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ABSTRACT 

Should we pool capacities or not? This is a question that 
one can regularly be confronted with in operations and 
service management. It is a question that necessarily 
requires a combination of queueing (as OR discipline) and 
simulation (as evaluative tool) and further steps for 
optimization. It will be illustrated that a combined 
approach (SimOR) of Simulation (techniques and tools) 
and classical Operations Research  (queueing, linear 
programming and scheduling) can be most beneficial. 
First, an instructive example of parallel queues will be 
provided which shows the necessary and fruitful 
combination of queueing and simulation. Next, the 
combined approach will also be illustrated for the 
optimization of:  call centers, checking-in at airports,  
blood platelet production, and train scheduling for 
railways. Whether we should pool or not is thus just one 
simple question for which this SimOR approach can be 
most fruitful if not necessary for practical optimization. 

1 INTRODUCTION 

Simulation, or more precisely as will be meant throughout 
this paper: discrete event simulation, is well known as a 
most powerful tool for process and performance evaluation 
in a vast majority of fields such as to evaluate 
 

• process flows and bottlenecks, 
• throughputs and delays,  
• capacities. 
 

Standard applications are found in the production sector, 
the service industry (call centers, administrative logistics 
and hospitals) and transportation (public transportation 
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systems, road traffic, airports, harbours, maritime, express 
delivery systems and so on). 

But also numerous other non-standard applications can 
be referred to (e.g. recreational parks, the hospitality 
sector, fire and ambulance systems, penitentiary 
institutions, personnel management, parking management, 
evacuation models and so on). 

This success of simulation can be attributed to a 
number of factors such as: 

 
(i) the continuous drive and need for process 

improvement and performance objectives (such as 
profits to be maximized or costs to be minimized), 

(ii) the potential of simulation to model real-life 
complexities with almost no limitations, 

(iii) the availability of both general purpose and 
special purpose (application oriented) simulation 
software. 

 
In most applications simulation is necessarily required, 

as analytic techniques, most notably OR (Operations 
Research)-techniques such as queueing analysis and 
mathematical programming, are insufficient due to: 

 
• the complexity of the system, 
• the underlying simplifying assumptions required, 
• the various types of (non-exponential) stochastics 

involved. 
 
And in line with (i) simulation ìs indeed also generally 

seen and used for optimization. Here the ‘optimization’ 
standardly relies upon executing the simulation for 
different scenarios such as typically for infrastructure and 
process layout, capacities and planning. 
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However, though this scenario ‘optimization’ is a 
major step, it remains to be realized that simulation is nó 
optimization tool by itself. Clearly, if the optimization 
problem can be parameterized, such as typically for 
capacity determination, different search approaches can be 
suggested to expedite and automate the search for optimal 
values. An elegant exposé of such methods can be found in 
Krug (2002).  
This is where OR might contribute in either of two 
directions: 
 

1. To suggest candidate scenarios to choose for in 
the first place, as based upon OR-results and 
insights. 

2. To provide OR-optimization techniques in 
situations in which no common sense guesses for 
a ‘nearly optimal scenario’ can be made.  

 
A combination of OR and simulation might then become 
most beneficial.  
 

• Simulation for its evaluation, 
• OR for its optimization. 

 
The advantages of this combination for optimization are 
schematically represented in Table 1. 

 
Table 1: Combined Advantages 

Simulation OR 
Advantages Disadvantages 
Real-life complexities 
Real-life stochastics 

Simple models 
Strict assumptions 

Disadvantages Advantages 
Evaluation 
By scenarios 
By numbers only 

Optimization 
By techniques 
Also by insights 

 
Advantages Advantages 

Optimization 

Simulation Operations Research 
 
Both directions of this combination will be illustrated 

in this paper by specific practical applications: direction 1 
in section 2 and direction 2 in section 3. In section 4, also a 
third direction is shown. In this case an optimizing OR-
technique (dynamic programming) and the evaluation of its 
optimal solution by simulation will be combined to 
conclude a practical nearly optimal solution. Finally, in 
section 5 another combined use of OR and simulation will 
be described briefly. 
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The illustrations all rely upon practical and recent 
research and schematically concern the topics and 
combinations with simulation shown in Table 2. 

