 
models and simulation models can be integrated.  It should 
be interoperable to support communication and synchroni-
zation at runtime.  In other words, the architecture should 
be able to provide such services as to dispatch tasks, con-
trol runs, and exchange outputs of each type of model. 

In this paper we discuss the design of a distributed 
computing system, which is part of the Simulation Platform 
for Experimentation and Evaluation of Distributed Comput-
ing Systems (SPEED-CS) project.  The system sets up a 
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flexible framework that provides services to integrate simu-
lation and optimization models.  We illustrate its uses with a 
product-mix problem as an example.  The organization of the 
rest of this paper is as follows.  In the next section, we ad-
dress the requirements and design of the generic architecture.  
In section 3 we present the implementation of an experimen-
tal system with the SPEED-CS architecture.  We present an 
example of interoperability between product-mix optimiza-
tion and simulation in section 4.  Some concluding remarks 
and future directions are presented in section 5. 

2 SPEED-CS SYSTEM DESIGN 

In order to achieve composability and interoperability be-
tween model components, there are three major aspects of 
design that bear reflection.  These are the design of system 
architecture, system modeling, and data models.  System 
architecture designs the coordination of the components.  
System modeling specifies the mechanism of modeling ob-
jects and coupling model components.  Data models are 
necessary to provide a common data format for compo-
nents to interact with each other.  Although the actual im-
plementation varies, any distributed system with the scope 
we have identified requires a resolution of these issues. 

2.1 SPEED-CS Architecture 

The SPEED-CS system is constructed with multiple layers 
as illustrated in Figure 1.  The layers include an Object Re-
quest Broker (ORB) layer, a SPEED-CS layer, a Compo-
nents layer, and a User Interface/Modeling layer.  The 
coupled model is defined in the Modeling layer, while the 
model components are implemented in the Components 
layer.  The dashed line indicates that the model compo-
nents are linked remotely.  With the services in the 
SPEED-CS layer and ORB layer, a remote object can be 
referenced.  Each layer has functionality as follows. 
• Object Request Broker (ORB) layer.  The ORB layer 

provides the distributed communication services.  It is 
important in that it hides network programming from 
the developers so as to save time of designing, imple-
menting and debugging the software components in-
volved in networking. 

• SPEED-CS layer.  The main service provided by this 
layer is to manage the model components.  It main-
tains a registry of all the model components by names, 
server machine URLs and ports.  When there is a re-
quest for a component, the SPEED-CS layer locates 
the component by facilitating the ORB layer Naming 
Service with the information in the registry. 

• Components layer.  It maintains a collection of simula-
tion model components and decision model compo-
nents.  By specifying the names and coupling relations 
of the components, users can construct a composite 
model. 
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• User Interface/Modeling layer.  This layer provides a 

modeling interface for user to construct the models.  
High level modeling languages and graphical user in-
terfaces (GUI) can be developed for a more user-
friendly system. 

Figure 1: SPEED-CS architecture 

2.2 Modeling and Simulation Formalism 

In order to facilitate interoperability, we will choose a 
common formalism for both simulation and decision mod-
els.  In the SPEED-CS system, we adopt the Discrete Event 
System Specification (DEVS) formalism which provides a 
means of specifying a mathematical object representing a 
discrete-event dynamic system.  Such a system has a time 
base, inputs, states, and outputs, and functions for deter-
mining next states and outputs given current states and in-
puts (Zeigler and Sarjoughian, 2003).  While decision 
models, especially static decision models, may not seem 
like discrete-event dynamic systems, it is important to view 
these models as components within a simulation in which 
they provide outputs when required.  Thus, decision mod-
els will also be treated as DEVS models. 

At the lowest level, an atomic DEVS model describes 
the autonomous behavior of a discrete-event system as a 
sequence of transitions responding to external input (event) 
and internal input (event).  At the higher level, a coupled 
DEVS describes a system as a network of atomic or cou-
pled models.  The connections in the network denote how 
models influence each other (Zeigler and Sarjoughian, 
2003). 

