
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

SIMULATION AND OR (OPERATIONS RESEARCH) IN COMBINATION
FOR PRACTICAL OPTIMIZATION

Nico van Dijk
Erik van der Sluis

René Haijema
Assil Al-Ibrahim
Jan van der Wal

University of Amsterdam

Faculty of Economics and Econometrics
Roetersstraat 11, 1018 WB

Amsterdam, THE NETHERLANDS

ABSTRACT

Should we pool capacities or not? This is a question that
one can regularly be confronted with in operations and
service management. It is a question that necessarily
requires a combination of queueing (as OR discipline) and
simulation (as evaluative tool) and further steps for
optimization. It will be illustrated that a combined
approach (SimOR) of Simulation (techniques and tools)
and classical Operations Research (queueing, linear
programming and scheduling) can be most beneficial.
First, an instructive example of parallel queues will be
provided which shows the necessary and fruitful
combination of queueing and simulation. Next, the
combined approach will also be illustrated for the
optimization of: call centers, checking-in at airports,
blood platelet production, and train scheduling for
railways. Whether we should pool or not is thus just one
simple question for which this SimOR approach can be
most fruitful if not necessary for practical optimization.

1 INTRODUCTION

Simulation, or more precisely as will be meant throughout
this paper: discrete event simulation, is well known as a
most powerful tool for process and performance evaluation
in a vast majority of fields such as to evaluate

• process flows and bottlenecks,
• throughputs and delays,
• capacities.

Standard applications are found in the production sector,
the service industry (call centers, administrative logistics
and hospitals) and transportation (public transportation
274
systems, road traffic, airports, harbours, maritime, express
delivery systems and so on).

But also numerous other non-standard applications can
be referred to (e.g. recreational parks, the hospitality
sector, fire and ambulance systems, penitentiary
institutions, personnel management, parking management,
evacuation models and so on).

This success of simulation can be attributed to a
number of factors such as:

(i) the continuous drive and need for process

improvement and performance objectives (such as
profits to be maximized or costs to be minimized),

(ii) the potential of simulation to model real-life
complexities with almost no limitations,

(iii) the availability of both general purpose and
special purpose (application oriented) simulation
software.

In most applications simulation is necessarily required,

as analytic techniques, most notably OR (Operations
Research)-techniques such as queueing analysis and
mathematical programming, are insufficient due to:

• the complexity of the system,
• the underlying simplifying assumptions required,
• the various types of (non-exponential) stochastics

involved.

And in line with (i) simulation ìs indeed also generally

seen and used for optimization. Here the ‘optimization’
standardly relies upon executing the simulation for
different scenarios such as typically for infrastructure and
process layout, capacities and planning.

 van Dijk et al.

However, though this scenario ‘optimization’ is a
major step, it remains to be realized that simulation is nó
optimization tool by itself. Clearly, if the optimization
problem can be parameterized, such as typically for
capacity determination, different search approaches can be
suggested to expedite and automate the search for optimal
values. An elegant exposé of such methods can be found in
Krug (2002).
This is where OR might contribute in either of two
directions:

1. To suggest candidate scenarios to choose for in
the first place, as based upon OR-results and
insights.

2. To provide OR-optimization techniques in
situations in which no common sense guesses for
a ‘nearly optimal scenario’ can be made.

A combination of OR and simulation might then become
most beneficial.

• Simulation for its evaluation,
• OR for its optimization.

The advantages of this combination for optimization are
schematically represented in Table 1.

Table 1: Combined Advantages

Simulation OR
Advantages Disadvantages
Real-life complexities
Real-life stochastics

Simple models
Strict assumptions

Disadvantages Advantages
Evaluation
By scenarios
By numbers only

Optimization
By techniques
Also by insights

Advantages Advantages

Optimization

Simulation Operations Research

Both directions of this combination will be illustrated

in this paper by specific practical applications: direction 1
in section 2 and direction 2 in section 3. In section 4, also a
third direction is shown. In this case an optimizing OR-
technique (dynamic programming) and the evaluation of its
optimal solution by simulation will be combined to
conclude a practical nearly optimal solution. Finally, in
section 5 another combined use of OR and simulation will
be described briefly.
275
The illustrations all rely upon practical and recent
research and schematically concern the topics and
combinations with simulation shown in Table 2.

