
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

DSIM: SCALING TIME WARP TO 1,033 PROCESSORS

Gilbert Chen

The MathWorks, Inc.
3 Apple Hill,

Natick, MA 01760, U.S.A.

Boleslaw K. Szymanski

Department of Computer Science
Rensselaer Polytechnic Institute

110 8th Street
Troy, NY 12180, U.S.A.

ABSTRACT

This paper presents the design, implementation and per-
formance of a Time Warp simulator, called DSIM, which
targets clusters comprised of thousands of processors.
DSIM employs a novel technique for GVT computation,
called the Time Quantum GVT algorithm that requires no
message acknowledgement, relies on constant-length mes-
sages and is efficient on clusters with large numbers of
processors. Its implementation uses a technique called Lo-
cal Fossil Collection to alleviate the overhead of memory
reclamation and to support efficient event management.
DSIM is also equipped with a simple programming inter-
face to ease programming and debugging of simulations.
Experimental results obtained on the PHOLD benchmark
demonstrated that DSIM can process as many as 228 mil-
lion events per second on 1033 processors.

1 INTRODUCTION

Clusters have steadily and gradually become the main
stream of high performance computing platforms – the
number of clusters on the top 500 supercomputer list
(http://www.top500.org/) jumped from 208 in No-
vember 2003 to 291 in June 2004, an increase of 40% in
merely 7 months. It is likely that this trend will continue in
the future, as technological progresses on single processors
and fast interconnection networks has made building clusters
from commodity components easier and more cost-effective.
The popularity of clusters brings a new challenge to PDES
(Parallel Discrete Event Simulation) researchers designing
efficient Time Warp simulators. Historically, at different
stages of development, Time Warp simulators have always
targeted the most widely available platforms at the time. For
instance, the first generation Time Warp simulators
(Jefferson et al.; Jefferson 1985; Baezner, Lomow and
Unger 1994) were usually designed for parallel computers,
especially MPP (Massively Parallel Processing) machines.
When shared-memory computers become more prevailing in
the nineties, the second generation Time Warp simulators,
346
such as GTW (Das et al. 1994) and ROSS (Carothers, Bauer
and Pearce 2000), were developed to support this type of
parallel computers. Today, as clusters are starting to domi-
nate high-end computing, new Time Warp simulators capa-
ble of running efficiently on networks of distributed proces-
sors are particularly desired.
 There are some Time Warp simulators such as
WARPED (Martin et al. 2003) and ParaSol (Mascarenhas,
Knop and Rego 1995) that were initially designed for dis-
tributed memory parallel computers. One may argue that
these simulators can be ported to clusters with a little ef-
fort, as modern clusters may exhibit behavior that is close
or comparable to distributed memory MPP computers, in
aspects such as bandwidth, latency, and scale. However,
little data have been available to prove these simulators’
effectiveness on hundreds of processors. In fact, the larg-
est Time Warp simulations that have ever been attempted,
in terms of the number of processors used, to the best of
our knowledge, were executed on 64-104 processors
(Wieland et al. 1989; Fujimoto 1990; Kim and Jean 1996).
Hence, the question remains whether Time Warp simula-
tors running on modern large-scale clusters can attain satis-
factorily good performance.
 DSIM has been developed to support efficient Time
Warp simulation on distributed clusters with thousands of
processors. At the heart of DSIM is a new GVT (Global
Virtual Time) algorithm, referred to as the Time Quantum
GVT (TQ-GVT) algorithm that does not require message
acknowledgement, and relies on short messages with con-
stant length. This paper demonstrates that TQ-GVT is able
to deliver a continuous stream of up-to-date GVT values
during simulation. It achieves this by devoting one or
more but less than 1% of the total number of processors to
running the core of the GVT algorithm. In view of the
large number of processors involved in the simulation on a
large cluster, such a solution is more efficient than delay-
ing all processors by a small fraction of time in a distrib-
uted implementation of the GVT computation.
 In addition to the new GVT algorithm, DSIM uses a
modified fossil collection mechanism called Local Fossil

http://www.top500.org/

Chen and Szymanski

Collection, as well as a careful implementation of event
management mechanism. Another goal of DSIM design
has been to demonstrate that the improvement of pro-
grammability of a parallel discrete event simulator can be
accomplished without sacrificing its efficiency.
 The primary goal of this paper is to introduce the basic
features of DSIM to enable replication of our performance
results. To evaluate the DSIM performance, the PHOLD
model was chosen as an example of a non-trivial modeling
problem. It needs to be demonstrated if the reported per-
formance is repeatable for other types of models. Like-
wise, it is yet to be established which new features of
DSIM are indispensable for high performance of Time
Warp on large-scale clusters. Still, it is safe to predict that
the new GVT algorithm has played a role in enabling
DSIM superior performance.
 The paper is organized as follows. Section 2 intro-
duces the basic ideas behind the Time Quantum GVT algo-
rithm. Section 3 presents DSIM implementation details,
including Local Fossil Collection and the memory efficient
event management mechanism. Section 4 describes the
programming interface of DSIM in detail. Section 5 pre-
sents the experimental results of DSIM running on two dif-
ferent yet popular clusters. Section 6 concludes the paper
by providing a summary of the basic features of DSIM and
a vision of its future development.