 
Table 2: Topics and Method Combinations 

Section Topic Combination 
2 
3 
4 
5 

Pooling in call centers 
Check-in planning 
Blood banks 
Railways 

SIM + Q 
SIM + LP 
SIM + DP 

SIM + Q + DP 
Legend: 

SIM: Simulation; Q: Queueing 
DP: Dynamic Programming 
LP: Linear Programming 

2 CALL CENTERS: TO POOL OR NOT? 

Should we pool service capacities or not is a question of 
general interest in a variety of practical situations ranging 
from counters in postal offices, check-in desks at airports, 
physicians within hospitals up to whole agent groups 
within or between call centers. The general perception 
seems to exist that pooling capacities will always be 
advantageous, at least from a performance or capacity 
point of view. For call centers that is, to merge agent 
groups into one agent group so that the workloads can be 
balanced more. Indeed, when two separate agents would be 
pooled none of the agents can ever be idle while there are 
still calls waiting. 

2.1 An instructive example 

This perception also seems supported by the standard delay 
formula for a single (exponential) server with arrival rate λ 
and service rate μ: D = 1 / (μ – λ) as by pooling two of 
these servers, each with arrival rate λ and service rate μ, as 
if they are merged into one single server which is twice as 
fast, the mean delay would thus be reduced to by a factor 2 
as by D = 1 / (2μ – 2λ). In other words, at first glance 
pooling two servers thus seems to lead to a mean delay 
reduction of roughly 50%. 

This reasoning however relies upon the implicit 
assumption of two identical servers or rather identical 
service characteristics, with identical means. When 
different services are involved in contrast, the advantage of 
pooling remains questionable. More precisely, here a 
second basic result from queueing theory is to be realized: 
a result that seems hardly realized in practical call center 
environments. For the simple case of a single server this 
result is known as the Pollaczek-Khintchine (PK) formula. 
This formula, which is exact for the single server case,  
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Figure 1: Pooling Scenarios by Queueing (Q) and Simulation (S) 
expresses the effect of service variability, as made explicit  
by: 
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As a consequence, if we would pool two separate 
servers, say for services of type 1 and type 2, as if it 
becomes one twice as faster server, we should also realize 
the variability due to mixing. By mixing different services 
(call types) extra service variability is brought in as each 
consecutive service can be of either type 1 or 2. As made 
explicit by the PK-formula this may lead to an increase of 
the mean waiting time (and delay). 

This is illustrated in Figure 1 for the situation of two 
job (call) types 1 and 2 with mean service (call) durations 
τ1 = 1 and τ2 = 10 minutes but arrival rates λ1 = 10 λ2. The 
traffic load ρ = λ1τ1 = λ2τ2 is set at 83%, so that both call 
types bring in an equal workload. 
The results show that the unpooled case is still superior, at 
least for the average waiting time. These results, for both 
the strictly pooled and unpooled case as well as the 
underlying insight thus purely rely upon queueing theory 
(as a standard discipline of Operations Research (OR)). 

Based on these queueing insights, an alternative 
scenario can now be thought of that may combine the 
advantages of both scenarios: 

 
• No (or minimum) idleness as for the pooled case, 
• No (or minimum) service variability as for the 

unpooled case. 
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To this end, the servers should still be kept devoted for 
type 1 and type 2 jobs (calls). But in addition, server 2 can 
also take a type 1 job (call) if there is no type 2 job (call) 
waiting and vice versa. The results for this two-way 
overflow system, as shown in Figure 2, already indicate an 
improvement over both the pooled and the unpooled case. 
As a further improvement, a one-way overflow is therefore 
suggested in which type 1 calls may but type 2 calls may 
not overflow. This scenario not only shows a further 
reduction of the waiting time allover but also improves the 
unpooled scenario for type 1 (91%) calls. 