In our design, both simulation model components and 
decision model components are developed as atomic or 
coupled DEVS models.  Their common interfaces allow 
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the couplings among the model components in a distrib-
uted environment.  When the coupled system runs, the 
components communicate with one another following the 
parallel DEVS simulation protocol (Zeigler et al., 1999). 

2.3 A Common Data Model 

In the process of integrating heterogeneous applications, it 
is important to have a common Data Model as the under-
standable data format among the applications.  A widely 
used cross-platform, extensible standard for common Data 
Model is the XML (eXtensible Markup Language). 

In the system, we use XML as the standard format to 
encode the data transferred between different models.  The 
information can be outputs generated by the simulation, or 
it can be user input data to formulate the models.  In order 
to obtain the data expressed with XML format, a specific 
parser is designed for this task.  The parser seeks keywords 
for extracting data.  As an example, a linear programming 
model encoded as a XML data stream should express in-
formation such as whether it is a maximizing or minimiz-
ing problem, how many variables the model has, and oth-
ers. Therefore the keywords of “maxOrMin”, 
“numberOfVars”, and others are introduced to the parser.  
With these vocabularies, the parser is able to extract infor-
mation and thus to construct the LP model for the solver. 

3 IMPLEMENTATION 

The implementation of the architecture involves in choos-
ing the middleware, developing the component manage-
ment layer, component layer, and the modeling layer.  We 
inherit CORBA’s middleware services to manage remote 
components.  This feature allows the integration of com-
ponents developed with different programming languages 
(such as JAVA and C++).  In the following we focus our 
presentation on the implementation of decision model 
components and SPEED-CS layer, and we briefly intro-
duce the construction of simulation model components. 

3.1 Decision Model Components 

Decision Model Components are objects that provide deci-
sions, usually solutions of an optimization model, to the 
system.  A decision model component contains APIs to in-
put model data, run the algorithm, and output solutions.  In 
order to deploy over the network, a decision model com-
ponent needs to export a few functions for remote invoca-
tions.  We present the design and implementation of using 
linear programming as a decision-making paradigm.  Other 
decision models can be developed in a similar manner.  An 
LP model contains a set of decision variables, an objective 
function and a set of constraints.  The following formula-
tion represents a general LP. 
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where x is the decision variables, and  vectors c, lb, ub, 
and matrices A1, A2, A3 are coefficients. 

Equations and inequalities form the set of constraints.  
Instead of writing a model file in certain common format 
(such as MPS), the LP model component provides a ge-
neric skeleton of a linear programming for callable func-
tions of solvers.  Modelers formulate the linear program-
ming and prepare the input dataset.  The process of running 
a linear programming model can be abstracted as the fol-
lowing sequential process. 
• Initialization.  This procedure sets the solver environ-

ment and gives necessary information to the solver 
such as the number of decision variables, the numbers 
of equalities and inequalities, and the sense of the ob-
jective function (i.e., maximize or minimize) the prob-
lem.  Solvers may need these data to estimate the size 
of the problem.  They reserve memories based on the 
problem size and the particular algorithm of the solver. 

• Data Input.  This procedure populates the component 
with data to construct decision model, including the 
objective function, constraints and bounds.  For inte-
ger or mixed integer programming, the input data 
needs to indicate to the solver which decision variables 
should be treated as integer. 

• Solve.  This procedure solves the linear programming 
problem after the model is set up.  User may be able to 
choose different algorithms to use.  For example, 
many linear programming solvers allow the user to 
choose either Simplex method or Interior Point 
method.  It is the user’s decision to apply which algo-
rithm to use in solving the problem. 

• Output and Sensitivity Analysis.  The component out-
puts the activities and duals when the solve process is 
accomplished.  It can also output the status of the 
solver and model. 