Table 2: Topics and Method Combinations

Section Topic Combination
2
3
4
5

Pooling in call centers
Check-in planning
Blood banks
Railways

SIM + Q
SIM + LP
SIM + DP

SIM + Q + DP
Legend:

SIM: Simulation; Q: Queueing
DP: Dynamic Programming
LP: Linear Programming

2 CALL CENTERS: TO POOL OR NOT?

Should we pool service capacities or not is a question of
general interest in a variety of practical situations ranging
from counters in postal offices, check-in desks at airports,
physicians within hospitals up to whole agent groups
within or between call centers. The general perception
seems to exist that pooling capacities will always be
advantageous, at least from a performance or capacity
point of view. For call centers that is, to merge agent
groups into one agent group so that the workloads can be
balanced more. Indeed, when two separate agents would be
pooled none of the agents can ever be idle while there are
still calls waiting.

2.1 An instructive example

This perception also seems supported by the standard delay
formula for a single (exponential) server with arrival rate λ
and service rate μ: D = 1 / (μ – λ) as by pooling two of
these servers, each with arrival rate λ and service rate μ, as
if they are merged into one single server which is twice as
fast, the mean delay would thus be reduced to by a factor 2
as by D = 1 / (2μ – 2λ). In other words, at first glance
pooling two servers thus seems to lead to a mean delay
reduction of roughly 50%.

This reasoning however relies upon the implicit
assumption of two identical servers or rather identical
service characteristics, with identical means. When
different services are involved in contrast, the advantage of
pooling remains questionable. More precisely, here a
second basic result from queueing theory is to be realized:
a result that seems hardly realized in practical call center
environments. For the simple case of a single server this
result is known as the Pollaczek-Khintchine (PK) formula.
This formula, which is exact for the single server case,

 van Dijk et al.

 S

 By Two-way overflow One-way overflow

 Q

 By Pooled system Unpooled system WA = 6.15

W = 6.15

WA = 4.55

W1 = 2.50

W2 = 25.0

WA = 3.92

W1 = 1.80

W2 = 25.2

WA = 4.11

W1 = 3.66

W2 = 8.58

λ = 55 τ = 1.82λ = 55 τ = 1.82

λ = 50

λ = 5

τ = 1

τ = 10

λ = 50

λ = 5

τ = 1

τ = 10

λ = 50

λ = 5

τ = 1 (or 10)

τ = 10 (or 1)

λ = 50

λ = 5

τ = 1 (or 10)

τ = 10 (or 1)

λ = 50

λ = 5

τ = 1

τ = 10 (or 1)

λ = 50

λ = 5

τ = 1

τ = 10 (or 1)

Figure 1: Pooling Scenarios by Queueing (Q) and Simulation (S)
expresses the effect of service variability, as made explicit
by:

21
2
2 2 2

(1)

with = / and
 : mean waiting time under a general (and

 for an exponential) service distribution
with mean and standard deviation .

G E

G

c

c
G

E

σ τ

τ σ

= +W W

W

As a consequence, if we would pool two separate
servers, say for services of type 1 and type 2, as if it
becomes one twice as faster server, we should also realize
the variability due to mixing. By mixing different services
(call types) extra service variability is brought in as each
consecutive service can be of either type 1 or 2. As made
explicit by the PK-formula this may lead to an increase of
the mean waiting time (and delay).

This is illustrated in Figure 1 for the situation of two
job (call) types 1 and 2 with mean service (call) durations
τ1 = 1 and τ2 = 10 minutes but arrival rates λ1 = 10 λ2. The
traffic load ρ = λ1τ1 = λ2τ2 is set at 83%, so that both call
types bring in an equal workload.
The results show that the unpooled case is still superior, at
least for the average waiting time. These results, for both
the strictly pooled and unpooled case as well as the
underlying insight thus purely rely upon queueing theory
(as a standard discipline of Operations Research (OR)).