2 TIME QUANTUM GVT ALGORITHM

The GVT is defined as the minimum of local simulated
times on all processors and timestamps of all messages in
transit (Fujinoto, 1989). A good GVT algorithm is critical
to the overall performance of a Time Warp simulator. An
event processed earlier than the GVT will not be subject to
rollback under any circumstances, and therefore its associ-
ated memory can be released permanently. With more ac-
curate GVT estimates, more obsolete memory can be re-
claimed, decreasing the chance for performance losses
stemming from the memory system bottleneck.
 Numerous GVT algorithms (Samadi 1985; Preiss
1989; Bellenot 1990; Baldwin, Chung and Chung 1991;
Bauer and Sporrer 1992; Mattern 1993; Srinivasan and
Reynolds 1993; Tomlinson and Garg 1993; D'Souza, Fan
and Wilsey 1994; Das and Sarkar 1995; Steinman et al.
1995; Choe and Tropper 1998; Perumalla and Fujimoto
2001) have been proposed for distributed execution of
Time Warp. Some of them depend upon message ac-
knowledgement (Samadi 1985; Bellenot 1990; D'Souza,
Fan and Wilsey 1994) to track those messages that are still
in transit when the GVT computation is being conducted.
Others (Bauer and Sporrer 1992; Mattern 1993; Tomlinson
and Garg 1993) utilize Vector Clock or similar structures
whose size is proportional to the number of processors.
Still others (Preiss 1989; Baldwin, Chung and Chung 1991;
Das and Sarkar 1995; Choe and Tropper 1998) take a dis-
347
tributed and passive approach, which requires the proces-
sor in need of memory to send out a special token message
that will traverse all other processors. Synchronization-
based GVT algorithms (Srinivasan and Reynolds 1993;
Steinman et al. 1995; Perumalla and Fujimoto 2001) rely
on global reductions to determine whether previously sent
messages have all been received.
 Instead of implementing one of these GVT algorithms,
yet another GVT algorithm, referred to as Time Quantum
GVT (TQ-GVT), is contributed to this already rich reposi-
tory. Its uniqueness relies on allocating one processor,
called the GVT master, exclusively to the GVT computa-
tion. The algorithm’s name comes from the fact that the
simulated time is divided into a sequence of non-
overlapping time intervals (quanta) with equal width,
somehow similarly as in (Perumalla and Fujimoto 2001).
A GVT master monitors the numbers of sent and received
messages within each time quantum for all simulating
processors reporting to it. If the two numbers associated
with a given time quantum are equal, then all messages
sent during this time quantum must have already been re-
ceived and they will not be counted when computing the
new GVT value. This well-known method of accounting
for transient messages can be traced back to Mattern
(Mattern 1993).
 The use of an exclusive processor for GVT computa-
tion may appear an obstacle to scalability, since it is basi-
cally a centralized approach. Nevertheless, one or more
levels of intermediate GVT masters can be introduced,
each of which keeps track of the number of transient mes-
sages in each time quantum for a subset of processors.
These numbers must then be reported to the root GVT
master, which in turn determines whether or not there are
still messages in transit from each time quantum and calcu-
lates the GVT accordingly. Empirically, one GVT master
can drive as many as 128 simulating processors, so an ex-
tra level of intermediate GVT masters could easily extend
the number of simulating processors to 16,384 and if this is
not sufficient, more levels of GVT masters can be added.
A very small percentage of all processors, e.g., 129 out of
16,513, or merely 0.78 percent, will not be directly partici-
pating in the simulation. Hence, such a solution is suitable
for clusters in which there are a large number of processors
involved in a computation.
 An essential feature that makes TQ-GVT scale so well
is that it overlaps GVT computation with other tasks. Simu-
lating processors are only engaged in processing events and
transmitting and receiving messages. With regards to GVT
computation, they just need to send report messages periodi-
cally, and receive GVT messages as they come. If GVT
messages do not come on time, simulating processors are
never delayed or blocked, as long as the amount of memory
is adequate. As a result, only the masters are involved in a
significant amount of computation of the GVT. The cost of
GVT computation for simulating processors is non-blocking

Chen and Szymanski

send of a report message at the end of each quantum and
non-blocking receive of the new GVT value if there is a
GVT message. Thus, this solution eliminates two problems:
(i) the large latency of the interconnection network often
found in clusters, and (ii) the asynchrony that causes differ-
ent processors to reach the synchronization point at vastly
different wall-clock times when the number of involved
processor exceeds, say, 1,000.
 On the first glance, the TQ-GVT looks similar to the
LBTS algorithm that chops the simulation time into bands
or epochs (Perumalla and Fujimoto 2001). However, this
superficial similarity disappears as soon as one considers
the fact that the performance study in (Perumalla and Fu-
jimoto 2001) was limited to 16 processors. Three essential
differences distinguish TQ-GVT from the LBTS algorithm.
First, multiple reductions may be needed by the LBTS al-
gorithm within each band for all transient messages sent
during the previous band to be received, while in TQ-GVT,
each simulating processor is guaranteed to send only one
report message and receive at most one GVT message per
time quantum. Second, in the LBTS algorithm, during
each band every processor must perform both global reduc-
tion and event processing. This, unfortunately, increases
the latency of handling global reduction messages, because
to maximize the event rates, each processor needs to exe-
cute a certain number of events consecutively before
checking the message receive buffer. In contrast, in TQ-
GVT, simulating processors are only engaged in event
processing and message exchanges. It is the GVT master
that carries out the global reduction, and consequently it
can respond to GVT-related messages more quickly than
simulating processors could, since this is its only job.
Third, and perhaps the most important one, TQ-GVT never
delays or blocks simulating processors at the end of the
time quantum, and hence no temporary disturbances on
communication can impact the progress of time quanta. In
the LBTS algorithm, however, a new band may start only
after all transient messages from the previous band have
been accounted for.
 Two methods can be used for advancing time quanta.
The first method depends upon a hardware clock to ad-
vance the time quantum at fixed intervals. Clocks on dif-
ferent processors, however, need not be precisely synchro-
nized, since a processor that is too far ahead or behind only
causes some messages to be counted in the next time quan-
tum. The other method simply requires that the GVT mas-
ter broadcast a special message periodically, upon the re-
ceipt of which each simulating processor will advance the
time quantum. The latter method requires more band-
width.
 The algorithm is briefly described below:

• At the beginning of the simulation, all processors,

including the GVT master, perform barrier syn-
chronization.
348
• When a message is sent, it is always marked with
the current time quantum of the sender.