A linear programming model component is defined with the 
standard interface definition language (idl) to provide remote 
access from other models.  The procedures are specified 
with several exporting methods in the idl.  When compiling 
the interface file to a programming language, a server pro-
gram and a client program will be generated.  The server 
program implements the methods and the client program 
packages the component to a DEVS atomic model with 
communication information.  The atomic model can be cou-
pled with other DEVS models to construct more compli-
cated models.  When the atomic model (client) receives an 
event from another DEVS models, it will respond with the 
state transitions.  The change of the model state may result 
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the running of one of the functions defined in the interface 
file.  For example, the client can be in one of the following 
states: “passive”, “initializing”, “waiting for data”, “loading 
data”, “optimizing”, and “done”.  Initially the state of the 
component is “passive”.  Driven by the event from another 
model to initialize the algorithm, the component transitions 
to “initializing” and thus invokes the initialization function.  
After the initialization is done, the internal state transition 
updates the state to “waiting for data”, which means the cli-
ent is ready to accept input model data.  The transitions go 
on until the model is solved and the client remains “passive” 
state unless another event activates the component.  When 
the solving process is done, the solution, including activities 
and dual values are obtained.  The solutions are converted to 
the XML format and output to designated components.  

3.2 SPEED-CS Layer 

The SPEED-CS layer is the software to manage the com-
ponents.  The management includes maintaining a list of 
components, adding or deleting components, and initiating 
access of remote objects.  There are two equally important 
services supporting the management:  the naming service 
and event service.  The naming service provides users with 
a way to develop applications within a distributed comput-
ing environment, without sacrificing the advantages of a 
local environment.  The event service provides controls 
over the execution of the whole system. 

1. Naming Service 
CORBA offers the basic naming services and the 

SPEED-CS layer extends the CORBA naming services to 
manage the components by maintaining a list of the prop-
erties of the components that users may want to reference 
and invoke.  The property list includes the name of the 
component, the name or IP address of the server computer 
on which the component is implemented, and the port of 
the server.  

The SPEED-CS layer checks the user-input name with 
those in the property list.  If the user-input name does not 
match the names in the property list, it means that the re-
quested component is not available.  The request of the 
component is then rejected and an exception is thrown to in-
form the user that there is a mismatch of the name and com-
ponent.  If there is a match, it means the component is avail-
able.  The SPEED-CS layer will use the name as a key to 
query other information of the component such as the com-
puter and the port on which the component server is located.  
With all the information, the component can be referenced. 

It is a straightforward process to maintain the property 
list.  If new components are added to the server, the admin-
istrator just needs to add to the property list the name, 
server machine on which the object is located, and the 
ports to connect.  In this way the SPEED-CS layer is open 
to variant CORBA objects of different decision models and 
simulation models. 
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2. Event Service 

The event service in the SPEED-CS platform is real-
ized by the DEVS formalism.  DEVS provides an event -
based state system, in which the states of an object transi-
tion according to the events scheduled as responses to re-
ceived messages. 

Time-management is an important issue to implement 
with event services.  One of the ways is to maintain the 
SPEED-CS layer clock as a universal clock and thus it can 
monitor the time advance and event scheduling.  The 
model components utilize DEVS functionalities, such as 
state transitions, receiving and sending messages, and re-
acting to received messages, etc.  If a received message is 
to call a method of the remote component, the component 
first references the remote model by utilizing the naming 
service and then invokes the method.  Modeling with the 
DEVS formalism also facilitates the hierarchical modeling 
to couple the components to larger coupled models.  

3.3 Simulation Components 

The design of simulation components is very similar to that 
of the decision model components.  A simulation compo-
nent also includes a server program and a client program.  
The server is modeled with DEVSJAVA and implements 
the discrete-event simulation application, and the client 
provides the naming service for users to locate the compo-
nent.  The idl interface declares the DEVS simulator meth-
ods, such as executing transition functions, getting output 
from the models and so on.  The SPEED-CS coordinator 
will call these methods to provide event services when 
running the integrated system. 