Based on these queueing insights, an alternative
scenario can now be thought of that may combine the
advantages of both scenarios:

• No (or minimum) idleness as for the pooled case,
• No (or minimum) service variability as for the

unpooled case.

276
To this end, the servers should still be kept devoted for
type 1 and type 2 jobs (calls). But in addition, server 2 can
also take a type 1 job (call) if there is no type 2 job (call)
waiting and vice versa. The results for this two-way
overflow system, as shown in Figure 2, already indicate an
improvement over both the pooled and the unpooled case.
As a further improvement, a one-way overflow is therefore
suggested in which type 1 calls may but type 2 calls may
not overflow. This scenario not only shows a further
reduction of the waiting time allover but also improves the
unpooled scenario for type 1 (91%) calls.

2.2 Combined Approach

However, in order to achieve these improvements
simulation became necessarily required as there are no
sufficient analytic results to capture overflow features. A
combination of the queueing insights for finding improving
scenarios and of simulation for evaluating these scenarios
may thus turn out to be fruitful and illustrated by the
results in Figure 2.

In addition, by simulation all sorts of performance
aspects can be evaluated at the same time. In this case,
most notably, a remarkably small percentage of overflow.

The instructive results for this simple example may
seem of purely academic nature. But in contrast, similar
results also appear to apply at larger scale, that is for larger
number of servers as of realistic order for call centers.
First, by standard queueing formula the following
approximate expression has been derived in (Van Dijk and
Van der Sluis 2004) for the effect of pooling two agent
groups, each of equal size of s agents with one group
separately for type 1 calls and one group separately for
type 2 calls with arrival rate λi and mean call duration τi for
type i calls at group i, i = 1,2,

 van Dijk et al.

 WA = mean waiting time for the unpooled case,
 WP = mean waiting time for the pooled case.

2¼(1) 1 (1)
(1)

P
mix

A

s cρ ρ
ρ

+
⎡ ⎤

≈ − − − +⎢ ⎥+⎣ ⎦

W
W

with

2 2
2 1 1 2 2

2

1 1 2 2

1 2

() ()

with

mix

i
i

p p

p p

p

τ τ τ τ
τ

τ τ τ
λ

λ λ

− + −
=

= +

=
+

c

This new (OR)-formula shows that also for values s
larger than s = 1 (as in the example) the reduction effect by
pooling of at least 50% when pooling identical services,
might completely vanish due to the mixing effect when
pooling non-identical services (with means τ1 and τ2).

Next, by simulation this insight and approximate
formula as well as the overflow scenarios have been
evaluated more precisely for different numbers of agents s
and mix situations.

2.3 Results (Larger Number of Servers)

The results by both the OR-formula and simulation showed
that pooling only becomes superior over the strictly
unpooled case beyond some sufficiently large number of
agents. However, the one-way overflow scenario as could
only be shown by simulation, turned out to be generally
superior to both the pooled and unpooled case, though
again up to some sufficiently large number of agents.

Figure 2: Comparison of Pooling Scenarios by Simulation
with 2s servers

This is illustrated in Figure 2 with s the number of

servers (agents) in the unpooled case for each of two server
groups (hence with a total number of 2s servers). By

25%

50%

75%

100%

125%

150%

0 5 10 15 20 25 30 35 40 45 50 55 60
Number of servers (s) per group

Overflow / Unpooled
Pooled / Unpooled
Overfow / Pooled
277
simulation, it illustrates that the mean waiting time for the
overflow system, with just a small % of overflow,
improves both the pooled and unpooled scenarios with up
to 80 agents (s = 40).

In Van Dijk and Van der Sluis (2005) also other
scenarios are suggested, again as based upon queueing
insights, which, by simulation, appear to lead to further
improvement.