• During the ith time quantum, the jth simulating
processor keeps track of Si,j, the number of mes-
sages sent by itself, OTi,j, the smallest timestamp
among all messages sent in this quantum, and
{Rk,j}, an array of integers indicating the number
of messages received marked with a time quantum
k.

• At the end of the time quantum i (i.e., when it is
time to move to the next time quantum), the jth
processor reports Si,j, OTi,j, {Rk,j}, as well as i, the
current time quantum index, and Ti,j, the local vir-
tual time, to the GVT master. As an example,
suppose that a processor, in the time quantum 10,
has sent 6 messages, with a smallest timestamp
being 35.3, and received 9 messages. Among
these 9 received messages, 3 were sent at time
quantum 10, 2 at time quantum 9, 4 at time quan-
tum 8. Besides, the local virtual time at the end of
the time quantum 10 is 40.8 (the local virtual time
must take into account the messages received in
this time quantum). The processor will then re-
port 10, 40.8, 35.3, 6, and {3, 2, 4} to the GVT
master.

• The GVT master maintains three arrays. The first
one is {TMi}, for the number of transient messages
from each time quantum. The second one,
{MVTi}, records the smallest timestamp among all
messages sent from each quantum. The last one,
{LVTj}, stores the local simulated time of each
processor.

• When receiving a report message for processor j,
the GVT master first obtains the time quantum in-
dex i, and then updates its three arrays according
to the following rules:
− TMi += Si,j
− For each k in {Rk,j}, TMk –= Rk,j
− If (OTi,j < MVTi) MVTi = OTi,j
− LVTj = Ti,j

• The new GVT value is the minimum among
{LVTj}, and {MVTi} for such i that TMi is a non-
zero, or formally:
− GVT=min(mini(MVTi| TMi>0), minj(LVTj))

 In the above version of the algorithm, the report mes-
sage contains an array of integers each of which denotes
the number of received messages marked with the corre-
sponding time quantum. In the DSIM implementation, a
maximum length is imposed on this array, by limiting the
reporting of received messages to the oldest time quantum
active at this processor (the smallest k such that Rk,j>0),
and possibly several others that follow immediately. This
change preserves the correctness of the algorithm; the only
effect may be the more conservative GVT value computed.

Chen and Szymanski

This happens when at most a limited number of time
quanta corresponding to the maximum length of the re-
ceived time quantum array allowed in the report message
can be removed from consideration at the end of a time
quantum. In practice, an array of size 2 to 4 gives the op-
timal performance. Hence, only 2 or 4 such numbers need
to be sent to the GVT master, no matter how many proces-
sors are being used.
 The correctness of the algorithm can be proved by
showing that any event message m1 received after a GVT
value gvt is received must have a timestamp ts(m1)≥ gvt.
 Proof. We prove this property by contradiction using
induction.
 Let’s assume that ts(m1)<gvt and i1 is the processor
that sent this message at time quantum s1. Let j1 be the
time quantum from which the last report message sent by
processor i1 that was received by the GVT master before
gvt was obtained. It cannot be that ts(m1)≥ Ti1,j1, since Ti1,j1
is taken into account in computing gvt, so Ti1,j1≥ gvt. Nei-
ther it could be that s1≤j1, since then ts(m1) would be re-
flected in the MVT value corresponding to s1 , contradicting
our assumption that ts(m1)<gvt. Hence, s1>j1 and ts(m1)<
Ti1,j1, so there must be another message m2, sent by a dif-
ferent processor i2, which caused a rollback on processor i1,
and satisfies gvt<ts(m1)<ts(m2), as a rollback never affects
the events with the same or earlier timestamps than the
timestamp of the rollback message itself. From that it fol-
lows that this message also satisfies s2>j2, where s2, j2 are
analogs of s1, j1.
 By induction, let’s assume that there is a message mk,
sent by processor ik, such that gvt>ts(mk) and sk≤jk, where
jk denotes the latest time quantum on processor ik that is in-
cluded in computing gvt and sk is the time quantum at
which message mk was sent. It cannot be that ts(mk)≥ Tik,jk,
since Tik,jk is taken into account in computing gvt, so
Tik,jk≥gvt. Hence, ts(mk)< Tik,jk, so there must be another
message mk+1, sent by a different processor ik+1, which
caused a rollback on processor ik, and satisfies
gvt<ts(mk)<ts(mk+1). We define sk+1, jk+1 as analogs of sk,
jk. For message mk+1, it cannot be that sk+1≤jk+1, since then
ts(mk+1) would be reflected in MVT value corresponding to
sk+1, contradicting our conclusion that ts(mk+1)<gvt.
 Hence, by induction we conclude that our assumption
that ts(m1)<gvt implies that there is an infinite sequence of
messages with timestamps smaller than gvt, which contra-
dicts the basic premise that each simulation can generate
only a finite number of messages in the finite simulation
time gvt.

3 IMPLEMENTATION DETAILS

In this section, several techniques related to memory usage
are described to provide the readers with an understanding
of the inner workings of DSIM. Although some similar
techniques may have been proposed in other Time Warp
349
systems, a combination of them used in DSIM defines the
exact design under which the experiments presented in this
paper have been run, thereby allowing replication of ex-
perimental results presented in this paper.