2.2 Combined Approach 

However, in order to achieve these improvements 
simulation became necessarily required as there are no 
sufficient analytic results to capture overflow features. A 
combination of the queueing insights for finding improving 
scenarios and of simulation for evaluating these scenarios 
may thus turn out to be fruitful and illustrated by the 
results in Figure 2. 

In addition, by simulation all sorts of performance 
aspects can be evaluated at the same time. In this case, 
most notably, a remarkably small percentage of overflow.  

The instructive results for this simple example may 
seem of purely academic nature. But in contrast, similar 
results also appear to apply at larger scale, that is for larger 
number of servers as of realistic order for call centers. 
First, by standard queueing formula the following 
approximate expression has been derived in (Van Dijk and 
Van der Sluis 2004) for the effect of pooling two agent 
groups, each of equal size of s agents with one group 
separately for type 1 calls and one group separately for 
type 2 calls with arrival rate λi and mean call duration τi for 
type i calls at group i, i = 1,2,  
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      WA = mean waiting time for the unpooled case, 
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This new (OR)-formula shows that also for values s 
larger than s = 1 (as in the example) the reduction effect by  
pooling of at least 50% when pooling identical services, 
might completely vanish due to the mixing effect when 
pooling non-identical services (with means τ1 and τ2). 

Next, by simulation this insight and approximate 
formula as well as the overflow scenarios have been 
evaluated more precisely for different numbers of agents s 
and mix situations.  

2.3 Results (Larger Number of Servers) 

The results by both the OR-formula and simulation showed 
that pooling only becomes superior over the strictly 
unpooled case beyond some sufficiently large number of 
agents. However, the one-way overflow scenario as could 
only be shown by simulation, turned out to be generally 
superior to both the pooled and unpooled case, though 
again up to some sufficiently large number of agents. 
 

Figure 2: Comparison of Pooling Scenarios by Simulation 
with 2s servers 

 
This is illustrated in Figure 2 with s the number of 

servers (agents) in the unpooled case for each of two server 
groups (hence with a total number of 2s servers). By 
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simulation, it illustrates that the mean waiting time for the 
overflow system, with just a small % of overflow, 
improves both the pooled and unpooled scenarios with up 
to 80 agents (s = 40). 

In Van Dijk and Van der Sluis (2005) also other 
scenarios are suggested, again as based upon queueing 
insights, which, by simulation, appear to lead to further 
improvement.  

3 CHECK-IN PLANNING 

3.1 Problem Formulation and Approach 

Check-in capacity, in terms of desks and desk-(labour)-
hours, can be a scarce resource at airports. To minimize the 
required number of desks two essentially different 
optimization problems are involved: 
 

P1. A minimization of the required number of desks for 
a given flight during the opening hours for that 
flight in order to meet a given service level (% of 
travelers with less than so many minutes waiting 
time) which is of a stochastic nature. 

P2. A minimization and scheduling in order to 
minimize the total number of desks for a number of 
flights during a day, which is of a pure deterministic 
nature. 

 
A two-step procedure has therefore been proposed as 

will be discussed and illustrated more detailed below. 
 
Step 1:  For P1 as based upon simulation 
Step 2: For P2 as based upon LP  
 (Linear Programming) 

3.2 Step 1: Simulation 

Despite the fact that a check-in process for just a single 
flight (or group of flights) with just a small fixed number 
of desks can be thought of as a simple multi-server 
queueing model for which standard M/M/s-formulas are 
available, the opposite appears to be true. Simulation will 
necessarily be required for a number of reasons: 
 

1. Most notably, as the arrival process, roughly from 
50-300 passengers during 1 up to 4 hours for a 
single flight, is far from homogeneous over the 
interval of opening hours, so that a Poisson 
assumption is far from realistic. 

2. As the arrival process in relation to the check-in 
times, from a few minutes up to a quarter of an 
hour, does not justify a steady state analysis or 
‘averaging’ at all. 

3. As there can be a strong ‘initial’ bias when the 
desks are opened prior to the flight. 
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4. As the check-in times themselves are far from 

exponential. 
5. As there is a short fixed time frame of opening 

interval. 
 