3 CHECK-IN PLANNING

3.1 Problem Formulation and Approach

Check-in capacity, in terms of desks and desk-(labour)-
hours, can be a scarce resource at airports. To minimize the
required number of desks two essentially different
optimization problems are involved:

P1. A minimization of the required number of desks for
a given flight during the opening hours for that
flight in order to meet a given service level (% of
travelers with less than so many minutes waiting
time) which is of a stochastic nature.

P2. A minimization and scheduling in order to
minimize the total number of desks for a number of
flights during a day, which is of a pure deterministic
nature.

A two-step procedure has therefore been proposed as

will be discussed and illustrated more detailed below.

Step 1: For P1 as based upon simulation
Step 2: For P2 as based upon LP
 (Linear Programming)

3.2 Step 1: Simulation

Despite the fact that a check-in process for just a single
flight (or group of flights) with just a small fixed number
of desks can be thought of as a simple multi-server
queueing model for which standard M/M/s-formulas are
available, the opposite appears to be true. Simulation will
necessarily be required for a number of reasons:

1. Most notably, as the arrival process, roughly from
50-300 passengers during 1 up to 4 hours for a
single flight, is far from homogeneous over the
interval of opening hours, so that a Poisson
assumption is far from realistic.

2. As the arrival process in relation to the check-in
times, from a few minutes up to a quarter of an
hour, does not justify a steady state analysis or
‘averaging’ at all.

3. As there can be a strong ‘initial’ bias when the
desks are opened prior to the flight.

 van Dijk et al.

4. As the check-in times themselves are far from

exponential.
5. As there is a short fixed time frame of opening

interval.

Each of these aspects by itself violates an analytic

steady state analysis (by standard queueing results). In
contrast, terminating simulation will necessarily be
required.
 Instructive Example As an instructive, yet realistic,
example an arrival curve was used as by realistic data for
an intercontinental flight from Schiphol (Amsterdam)
airport. The service level was set at 90% of all travelers to
have a waiting time of no more than 10 minutes. The
‘standard’ planning as based upon M/M/s-calculations
would lead to the left figure. By simulation the right figure
was obtained.

0

2

4

6

3 2 1 0
hours prior to departure

N
u

m
b

e
r

o
f

d
e
s
k
s

0

2

4

6

3 2 1 0
hours prior to departure

N
u

m
b

e
r

o
f

d
e
s
k
s

Figure 3: Constant and Dynamic Desk Capacities by
Queueing (left) and by Simulation (right)

The simulation shows a triple win:

1. in the total number of desk hours (from 12 to 8),
2. in mean waiting times (from 20 to 12 min),
3. in excessive waiting times (more than 30 min in

the first opening hour) for the left case.

 Animation As an additional appealing feature of
simulation of practical purpose in this case, insight in how
long an initial burst of travelers would last or how fast it
would vanish could well be visualized by animation.

3.3 Step 2: OR Approach (Linear Programming)

Once the required number of desks are determined by the
hour in step 1 for a number of flights during the day a
tough optimization problem remains of how to schedule
the desks so as to minimize the total number of desks
during any hour as well as the total number of desk-
(labour)-hours. Here additional practical conditions may
have to be taken into account such as most naturally that
desks for one and the same flight should be adjacent.
 Example As a simple (fictitious) example consider the
desk requirements as shown in Figure 4 for 5 flights during
9 hours (periods), as determined by step 1. The total
number of desks required then never exceeds 4.

278
0

1

2

3

4

5

1 2 3 4 5 6 7 8 9

flight 1 2 3 4 5
starting period 1 3 4 5 7
ending periode 3 5 6 7 9
desks required 3 1 2 1 3

Figure 4: Desks Requirements of 5 Flights

However, a straightforward Earliest Release Date

(ERD) desk allocation as shown in Figure 5, would lead to
an unfeasible solution as the desks for flight 5 are not
adjacent. (This could be resolved by using two more desks
5, 6 and assigning desks 4, 5 and 6 to flight 5). However,
in this example a feasible solution with 4 desks is easily
found as shown in the lower figure.