3.1 Local Fossil Collection

In Time Warp, a processed event becomes a fossil when its
timestamp is smaller than the GVT, and the operation of
releasing memory allocated for such events is called fossil
collection. Events cannot be immediately released after
having been processed, because of the possibility of roll-
backs. They must be kept in memory until fossil collection
is performed. Usually, there are two ways of maintaining
these processed events. The first approach uses a single
processed event list for all LPs (Logical Processes) on one
processor. The main drawback is that, when rollbacks oc-
cur on some LPs, it becomes difficult to keep the entire list
sorted. If the list becomes unsorted, then the entire list has
to be scanned in order to know which events are subject to
fossil collection. GTW used an on-the-fly technique
(Fujimoto and Hybinette 1997) to partially solve this prob-
lem, by checking events with local minimum timestamps
and ignoring other events. However, there may exist some
processed events with timestamps earlier than GVT that
cannot be reclaimed by this technique.
 The other approach to maintaining processed events is
to keep a separate processed event list on each LP. The
problem of unsorted lists no longer exists because it is al-
ways the head (the latest one) of the processed event list
that needs to be rolled back first. However, it introduces
another problem. As explained in (Carothers, Bauer and
Pearce 2000), it is costly to search through all those proc-
essed event lists during fossil collection, especially when
the number of LPs is high. ROSS (Carothers, Bauer and
Pearce 2000) solved this problem by grouping LPs into
kernel processes, thereby helping to reduce the number of
processed event lists. Another technique (Vee and Hsu
2002) is to sort these processed event lists further by their
tails (the earliest ones) so that lists with a tail larger than
the GVT can be completely skipped.
 DSIM adopts the separate processed event list ap-
proach, in which fossil collection is not carried out when
the GVT is updated. Instead, each LP checks if the GVT
has been updated before it is about to process an event. If
so, it will then compare the earliest processed event with
the GVT. Only if the GVT has been recently updated and
if the earliest processed event is earlier than the GVT will
the LP invoke the fossil collection procedure. Otherwise
fossil collection will be bypassed. Although this technique
does not decrease the number of operations, it improves the
locality of memory references, since the event memory re-
leased in the fossil collection procedure can be immedi-
ately reused in the processing of the new event (if there are
new events to be scheduled).

Chen and Szymanski

 Local Fossil Collection comes with its own draw-
backs. First, if an LP suddenly becomes inactive after a
highly active period and before the GVT is updated, it will
have no new events to process and consequently will not
be able to perform fossil collection. Second, delaying fos-
sil collection until an LP is processing an event may in-
crease memory usage, as more processed events will stay
in the memory.

3.2 Event Management

Event allocation and deallocation are often the most fre-
quently executed operations during discrete event simula-
tion. Low-level system calls cannot be directly used, since
such calls cannot be guaranteed to complete in a constant
time. To minimize the cost of these operations, DSIM cre-
ates a customized event allocator for each event type. The
rationale is that in C/C++, for objects of the same type, the
memory footprint is always the same. The actual amount
of memory used may vary from one object to another, but
any extra memory must be explicitly obtained, and this is
not a responsibility of the simulator.
 Since event allocators only handle events of equal
sizes, they can pre-allocate a number of memory buffers in
a free buffer pool. To handle a request for a new event, the
event allocator simply retrieves one buffer from the free
buffer pool. If the pool is empty, it will acquire more buff-
ers for it, using the low-level memory allocation function.
When an event is to be released, its buffer is returned to the
free buffer pool.
 In DSIM, an unprocessed event becomes a processed
one after it has been processed, and, conversely, a proc-
essed event becomes an unprocessed one after it has been
rolled back. To save memory and to avoid unnecessary
memory operations, however, both events are represented
by the same data structure, with a flag denoting the status
of the event. Therefore, within this single event data struc-
ture, there are two data blocks, one for the processed event
and the other for the unprocessed one. DSIM is capable of
overlying one over the other, to save memory further, as
these two blocks are never needed at the same time during
execution.
 DSIM adopts the direct cancellation approach pro-
posed by Fujimoto (Fujimoto 1989) for intra-processor
events and extends it to inter-processor events. When a
new inter-processor event is to be created and scheduled
for an LP in another processor, the event is packed into a
positive message. A stub event, containing only the time-
stamp of the new event, the message identifier, and the re-
ceiving LP identifier, is left behind to preserve the event
dependency. The stub event, treated in the same way as
other intra-processor events, will be inserted into the de-
pendent list of the event that scheduled the new inter-
processor event.
350
 When receiving a positive message, an LP must un-
pack the message to restore the inter-processor event, and
store the sender LP identifier and the message identifier
into an input queue. To cancel an inter-processor event, an
anti-message is created from the corresponding stub event.
When the receiver LP sees the anti-message, it will check
its input queue for presence of the inter-processor event to
be canceled by comparing the message identifier and the
sender LP identifier. In this way, the output queue can be
completely avoided, while the input queue is still retained,
but only for inter-processor events.

4 PROGRAMMING INTERFACE

DSIM comes with a simple programming interface that
hides many implementation details while providing much
freedom for programmers in making design decisions. To
build a simulation, a DSIM programmer must first define
the types of events, and then implement the LPs that com-
prise the simulation, and finally complete several auxiliary
functions according to certain rules.

4.1 Event Declaration

The following syntax is used to create a new event type
named new_event_t:

typedef tw_event_t < positive_data_t,
anti_data_t, type_id> new_event_t;

 In the above statement, positive_data_t, the positive
data type, is the type of the data stored in the unprocessed
event, while anti_data_t, the anti-data type, is the type of
the data stored in the processed event. The third parameter
type_id is the identifier of the event type. It must be dif-
ferent for each event type so that the LP can determine
what event has happened by checking this field of the
event.

4.2 State Saving versus Reverse Computation

The positive data type is decided by the simulation model
semantics. The determination of the anti-data type is more
difficult. Normally, it is determined by what data are
needed to make each event reversible. DSIM supports two
styles of undoing events, one is traditional state saving (in-
frequent state saving is not supported) and the other is
based on reverse computation (Carothers, Perumalla and
Fujimoto 1999). If the former is taken, the anti-data must
basically store any change made by the processing of an
event. For reverse computation, generally, much less in-
formation needs to be stored in the anti-data. For example,
if an ordinary random number generator is used during the
event processing, then the anti-data must contain the ran-
dom seed before the event arrives, which can be written
back to the random number generator if the event is to be

Chen and Szymanski

reversed. This is traditional state saving. In contrast, a re-
versible random number generator (Carothers, Perumalla
and Fujimoto 1999) can be used, which can go back to the
original state after the reverse function is called.