Each of these aspects by itself violates an analytic 

steady state analysis (by standard queueing results). In 
contrast, terminating simulation will necessarily be 
required. 
 Instructive Example As an instructive, yet realistic, 
example an arrival curve was used as by realistic data for 
an intercontinental flight from Schiphol (Amsterdam) 
airport. The service level was set at 90% of all travelers to 
have a waiting time of no more than 10 minutes. The 
‘standard’ planning as based upon M/M/s-calculations 
would lead to the left figure. By simulation the right figure 
was obtained.  
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Figure 3: Constant and Dynamic Desk Capacities by 
Queueing (left) and by Simulation (right) 
 
The simulation shows a triple win: 
 

1. in the total number of desk hours (from 12 to 8), 
2. in mean waiting times (from 20 to 12 min), 
3. in excessive waiting times (more than 30 min in 

the first opening hour) for the left case. 
 

 Animation As an additional appealing feature of 
simulation of practical purpose in this case, insight in how 
long an initial burst of travelers would last or how fast it 
would vanish could well be visualized by animation. 

3.3 Step 2: OR Approach (Linear Programming) 

Once the required number of desks are determined by the 
hour in step 1 for a number of flights during the day a 
tough optimization problem remains of how to schedule 
the desks so as to minimize the total number of desks 
during any hour as well as the total number of desk-
(labour)-hours. Here additional practical conditions may 
have to be taken into account such as most naturally that 
desks for one and the same flight should be adjacent. 
 Example As a simple (fictitious) example consider the 
desk requirements as shown in Figure 4 for 5 flights during 
9 hours (periods), as determined by step 1. The total 
number of desks required then never exceeds 4.  
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Figure 4: Desks Requirements of 5 Flights 

 
However, a straightforward Earliest Release Date 

(ERD) desk allocation as shown in Figure 5, would lead to 
an unfeasible solution as the desks for flight 5 are not 
adjacent. (This could be resolved by using two more desks 
5, 6 and assigning desks 4, 5 and 6 to flight 5). However, 
in this example a feasible solution with 4 desks is easily 
found as shown in the lower figure. 
 

Figure 5: An (In)feasible Schedule 
 

As shown in Van Dijk and Van der Sluis (2003) also, 
for more realistic orders with hundreds of flights an 
optimal solution can be found by solving the following LP-
formulation. (In Duin and Van der Sluis (2004), it is also 
shown that this problem is NP-hard so that heuristics may 
be more efficient to use).  
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where 
 

D: Total number of desks required (indexed 1 to D); 
If : Check-in time interval of flight f (with f = 1,…,F); 
df : Largest desk number assigned to flight f; 
nf : Number of desks required for flight f. 

Infeasible schedule
4 2 2 2 5 5 5
3 1 1 1 4 4 4
2 1 1 1 3 3 3 5 5 5
1 1 1 1 3 3 3 5 5 5

d \ t 1 2 3 4 5 6 7 8 9
Feasible schedule

4 2 2 2 5 5 5
3 1 1 1 3 3 3 5 5 5
2 1 1 1 3 3 3 5 5 5
1 1 1 1 4 4 4

d \ t 1 2 3 4 5 6 7 8 9
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 As shown in Van Dijk and Van der Sluis (2003), a 
similar LP-formulation can also be given for the 
optimization problem of variable allocation in which the 
number of desks, as determined by step 2, may vary by the 
hour which may lead to further savings. This is illustrated 
in Figure 6 for an example data set of 10 flights which 
leads to a further reduction in desks (from 17 to 15) and 
desk hours (from 117 to 92). The combination of 
(terminating) simulation and LP-optimization so turned out 
to be most beneficial.  
 