4 AN EXAMPLE 

In this section, we illustrate the system by presenting an 
example of product-mix optimization and simulation as an 
interacting system.  A product-mix problem (Schrage, 
1997) has a collection of products that compete for a finite 
set of resources.  Associated with each product is a profit 
contribution per unit, and associated with each resource is 
availability.  The objective is to find how much to produce 
of each product so as to maximize profits subject to re-
source constraints.  A discrete event simulation will be cre-
ated for the product-mix problem, where processing time 
of each product on each machine is a random variable 
whose distribution is known.  However, because of queu-
ing delays, the distribution of the total time at a machine is 
not known a priori.  Because of this, the product mix 
model uses an estimated average processing time for each 
machine, and this estimate is updated through interactions 
between the LP formulation and the discrete-event simula-
tion. 
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4.1 The LP formulation 

In this particular example there are 3 machines and each 
machine can produce 7 types of products.  The machines 
are not identical and they process each type of product with 
different processing times.  We assume that the jobs are 
processed with the sequence of operations on machines 1, 
2, and 3.  Initially the decision model has an estimation of 
the expected processing time as shown in Table 1.  The 
simulation model has another table of expected processing 
time as shown in Table 2.  The net profit of each product is 
shown in Table 3.  Both the decision model and the simula-
tion model share the same data for profit. 

Note that there are several data mismatches, and such 
discrepancies arise in instances where the optimization 
model and the simulation model are “owned” by different 
groups within the organization.  Alternatively, one may 
view the simulation as representing the real world, and the 
LP model simply an outdated approximation.  This exer-
cise then illustrates how the SPEED-CS architecture allows 
the decision model to match up with more realistic data. 

 
Table 1: Initial Expected Processing 
Time in Minutes for LP 

 Machines 

Products 1 2 3 
A 5.0 5.0 5.0 
B 7.0 7.0 7.0 
C 8.0 7.0 7.0 
D 7.0 5.0 3.0 
E 6.0 6.0 3.0 
F 7.0 5.0 2.0 
G 7.0 10.0 2.0 

 
Table 2: Expected Processing Time 
in Minutes for Simulation 

 Machines 

Products 1 2 3 
A 12.0 8.0 5.0 
B 7.0 9.0 10.0 
C 8.0 4.0 7.0 
D 10.0 5.0 3.0 
E 10.0 6.0 3.0 
F 7.0 11.0 2.0 
G 7.0 11.0 2.0 
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Table 3: Net Profit of each Product 
Decision 
Variables 

Definition 
(per week) 

Profit 
(per Unit) 

A Number of units of A $3.0 
B Number of units of B $3.0 
C Number of units of C $3.0 
D Number of units of D $3.0 
E Number of units of E $2.0 
F Number of units of F $3.0 
G Number of units of G $2.0 
M1 Hours of machine 1 used -$4.0 
M2 Hours of machine 2 used -$4.0 
M3 Hours of machine 3 used -$3.0 

 
Some other constraints include: at most 20 units each 

can be produced of products D and E, and each machine 
can be run 128 hours (a week).  There are no lower bounds 
for the products or the use of machine time.  Let 1x  

through 7x  be the decision variables of the number of 

product (A to G) to produce, and let 8x  through 10x  be 
the time used on machine 1 to 3.  To simplify the problem 
we model the problem with linear programming and round 

ix  to integers.  The LP model can be represented with 
equation constraints as follows:  

∑
=

10

1
Maximize

i
ii xp  

subject to 
eqeq rxA =  
ubxlb ≤≤  

where Txxxx ][ 1021 L=  and ip is the profit of 
each product and the cost of running each machine.  The 
initial equation coefficient matrix is: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

0.60000.20.20.30.30.70.70.5
00.6000.100.50.60.50.70.70.5
000.600.70.70.60.70.80.70.5

eqA

, and the equation’s right hand side is T
eqr ]000[= . 

The lower bound of the decision variables is specified as 
vector lb , which is 0 for both the product variables and 
machine time usage variables in this example.  The upper 
bound is specified as vector ub : for product D and E 
( 4x and 5x ) the upper bound is 20.0 and for machine time 
usages variables the upper bound is 128.0.  All variables 
are non-negative. 
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4.2 Transferring data from the LP to Simulation 

The optimization results are returned with the notations of 

ix , while the simulation requires some meaningful de-
scriptions of the results.  For this purpose a converter is de-
signed to interpret the decisions to the variables which the 
simulations can understand.  A map file helps the converter 
link decision variables and simulation variables.  The deci-
sion variable names are defined as the attribute of the tag 
“LPVAR”.  As shown in Figure 2, the simulator uses vari-
able “JobA” for decision variable 1x  to generate job type 
A.  With the mapping the simulator is able to convert the 
decisions from the LP models to the simulation inputs. 