4.3 Implementing LPs

An LP class must be derived from the base class tw_lp.
There are five functions of tw_lp that can be overridden:
Start, Stop, Process, Undo, and Commit.
 The Start and Stop functions are called when the simu-
lation is started and stopped, respectively. The Process
function processes an unprocessed event, while the Undo
function revokes a processed event and brings the LP to the
previous state.
 The Commit function is called when a given processed
event memory is to be reclaimed (that is when the event time
is smaller or equal to the current GVT). This gives the LP
an opportunity to perform irreversible operations, such as
printing to the standard output or some others I/O actions. If
the event contains some pointer to allocated memory, it is
also in this function that the memory can be released.
 The Commit function is useful for debugging as well.
In a PDES program, most programming errors would cause
the total number of processed events to be different when
the number of processors varies. Locating the first event
that is incorrect is difficult, since a processed event may be
rolled back later. A customized Commit function would
allow only those committed events (processed events ear-
lier than the GVT) to be printed out. By comparing the
outputs of a program running on different numbers of
processors, incorrect events can be quickly identified.

4.4 Auxiliary Functions

Programmers must also implement several auxiliary func-
tions in order for the simulation to work properly. These
functions include id_to_proc, which returns the identifier
of the processor where a given LP resides, and id_to_lp,
which converts the identifier of the given LP to the pointer
to this LP. In DSIM, each LP has a unique integral identi-
fier that is used to address them. For instance, to schedule
an event for an LP, the identifier of that LP must be pro-
vided. DSIM will then call the id_to_proc function to de-
termine whether the destination LP is in the same proces-
sor. If so, it will call the id_to_lp function to obtain the
address and forward the event. Otherwise, DSIM will
simply pack the event into a message and then send it to
the destination processor.
 Another function that must be implemented by the
programmer is tw_main. In this function, a predefined
DSIM simulation engine must first be initialized. This
simulation engine is then used to create a set of LPs and to
initialize them one by one. After setting the parameters of
the simulation engine and calling its Setup function, the
351
Run function, which contains the main scheduler loop,
must be called to run the simulation. The simulation ter-
minates after the return from the Run function.

4.5 Shared vs. Distributed Memory Support

Although DSIM was designed for distributed memory
clusters, it supports shared-memory machines as well. The
reason for dual mode support is that shared-memory ma-
chines, while limited in the number of processors available,
may be a more convenient platform to program, debug, and
test PDES programs. The only difference between these
two modes is in the creation of LPs. In the distributed
mode, the program is only responsible for creating LPs that
are assigned to the current processor, while in the shared-
memory mode the program must create all LPs no matter
which processor they are assigned to. The GVT algorithm
proposed by Xiao et al. (Xiao et al. 1995) is adopted for
the shared-memory version. As integral identifiers rather
than addresses, are used to address LPs, programmers can
completely ignore the differences between these two
modes except when they have to create LPs, which can be
accomplished by merely a few lines of code.

4.6 Artificial Rollback

Another feature of DSIM is that it provides a special debug
mode to facilitate the debugging of PDES programs. If the
program is compiled with a macro DSIM_AR, artificial
rollbacks will be introduced even though the simulation is
executed on a single processor. This is achieved by using
an error-prone priority queue that does not always find the
earliest unprocessed event. Instead, with an adjustable
probability, this queue may retrieve a randomly chosen, ar-
bitrary event in the queue. Therefore, LPs will receive out-
of-timestamp order events even when there is only one
processor being used. The advantage of this technique is
that errors are now reproducible, so the sequence of roll-
backs remains the same every time the program is exe-
cuted. In contrast, a PDES program with a regular priority
queue running on multiple processors tends to produce dif-
ferent orders of execution, and therefore errors may appear
or disappear during different runs, making the program ex-
tremely hard to debug.

5 EXPERIMENTAL RESULTS

Experiments have been performed on two different clus-
ters, in order to evaluate the performance and scalability of
DSIM with respect to the PHOLD model (Fujimoto 1990).
The first set of experiments was carried out on a cluster of
40 nodes, where each node is an IBM Netfinity server with
two 700-MHz Intel Pentium III processors. Half of these
nodes are connected by fast Ethernet and the other by Gi-
gabit Ethernet.

Chen and Szymanski

 In the PHOLD model (Fujimoto 1990), each event
stays at an LP for an exponential time and then departs to
one of four nearest neighbors randomly chosen. In all ex-
periments presented here the number of initial events per
LP is always 16. LPs are organized into a two dimensional
X by Y grid, where X is the number of columns and Y is the
number of rows. N denotes the number of processors used.
 Strip partitioning by columns is selected so that each
processor has a sub grid of X/N by Y to simulate. One met-
ric, the ratio of remote events (or inter-processor events), is
of particular importance in asserting the performance of
any Time Warp simulations. For the PHOLD model that is
partitioned by columns, the ratios of remote events can be
easily deduced from X and N as follows. Only two col-
umns in each processor, the leftmost and the rightmost,
may generate events that must be sent to a different proces-
sor. However, on average only 1 out of 4 such events pro-
duced by LPs on these two columns will actually depart.
Therefore, the fraction of remote events is N/(2X).
 It must be noted that strip partitioning does not result
in fewest remote events. It is the block partitioning which
divides the entire grid into two-dimensional tiles, that leads
to the lowest percentage of remote events when X=Y.
However, one goal of the performance studies here is to
demonstrate the scalability of DSIM with different ratios of
remote events, so block partitioning was not implemented.