 
Figure 6: Constant and Dynamic Optimal Desk Schedules 
for 10 flights 

 
 Remark: In Atkins et al. (2003) another application of 
a combined simulation - linear programming approach for 
check-in planning was reported and awarded the best 
practice prize at the 2003 conference of CORS (the 
Canadian Operations Research Society). 
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27
4 BLOOD MANAGEMENT 

4.1 Problem Motivation 

Blood management is a problem of general human interest 
with a number of concerns and complications. Clearly, by 
far the most dominant concern is the risk for infections and 
contamination such as by HIV and hepatitis. Secondly, the 
necessity of natural blood will remain, despite 
technological developments for substitute blood products. 
This supply has to rely upon voluntary donors. Particularly, 
in underdeveloped countries (70% of the entire population) 
there is still a shortage. Furthermore, there are a number of 
complicating aspects of logistical nature: roughly to be 
distinguished in the transport to and from blood banks for 
blood processing within limited time frames and the 
inventory management at both blood banks and hospitals to 
meet the demand. Our problem of interest will concentrate 
on the last aspect: on the production and inventory 
management of blood platelets. Here there are a number of 
conflicting aspects.  

On the one hand, the demand is highly ‘uncertain’ and 
despite planned surgeries (if such information is used) 
roughly 50% (at week basis) still remains to be 
unpredictable. And clearly, as lives may be at at risk, 
shortages are to be minimized. 

On the other hand, as the supply is voluntary while 
such shortages may take place, blood is to be considered as 
highly precious. Any spill, by outdating, of blood 
(products) is thus highly ‘un’desirable if not to be avoided 
at all. As an extra complicating factor, blood platelets 
(thrombocytes) have a limited life-time or rather ‘shelf life’ 
of at most 6 days, while red blood cells and plasma in all 
sorts of blood types can be kept for months up to over a 
year. In addition, regular production of a platelet pool takes 
about one day. Hence production volumes should be set 
carefully. 

Using OR-techniques, we derive an optimal strategy, 
but it requires simulation to investigate its structure. From 
that, a practical rule is derived and optimal parameters are 
found via a simulation-based search algorithm. 

4.2 Simulation and OR Approaches 

Early studies and reviews on inventory management of 
perishable products, such as by Nahmias (1982) and 
Prastacos (1984) and various references therein, therefore 
already do contain applications of and focus on blood 
inventory management. 

The ‘experimental’ studies reported in these references 
(e.g. see Pinson et al. 1972, Katz et al. 1983) generally 
concern the evaluation and comparison of different order-
up-to inventory strategies by means of simulation. 

However, the question to which extent these strategies 
are even ‘near-to-optimal’ remains open, especially when 
9
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taking into account several complicating aspects such as 
distinguishing two types of patients: patients (mainly for 
Hematology) which prefer the ‘freshest’ pools available, 
and patients (mainly for general surgery) which can be 
treated by pools of any age up to the maximal shelf live. 

As a relatively standard OR-approach, in contrast, also 
‘simple’ dynamic programming formulations for 
perishable inventory management date back to these early 
references (e.g. Pierskalla and Roach 1972, Cohen and 
Pierskalla 1974). These however generally fail to be 
implemented due to the dimensionality curse. The number 
of states and computational effort becomes prohibitively 
large (easily in the order of 1050 computations). 
Experimental blood studies by dynamic programming have 
therefore not been reported other than recently presented 
(see Blake 2003), under a number of restricting simplifying 
assumptions.  

4.3 Combined Approach 

In Haijema, Van der Wal and Van Dijk (2004 and 2006) a 
combined ‘new’ approach for the blood platelet inventory 
problem has therefore been followed, which combines OR 
and simulation by the following steps: 

Step 1: First, a stochastic dynamic programming 
(SDP) formulation is provided. 

Step 2: The dimension of the (SDP) formulation is 
then reduced (downsized) by aggregating the 
state space and demands so that the downsized 
(SDP) problem can be solved numerically 
(using successive approximation). That is, the 
optimal value and an optimal strategy is 
determined for the downsized SDP. 

Step 3: Then, as essential tying step, this optimal 
policy is (re)evaluated and run by simulation 
in order to investigate the structure of the 
optimal strategy. Therefore we ‘register’ the 
frequency of (state, action)-pairs for the down-
sized problem. 

Step 4: By a heuristic search procedure a simple 
practical near to optimal order-up-to strategy is 
then derived for a rule that resembles the 
structure at the ‘simulation table’. 