 

Figure 2: The Mapping for LP to Simulator 

4.3 The Simulator 

We design a discrete event simulation model to simulate 
the running of the production system.  A job generator 
generates each kind of jobs with a uniformly distributed 
inter-arrival time within the range [15.0, 25.0].  The jobs 
must be processed by machine 1 first, then machine 2, and 
finally machine 3.  Each machine maintains a queue for the 
jobs and the queue capacity is large enough.  Figure 3 de-
picts the simulation setup in the product-mix example.  

The machines are not identical and a machine can 
process all the types of jobs.  A machine’s processing time 
of a certain type of job is a random number generated from 
a uniform distribution whose expected processing time is 
shown in Table 2.  The production plan comes from the LP 
decision and the jobs are generated according to the plan.  
In the simulation, processing time intervals (including de-
lays) of each job on a machine and the counts of each type 
of jobs are observed.  The time intervals are averaged by 
the number of jobs produced and the results will be sent 
back to the optimization component for revisions of the 
production plan.  The revised production plan will then 
trigger a new simulation. 

<map> 
 <from>LP</from> 
 <to>Simulation</to> 
 <numOfVars>7</numOfVars> 
 <LPVAR name="x1"> JobA </LPVAR> 
 <LPVAR name="x2"> JobB </LPVAR> 
 <LPVAR name="x3"> JobC </LPVAR> 
 <LPVAR name="x4"> JobD </LPVAR> 
 <LPVAR name="x5"> JobE </LPVAR> 
 <LPVAR name="x6"> JobF </LPVAR> 
 <LPVAR name="x7"> JobG </LPVAR> 
</map> 
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Figure 3: Product-mix Problem Simulation 

4.4 Transferring data from the Simulation to LP 

The LP model requires generic inputs such as equation ma-
trix, bounds, right hand side vectors, etc.  The simulation 
provides application-related output data, and in this exam-
ple, the simulation updates the average processing time of 
each job on each machine.   

A converter to translate simulation output to the LP 
model is therefore necessary.  In the implementation, the 
construction of an LP is partitioned into tasks of loading 
objective functions, equation matrix, bounds, etc.  There-
fore we introduce a few keywords for data prepared for 
these operations.  The keywords include “EquationMa-
trix”, “UpperBounds”, “LowerBounds”, and so on, which 
are related to the partitioned LP tasks.  Other key words are 
“columnIndex” and “rowIndex”, which is used to map the 
simulation data to the position of the data in matrix (or 
vectors) for the LP model.  When the converter receives 
the output data from the simulation, it extracts the data ac-
cording to the relationship defined in the map file and 
modifies the coefficient matrices or vectors for the LP.   

Figure 4 shows the map file for this example.  The 
simulation outputs the average processing time as shown in 
Figure 5, which is prepared for the equation matrix Aeq in 
the LP model.  Each data element is the average time for a 
certain job spent on a machine.  The job type and machine 
id are specified in the data attributes.  However the tag 
“avgTime” is not meaningful to the LP model, which is 
expecting “EquationMatrix” tag with “columnIndex” and 
“rowIndex”.  With the help of the map file, the converter 
can modify corresponding data elements in the equation 
matrix Aeq.  The updated matrix will be input to the LP 
model to modify the constraints eqeq rxA = .  The updates 
of bounds and other data entries for the LP model are simi-
lar.  The map file provides modelers with flexibility to in-
terpret application-related simulation data to generic LP 
inputs. 