0.5 1 2 4 8 16 32 64
100000

1000000

1E7

E
ve

nt
 R

at
e

(e
ve

nt
s

pe
r s

ec
on

d)

N (Number of Processors)

 X=N*16, Y=1024
 X=N*8, Y=1024
 X=N*4, Y=1024
 X=N*2, Y=1024

seq

Figure 1. Performance of DSIM on a Netfinity Cluster
with Fixed Percentages of Remote Events

 It is also worth to note that although the PHOLD
model may seem to be a toy example, it is indeed difficult
to be parallelized, because there is no lookahead and the
event granularity is extremely low. Some real-world mod-
els, such as PCS networks (Carothers, Fujimoto and Yi-
Bing 1995), exhibit similar event behaviors as PHOLD,
only with higher ratios of local events and coarser event
granularity. Successful parallelization of the PHOLD
model may provide a lower bound on the DSIM perform-
ance on this class of real-world applications.
352
 The first set of experiments was designed to demon-
strate how DSIM scales with different percentages of re-
mote events (Figure 1). The number of processors marked
on the horizontal axis does not count the GVT master.
Here, the problem size was increased linearly as more
processors were used. The percentages of remote events
ranged from 3.125%, to 6.25%, 12.5%, and 25%. The ac-
tual percentages of remote events were slightly higher,
since there were anti-messages. It is evident from Figure 1
that the performance of DSIM drops as remote events in-
crease, due to the extra time needed for sending and receiv-
ing messages.
 In Figure 1, DSIM is also compared with a sequential
discrete event simulator that uses the same simulation en-
gine but with facilities to handle rollbacks and to exchange
message being removed. The overhead of parallelization
becomes manifest when comparing this simulator with the
sequential execution of DSIM, which is at least twice
slower. More interestingly, with decreasing numbers of
columns, the performance of the sequential simulator im-
proves while that of DSIM on one processor drops. The
former happens because of shrinking memory footprints
with fewer LPs. The latter results from the use of a par-
ticular parameter called event batch which controls the
number of consecutive events that can be processed in a
single batch. With more remote events, this parameter
must be decreased, and therefore the performance declines.
 The performance gap between 1 processor and 2 proc-
essors hints the overhead of remote events. The event-
processing rate may grow or drop when 2 processors are
used as opposed to 1, depending on the percentage of re-
mote events. However, in all cases starting from 2 proces-
sors on, DSIM maintains almost linear increases in event
rates, implying an excellent scalability of the simulator.

0 10 20 30 40 50 60 70
0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

Ev
en

t R
at

e
(e

ve
nt

s
pe

r s
ec

on
d)

N (Number of Processors)

 X=1024, Y=1024
 X=512, Y=2048
 X=256, Y=4096
 X=128, Y=8192

Figure 2. Performance of DSIM on a Netfinity Cluster
with Fixed Problem Sizes

 In the second set of experiments running on the same
cluster, the number of LPs simulated was fixed but the

Chen and Szymanski

numbers of processors varied (Figure 2). Four configura-
tions, namely, 1024 by 1024, 512 by 2048, 256 by 4096,
and 128 by 8912, give different ratios of remote events.
As these results indicate, DSIM is capable of simulating
about 10 millions events per second using 64 processors,
with 3.25% remote events (the 1024 by 1024 configura-
tion). When the ratio of remote events increases to 25%
(the 128 by 8192 configuration), DSIM is still able to
process more than 3 million events per second. For this
configuration, the improvement of using 64 processors
over 32 processors is minor, but with 32 processors the ra-
tio of remote events drops from 25% to 12.5% as in this set
of experiments the problem size is fixed.
 What is the speedup on 64 processors? Unfortunately,
for the presented performance studies, the term speedup
loses its precise meaning. All four configurations, each of
which contained 1 million LPs and 16 million events shown
in Figure 2 could not be executed on less than 8 processors
due to the memory requirement (even if the efficient sequen-
tial simulation engine were to be used), so it was impossible
to measure how fast a sequential simulation of the same
problem size would be. If, on the other hand, the data pre-
sented in Figure 1 are to be used to derive speedups, the re-
sults would be biased against parallel execution, since mod-
els of different sizes are simulated, and larger sizes mean
slower sequential speed, as evident in Figure 1. Even so, the
speedup of parallel execution on 64 processors of a 1024 by
1024 grid versus efficient sequential execution of a much
smaller size (16 by 1024) is still 20.3.

64 32 16 8
10000

100000

1000000

N
um

be
rs

 o
f R

em
ot

e
E

ve
nt

s/
G

V
T

M
es

sa
ge

s

Number of Processors

 Remote Events
 GVT Messages

Figure 3. Numbers of Remote Events/GVT Messages in
the 1024 by 1024 Configuration

 Figure 3 shows the numbers of remote events and
GVT messages in the 1024 by 1024 configuration. The
numbers of GVT messages stay roughly the same for dif-
ferent numbers of processors as they are proportional to the
product of the execution time and the number of proces-
sors, which in turn is proportional to the workload. This is
because the frequency of GVT updates is controlled by the
353
width of time quanta. In all experiments presented in this
paper, this width is 0.1-0.2 seconds, meaning that the GVT
value can be updated 5-10 times per second. Notice the
logarithmic scale used in the vertical axis – the ratios of
GVT messages to remote events are 0.39%, 0.68%, 1.3%,
and 2.6% respectively. These numbers illustrate the ex-
tremely low overhead of the TQ-GVT algorithm even with
a high GVT update frequency.
 Another set of experiments was run on an Alphaserver
cluster consisting of 750 nodes, connected by a Quadrics
interconnection network, located at Pittsburgh Supercom-
puting Center. This cluster was ranked 34th on the top 500
supercomputer list as of November 2004. Each node is a
SMP with 4 1-GHz processors and 4 Gbytes of memory.
Figure 4 depicts the event processing rates of DSIM on up
to 1024 simulating processors. The numbers alongside
each data point denote the numbers of extra processors that
were used for GVT masters. It has been empirically de-
termined that a GVT master in the TQ-GVT algorithm can
drive as many as 128 processors without degrading the per-
formance noticeably (whether more processors can be sup-
ported is yet to be established). Therefore, 2, 4, and 8 in-
termediate GVT masters were introduced for 256, 512,
and 1024 processors respectively.