Step 5: The quality (near-to-optimality) of this 
practical simple order-up-to strategy is then 
also evaluated by simulation. 

4.4 OR and Simulation Step 

As the technical (mathematical) details of steps 1 and 2 are 
somewhat ‘standard’ but also ‘complicated’ and worked 
out in detail in Haijema, Van der Wal and Van Dijk 
(2006), let us just restrict to an illustration of the essential 
OR and Simulation steps 1 and 3. 
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Step 1 OR Approach (SDP) 
As for step 1 the state of the system is described by (d,x) 
with  
 

d: the day of the week (d = 1,2,….,7) and  
x = (x1, x2,…., xm) the inventory state with xr = the 

number of pools with a residual life time of r days 
(maximal m = 6 days) (A pool is one patient-
transfusion unit containing the platelets of 5 
different donations). 

 
And let  
 

Vn(d,x): represent the minimal expected costs over n 
days when starting in state (d,x). 

 
The optimal inventory strategy and production actions 

are then determined by iteratively computing (solving) the 
SDP-equations for n = 1,2,….. 

[ ]1( , ) min ( , ) ( ) ( 1, ( , , ))n k d nd c k p b d t k b−= + +∑V x x V x  

with  
 

k  the production action,  
c(x,k) the one day costs in state x under production k, 
pd(b) the probability for a (composite) demand b, 
t(x,k,b) the new inventory state depending on k, b, x, 

and some issuing policy, and  
V0(d, x) ≡ 0. 

 
However, for a realistically sized problem for one of the 
Dutch regional blood banks the computational complexity 
of this SDP for a one-week iteration already becomes of an 
order 1014, which makes the computation prohibitively 
large. 

Therefore, we have downsized the demands and 
inventory levels by aggregating the pools in quantities of 4. 
This strongly reduces the computational complexity, so 
that an optimal strategy can be computed for this 
downsized problem by the optimizing actions of the SDP. 
However, in practice one needs a simple rule and this 
optimal strategy has no simple structure. For example, it 
prescribes the following production volumes on Tuesday at 
the following states, which all have the same total 
inventory level of 14 pools, but of varying ages: 

 
Table 2: Part of the Optimal Strategy of the SDP  

Production Inventory (old,…, young)
7 (0, 0, 5, 0, 0, 9)
8 (0, 0, 6, 0, 0, 8)
9 (0, 0, 8, 0, 0, 6)

10 (0, 6, 2, 0, 0, 6)
10 (5, 0, 3, 0, 0, 6)  
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 Table 3: Simulation Frequency Table of (State, Action)-Pairs on Tuesdays from Simulation  
 of Optimal SDP Solution for 100,000 Weeks 

I 2 3 4 5 6 7 8 9 10 11 12 13 14 cum.
Order-up-to

23 4 4
22 28 28
21 96 96
20 267 267
19 2 748 3 753
18 18 1928 31 1 1978
17 6331 4490 353 26 1 11201
16 8260 2078 783 7 11128
15 3131 14123 20926 23646 10087 2593 39 74545
: 
0

cum. 3131 14123 20926 23646 18347 11002 5330 2290 805 272 96 28 4 100000

 
Anticipating outdating we aggregate the predicted final 
inventory, after subtracting average demand according to 
some issuing policy for the two types of demands. 
 
Step 3 Simulation 
In order to derive a simple order-up-to strategy which only 
depends on the total predicted inventory, the actual platelet 
production-inventory process is therefore simulated for 
100,000 replications so as to register how often which total 
predicted final inventory level (I) and corresponding action 
occurs under the optimal strategy (as determined by SDP) 
for the downsized problem. As an illustration, for a 
particular day of the week (in this case Tuesday) and the 
dataset of the regional blood bank, this led to the 
‘simulation table’ in Table 3. 

For example, it shows by row 15 and column 7 that 
during the 100,000 replications 2593 times a state was 
visited with a total expected final inventory (I) of 7 
followed by a production decision of 8 (order-up-to 15). 
Order up-to-level 15 occurs in 74.5% of the states visited, 
however often a higher production is optimal. The order-
up-to level can be seen as a target-inventory level for 
Wednesday mornings. 