Job Generator M/C 1

M/C 2

M/C 3

Job Generator M/C 1M/C 1

M/C 2M/C 2

M/C 3M/C 3
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Figure 4: The Mapping from Simulation to LP 
 

Figure 5: Average Time Data 

4.5 Simulation Results 

In the product-mix example, we design two cases in order 
to observe the closed-loop simulation-LP system.  For both 
cases we keep job generation process the same and tune the 
variance of the machine processing time intervals.  In one 
case, the machine processing time intervals are random 
numbers uniformly distributed with the expected process-
ing time and ±10.0% deviation, whereas in another case the 
deviation is as much as ±20.0%.  In the first case the sys-
tem starts with data in Table 1 and generates the initial 
production plan as shown in the first row of Table 4.  Then 
the simulation runs with the plan and the processing time 
intervals are observed.  The average processing time inter-
vals are very close to the data shown in Table 2 because 
there are no delays and the system converges after 6 itera-
tions.  The updates of the production plan are shown in Ta-
ble 4. 

In the second case the machines process jobs with 
more variance while the jobs are generated with same rate 
as in case 1.  The simulation starts with the same initial 
plan as in the first case.  The variance causes delays in the 
system, which as a result contributes to differences of the 
averaged processing time intervals from case 1.  As shown 
in Table 5, the system takes more iterations to converge 
and it converges to a different plan from case 1 because de-
lays affect the processing time intervals.  The cases of the 
example have been run with different sets of seeds and the 
evolvements of the production plans are consistent for the 
runs. 

<map> 
  <from>Simulation</from> 
  <to>LP</to> 
  <EquationMatrix incomingNname="avgTime" 
                   columnIndex="productid" 
                   rowIndex="machineid" 
                   outputName="Aeq"> 
  </EquationMatrix> 
</map> 

<avgTime> 
  <data productid="1" machineid="1"> 11.97 </data>
  <data productid="1" machineid="2"> 23.07 </data>
  <data productid="1" machineid="3">  4.97 </data>
  <!-- other data points --> 
  <data productid="4" machineid="1">  9.76 </data>
  <data productid="4" machineid="2">  4.82 </data>
  <data productid="4" machineid="3">  2.90 </data>
  <!-- other data points --> 
</avgTime> 
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Table 4: Production Plans with ±10.0% Deviation from 
the Average Processing Time 

 Job Types 
Updates A B C D E F G 
1 1000 343 0 20 0 20 0 
2 0 0 943 0 0 20 0 
3 0 0 944 0 0 20 0 
4 0 0 942 0 0 20 0 
5 0 0 943 0 0 20 0 
6 0 0 943 0 0 20 0 

 

The example shows the ability of the architecture to 
achieve interoperability between LP model components 
and simulation components to form more complicated sys-
tems.  If the LP model is complicated, the convergence of 
the system can become difficult, and in some situations the 
LP may not be able to find a feasible solution.  The con-
vergence is highly related to the applications. 

Table 5: Production Plans with ±20.0% Deviation from 
the Average Processing Times 

 Job Types 
Updates A B C D E F G 
1 1000 343 0 20 0 20 0 
2 0 0 943 0 0 0 0 
3 0 325 0 20 523 0 0 
4 0 0 0 20 0 0 671 
5 0 333 0 0 0 20 0 
6 333 0 0 0 0 0 0 
7 0 0 307 0 0 0 0 
8 0 0 296 0 0 0 0 
9 0 0 287 0 0 0 0 
10 0 0 287 0 0 0 0 

5 CONCLUSIONS 

This paper proposes a distributed programming architec-
ture for operations research studies that involve optimiza-
tion models and discrete event simulations models.  The 
architecture is a multi-layer system, which is composed of 
a middleware layer, the component management layer, 
component layer, and modeling layer from bottom up.  We 
demonstrate the design of such a system by discussing a 
product-mix optimization and simulation interactive sys-
tem.  The example includes the implementations of each 
layer, the methods to manage each layer, and the convert-
ers between LP and simulations.  The system is able to 
provide services to facilitate distributed computing, event 
services, naming services, and component management.  
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We use XML as the common data format for the compo-
nents.  Another important feature is that the component 
sets can be updated and enlarged with different models 
adding in, as long as the models can be modeled as a dis-
crete event model.  This feature, however, raises the impor-
tant issue of security of the system.  There have been many 
research results on generic security issue on network sys-
tems, which can be implemented in the SPEED-CS archi-
tecture in the future work. 
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