0.5 1 2 4 8 16 32 64 128 256 512 1024

1000000

1E7

1E8
+8+1

+4+1

+2+1

+1

+1

+1

+1

+1

+1

+1

Ev
en

t R
at

e
(e

ve
nt

s
pe

r s
ec

od
s)

N (Number of Processors)

 X=N*8, Y=8192

seq

+1

Figure 4. Performance of DSIM on the PSC Cluster with
Fixed Percentages of Remote Events

 The number of columns increases as more simulating
processors are added, to maintain a constant percentage of
remote events of 6.25%. A performance curve similar to
those in Figure 1 is observed in Figure 4. In the 1024
processor case, which actually used 1033 processors,
67,108,862 LPs were simulated, yielding an event-
processing rate of 228 million events per second, and a
speedup of 296 (again, this speedup is somehow unfair to
parallel execution since it is impossible for any single CPU
to execute a simulation this large). Since each LP was as-
signed 16 events initially, at any moment during the simu-
lation there were total of 1,073,741,824 unprocessed
events.

Chen and Szymanski

6 CONCLUSION AND FUTURE WORK

As clusters become more prevailing, more and more PDES
applications will be executed on this type of parallel com-
puters. DSIM was developed under this premise. The ma-
jor difficulty of porting PDES applications to clusters is
designing an efficient and scalable GVT algorithm. The
Time Quantum GVT algorithm adopted by DSIM meets
these requirements. Furthermore, various improvements,
such as Local Fossil Collection and efficient event man-
agement, enable DSIM to run with an unprecedented speed
of 228 million events per second. As the same time, the
programmability of DSIM has been an equally important
design consideration to ensure that a programmer can
quickly get familiar with the simulator.
 DSIM is freely available with complete source code at
http://www.cs.rpi.edu/~cheng3/dsim. More
simulations will be implemented to verify its performance
for various applications. The Time Quantum GVT algo-
rithm will continue to be improved in order to enable Time
Warp simulations on tens of thousands or even millions of
processors. Moreover, as DSIM is an open source project,
it is hoped that it will provide a standard simulation plat-
form for researchers to implement and test various PDES
algorithms.

ACKNOWLEDGMENTS

The work presented in this paper has been done while the
first author was a postdoctoral researcher associate at the
Center for Pervasive Computing and Networking, RPI,
Troy, NY. The largest simulations were carried out on the
National Science Foundation Terascale Computing System
at the Pittsburgh Supercomputing Center under the grant of
time PSC IRI05001P. The authors wish also to express
their gratitude to Professors Christopher Carothers, Carl
Tropper and Adelinde Uhrmacher for their valuable com-
ments on an early version of this paper.

REFERENCES

Baezner, D., G. Lomow and B. Unger. 1994. Parallel simu-
lation environment based on time warp. International
Journal in Computer Simulation, 4(2): 183.

Baldwin, R., M. J. Chung and Y. Chung. 1991. Overlap-
ping window algorithm for computing GVT in Time
Warp. 11th International Conference on Distributed
Computing Systems (Cat. No.91CH2996-7), 20-24
May 1991, 534-41, Arlington, TX: IEEE Comput.
Soc. Press.

Bauer, H. and C. Sporrer. 1992. Distributed logic simula-
tion and an approach to asynchronous GVT-
calculation. Proceedings of the 1992 SCS Western
Simulation MultiConference on Parallel and Distrib-
uted Simulation, 205-208, Newport Beach, CA: SCS.
354
Bellenot, S. 1990. Global Virtual Time Algorithms. Pro-
ceedings of the SCS Multiconference on Distributed
Simulation, 122-127, San Diego, CA: Soc. for Com-
puter Simulation Int.

Carothers, C. D., D. Bauer and S. Pearce. 2000. ROSS: a
high-performance, low memory, modular Time Warp
system, 53, Los Alamitos, CA: IEEE.

Carothers, C. D., R. M. Fujimoto and L. Yi-Bing. 1995. A
case study in simulating PCS networks using time
warp, 87, Lake Placid, NY: IEEE Comput. Soc. Press.

Carothers, C. D., K. S. Perumalla and R. M. Fujimoto.
1999. Efficient optimistic parallel simulations using
reverse computation. ACM Transactions on Modeling
and Computer Simulation 9(3): 224.

Choe, M. and C. Tropper. 1998. An Efficient GVT Compu-
tation Using Snapshots. CSMA 98, 33-43.

D'Souza, L. M., X. Fan and P. A. Wilsey. 1994. pGVT: an
algorithm for accurate GVT estimation. Proceedings
of 8th Workshop on Parallel and Distributed Simula-
tion, 102-109, Edinburgh, UK: SCS.

Das, S., R. Fujimoto, K. Panesar, D. Allison and M. Hybi-
nette. 1994. GTW: a time warp system for shared
memory multiprocessors. Proceedings of Winter Simu-
lation Conference, 1332-1339, M. S. Manivannan and
J. D. Tew, Piscataway, NY: Institute of Electrical and
Electronics Engineers.

Das, S. K. and F. Sarkar. 1995. A hypercube algorithm for
GVT computation and its application in optimistic
parallel simulation. Proceedings of Simulation Sympo-
sium, 51-60, Phoenix, AZ: IEEE Comput. Soc. Press.