We conclude that a simple order-up-to rule might 
perform well. By investigating the states at which the 
optimal production volume is higher we have derived an 
even better rule that closely resembles the optimal 
production strategy.  

The search for the best values of the order-up-to 
parameters for the original, full-sized problem is done via a 
simulation-based search algorithm, as reported in Haijema, 
Van der Wal and Van Dijk (2006). Finally we have used 
simulation models to verify the results, when to take into 
account the multiple blood types and the uncertainty at the 
supply side, see Haijema, Van der Wal and Van Dijk 
(2004). 
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4.5 Results 

Applying this approach to data from a Dutch regional 
blood bank, we could draw the following conclusions: 

1. The simple order-up-to rule reduces the spill from 
roughly 15 to 20%, as a figure that also seems 
rather standard worldwide, to less than 1% (while 
also shortages were reduced and nearly vanished). 

2. The combined SDP-Simulation approach led to 
accuracy within 1% of the exact optimal value for 
the downsized problem. 

For the detailed results we refer to Haijema, Van der Wal 
and Van Dijk (2004 and 2006). 

5 RAIL-TRACK SCHEDULING 

5.1 Motivation 

An example of yet another class of decision problems is 
found in rail-track scheduling. Despite their length rail-
tracks are a scarce resource for railways and train 
scheduling. Occasionally two or more trains arrive more or 
less at the same time at some point where it has to be 
decided which train goes first, e.g. at the junctions depicted 
in Figure 6. 

Also, trains may occupy tracks for a stretch of miles 
while trains with different speeds cannot simply pass by at 
one and the same track. Particularly due to freight trains, 
which have a large variability in speed, track conflicts may 
arise not only due to junctions, but primarily due to speed 
differences.  Resolutions of track conflicts can be sought 
in temporarily rerouting at sidetracks to let trains pass by 
or by deceleration and acceleration of trains. Clearly, such 
resolutions require insight, experience and continuous 
monitoring and are ad hoc. In addition, the resolutions may 
lead to delays of other trains that have spread through the 
network. These in turn may have cascading effects for 
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further delays. A more structural resolution approach with 
locally resolving and optimizing procedures, that could be 
automated, would thus be highly welcome. 

To a certain extent the basis of this decision process is 
deterministic but practice proves that it is also highly 
stochastic. The problem thus has the flavor of both a 
scheduling and a queueing problem. 

5.2 Approaches 

OR Approach 
Partially this track conflict problem can be regarded as a 
‘standard’ OR-problem; more precisely as a job shop 
problem with blocking and no wait constraints (see Mascis 
and Pacciarelli 2002). By identifying the trains as jobs and 
the tracks as machines, an ‘optimal’ train order for a track 
can be found by a branch-and-bound technique. It is a job-
shop with blocking and no-waiting as an occupied track 
section blocks a successive train to enter that section so 
that the waiting takes place at the preceding section. This 
formulation however has two shortcomings.  

First of all, it assumes pre-allocated fixed track routes 
for each train. This limits the number of possible solutions 
substantially and can lead to sub-optimal solutions. This 
restrictive assumption can partially be relaxed by a flexible 
job-shop model as handled by Mastrolilli and Gamberdella 
(2000). The second shortcoming, however, is of a more 
serious and fundamental nature. The job-shop problem 
uses fixed handling times without delays and variability. If, 
in contrast, one would describe the states of the decision 
process as a multi-dimensional Markov Decision Problem 
to include stochastic aspects, the number of states would be 
tremendously large while only a small fraction of these 
states will ever appear. 

Figure 7: The Railway Infrastructure of The Netherlands 
and Sub-network for Test Case 
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Simulation Approach 
As these delay aspects and variabilities in travel times are 
crucial for the track conflict problem in the first place, a 
stochastic approach is necessarily required. Clearly, 
simulation would thus be in place despite the fact that it 
would not optimize at all. Sahin (1999) extends the 
simulation in this direction. In this study the dispatcher can 
dynamically adjust the train order. However, the effects of 
accelerations and decelerations cannot be included. 
Furthermore, the study is executed for a line-section and 
cannot be extended to a network level.  