Fujimoto, R. M. 1989. Time warp on a shared memory
multiprocessor. Transactions of the Society for Com-
puter Simulation 6(3): 211-239.

Fujimoto, R. M. 1990. Performance of time warp under
synthetic workloads. Distributed Simulation. Proceed-
ings of the SCS Multiconference, 23-28, San Diego,
CA: SCS.

Fujimoto, R. M. and M. Hybinette. 1997. Computing
global virtual time in shared-memory multiprocessors.
ACM Transactions on Modeling and Computer Simu-
latio,. 7(4): 425-46.

Jefferson, D., B. Beckman, F. Wieland, L. Blume and M.
Diloreto. Time warp operating system. Proceedings of
the eleventh ACM Symposium on Operating systems
principles, 77-93, ACM Press.

Jefferson, D. R. 1985. Virtual time. ACM Transactions on
Programming Languages and Systems, 7(3): 404-25.

Kim, H. K. and J. Jean. 1996. Concurrency preserving par-
titioning (CPP) for parallel logic simulation, 98, Los
Alamitos, CA: IEEE.

Martin, D. E., P. A. Wilsey, R. J. Hoekstra, E. R. Keiter, S.
A. Hutchinson, T. V. Russo and L. J. Waters. 2003.
Redesigning the WARPED simulation kernel for
analysis and application development. Proceedings

http://www.cs.rpi.edu/~cheng3/dsim

Chen and Szymanski

36th Annual Simulation Symposium (ANSS-36 2003),
216-23, Orlando, FL: IEEE Comput. Soc.

Mascarenhas, E., F. Knop and V. Rego. 1995. ParaSol: a
multithreaded system for parallel simulation based on
mobile threads, 690, Piscataway, NJ: IEEE.

Mattern, F. 1993. Efficient algorithms for distributed snap-
shots and global virtual time approximation. Journal
of Parallel and Distributed Computing 18(4): 423-34.

Perumalla, K. and R. Fujimoto. 2001. Virtual time syn-
chronization over unreliable network transport. Pro-
ceedings 15th Workshop on Parallel and Distributed
Simulation, 129, Lake Arrowehead, CA: IEEE Com-
put. Soc.

Preiss, B. R. 1989. The Yaddes Distributed Discrete Event
Simulation Speficiation Lnaugage and Execution En-
vironment. Proceedings of the SCS Multiconference
on Distributed Simulation, 139-144.

Samadi, B. 1985. Distributed Simulation, Algorithms and
Performance Analysis. Computer Science Department,
University of California, Los Angeles.

Srinivasan, S. and P. F. Reynolds, Jr. 1993. Non-
interfering GVT computation via asynchronous global
reductions. Proceedings of 1993 Winter Simulation
Conference, G. W. Evans, M. Mollaghasemi, E. C.
Russell and W. E. Biles, eds. 740-749, Piscataway,
NJ: Institute of Electrical and Electronics Engineers.

Steinman, J. S., C. A. Lee, L. F. Wilson and D. M. Nicol
1995. Global virtual time and distributed synchroniza-
tion. Proceedings 9th Workshop on Parallel and Dis-
tributed Simulation (ACM/IEEE), 14-16 June 1995,
139-48, Lake Placid, NY, USA, IEEE Comput. Soc.
Press.

Tomlinson, A. I. and V. K. Garg. 1993. An algorithm for
minimally latent global virtual time. 1993 Workshop
on Parallel and Distributed Simulation, 16-19 May
1993, 35-42, San Diego, CA, USA, SCS.

Vee, V.-Y. and W.-J. Hsu. 2002. Pal: a new fossil collector
for time warp. Proceedings 16th Workshop on Paral-
lel and Distributed Simulation, 35-42, Washington,
DC, USA, IEEE Comput. Soc.

Wieland, F., L. Hawley, A. Feinberg, M. Di Loreto, L.
Blume, P. Reiher, B. Beckman, P. Hontalas, S. Bel-
lenot and D. Jefferson. 1989. Distributed combat
simulation and time warp. The model and its perform-
ance, 14, Tampa, FL, USA, Publ by Soc for Com-
puter Simulation Int, San Diego, CA, USA.

Xiao, Z., F. Gomes, B. Unger and J. Cleary. 1995. A fast
asynchronous GVT algorithm for shared memory mul-
tiprocessor architectures. Proceedings 9th Workshop
on Parallel and Distributed Simulation (ACM/IEEE),
203-208, Lake Placid, NY: IEEE Comput. Soc. Press.
355
AUTHOR BIOGRAPHIES

GILBERT CHEN is a simulation design engineer in The
MathWorks, Inc. His research interests include parallel
discrete event simulation, simulation architecture, and
wireless sensor networks. Prior to joining The Math-
Works, he had been a postdoctoral research associate in the
Center for Pervasive Computing and Networking at Rens-
selaer Polytechnic Institute, where he obtained his PhD in
Computer Science.

BOLESLAW K. SZYMANSKI is the Director of the Cen-
ter for Pervasive Computing and Networking and a Profes-
sor of Computer Science at Rensselaer Polytechnic Institute.
He received his Ph.D. in Computer Science from the Na-
tional Academy of Sciences in Warsaw, Poland, in 1976.
Prior to joining RPI in 1985, he was a faculty member at the
Department of Computer and Information Sciences at Uni-
versity of Pennsylvania. He is an author and co-author of
more than two hundred fifty scientific publications and an
editor of four books. Dr. Szymanski is also an Editor-in-
Chief of Scientific Programming and an Area Editor of
Simulations. He is also an IEEE fellow and a member of the
IEEE Computer Society, and the Association for Computing
Machinery. Dr. Szymanski's interests include distributed and
parallel computing and system modeling and simulation. His
recent work includes sensor networks, on-line network simu-
lation, and network security.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