5.3 Simulation-OR Approach 

In Al-Ibrahim and Van der Wal (2005), a somewhat 
different approach will therefore be suggested. Roughly it 
works as follows. 

Just mimic the process by simulation and wait for the 
moments upon which some decision has to be taken. For 
those decision moments one may think of different 
decision techniques. A natural candidate would be to solve 
some sort of stochastic scheduling problem. Another 
option would be to choose from a small number of 
queueing scenarios, the simplest one being FCFS, but there 
may also be various priority rules that will outperform 
FCFS. More precisely, a combined approach is suggested, 
which combines simulation with a conflict resolution and 
optimization algorithm in a number of steps, as briefly 
outlined below, as based upon three modules: 

 
• A simulation module, 
• A conflict-prediction module, 
• A resolution and optimization module. 

 
Step 1: (Initialization) Trains are generated for some 

network infrastructure according to some 
global schedule but with a number of 
stochastic elements such as to include initial 
randomness and speed differences. The 
dispatching-rule is standardly initialized by 
FCFS (in order of arrival) train order 
scheduling. 

Step 2: (Simulation) The train process starts to be 
simulated by the simulation module until a 
conflict is detected by the conflict-prediction 
module is activated. 

Step 3: (Resolution and optimization) The simulation 
run is interrupted; the conflict registered and 
the algorithm module activated. This module 
first collects all train information (the 
positions, types, speeds and routes assigned). 
Next, all feasible train orders are detected and 
enumerated. A cost function is defined which 
leads to a cost value for a given order 
decision. Next, by a Finite horizon Dynamic 
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Programming type algorithm the ‘best’ train 
order is determined which leads to a minimal 
local delay for the conflict situation in order. 

Step 4: The steps 2 and 3 are repeated under the new 
train orders and iterated up to some stop 
criterion (a given number of iterations or 
convergence limit). 

Step 5: The delay process is (re)evaluated by 
simulation under the ‘best’ found dispatching 
rule (train orders). 

 
In short, simulation is thus used as a platform: 
 

• to generate conflicts and 
• to evaluate decisions made. 
 

While an OR-type algorithm is used to detect-resolve-and 
locally optimize these conflicts. Though this conflict 
resolution and optimization is local, simulation studies 
executed, as illustrated below, seem to indicate that this 
combined approach substantially improves the FCFS-train 
order scheduling as is commonly used by railway operators. 
 Example In cooperation with ProRail (the Dutch 
Railway operator) the approach has been applied to a small 
but nevertheless complicating sub-network within The 
Netherlands, as shown in Figure 6, with one crucial 
conflicting junction and track conflicts by different types 
of trains (passenger and freight trains), as illustrated in 
Figure 8 (trains 6 and 8 are freight trains). 
 

 
Figure 8: Train Conflicts around the Junction 

 
    By the combined approach for a range of realistic cases, 
the average delay was reduced by a factor ranging from 0.4 
to 0.7 depending on the frequencies and number of freight 
trains. The FCFS-order rule was adjusted in roughly 30 to 
40% of conflicts. 
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6 EVALUATION 

Simulation is standardly used and known for 
evaluation purposes of process performance. Its application 
for optimization purposes, however, remains limited to a 
simple comparison or what-if analyses of scenarios. 

In this paper in contrast, it is illustrated that simulation 
can also be used more sophisticated in combination with 
OR-techniques and results for ‘optimization’ purposes. 

 
To this end, four illustrations are provided in each of 

which simulation is used in a non-standard way more than 
just for evaluation purposes in combination with different 
OR-techniques such as 

 
• queueing 
• linear programming 
• dynamic programming and 
• heuristic dynamic scheduling 
 
The results, as based upon different practical 

applications, seem to indicate that this combined 
Simulation-OR (SimOR) approach can be most fruitful. 
Further application and research of this approach is 
therefore suggested. 
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