Figure 5: An (In)feasible Schedule

As shown in Van Dijk and Van der Sluis (2003) also,
for more realistic orders with hundreds of flights an
optimal solution can be found by solving the following LP-
formulation. (In Duin and Van der Sluis (2004), it is also
shown that this problem is NP-hard so that heuristics may
be more efficient to use).

min
. .

or , with
f f

f g g
f g

g f f

D
s t n d D f

d n d f g I Id n d

≤ ≤ ∀
+ ≤ ⎫ ∀ ∩ ≠ ∅⎬+ ≤ ⎭

where

D: Total number of desks required (indexed 1 to D);
If : Check-in time interval of flight f (with f = 1,…,F);
df : Largest desk number assigned to flight f;
nf : Number of desks required for flight f.

Infeasible schedule
4 2 2 2 5 5 5
3 1 1 1 4 4 4
2 1 1 1 3 3 3 5 5 5
1 1 1 1 3 3 3 5 5 5

d \ t 1 2 3 4 5 6 7 8 9
Feasible schedule

4 2 2 2 5 5 5
3 1 1 1 3 3 3 5 5 5
2 1 1 1 3 3 3 5 5 5
1 1 1 1 4 4 4

d \ t 1 2 3 4 5 6 7 8 9

 van Dijk et al.

 As shown in Van Dijk and Van der Sluis (2003), a
similar LP-formulation can also be given for the
optimization problem of variable allocation in which the
number of desks, as determined by step 2, may vary by the
hour which may lead to further savings. This is illustrated
in Figure 6 for an example data set of 10 flights which
leads to a further reduction in desks (from 17 to 15) and
desk hours (from 117 to 92). The combination of
(terminating) simulation and LP-optimization so turned out
to be most beneficial.

Figure 6: Constant and Dynamic Optimal Desk Schedules
for 10 flights

 Remark: In Atkins et al. (2003) another application of
a combined simulation - linear programming approach for
check-in planning was reported and awarded the best
practice prize at the 2003 conference of CORS (the
Canadian Operations Research Society).

17 2 2 2 6 6 6 10 10 10
16 2 2 2 6 6 6 10 10 10
15 2 2 2 6 6 6 10 10 10
14 2 2 2 10 10 10
13 1 1 1 5 5 5 10 10 10
12 1 1 1 5 5 5 9 9 9
11 1 1 1 5 5 5 9 9 9
10 5 5 5 9 9 9
9 5 5 5 8 8 8
8 3 3 3 8 8 8
7 3 3 3 8 8 8
6 3 3 3 8 8 8
5 3 3 3 8 8 8
4 4 4 4 7 7 7
3 4 4 4 7 7 7
2 4 4 4 7 7 7
1 7 7 7

d \ t 1 2 3 4 5 6 7 8 9 10

15 2 5 5 5 7 10 10 10
14 2 5 5 5 7 10 10 10
13 2 2 5 5 7 7 10 10
12 2 2 5 5 7 7 10 10
11 2 2 2 5 7 7 7 10
10 1 1 1 4 9
9 1 1 4 4 9 9
8 1 1 4 4 9 9
7 4 4 4 9 9 9
6 8
5 3 6 6 6 8
4 3 6 6 8 8
3 3 3 6 6 8 8
2 3 3 3 8 8 8
1 3 3 3 8 8 8

d \ t 1 2 3 4 5 6 7 8 9 10
27
4 BLOOD MANAGEMENT

4.1 Problem Motivation

Blood management is a problem of general human interest
with a number of concerns and complications. Clearly, by
far the most dominant concern is the risk for infections and
contamination such as by HIV and hepatitis. Secondly, the
necessity of natural blood will remain, despite
technological developments for substitute blood products.
This supply has to rely upon voluntary donors. Particularly,
in underdeveloped countries (70% of the entire population)
there is still a shortage. Furthermore, there are a number of
complicating aspects of logistical nature: roughly to be
distinguished in the transport to and from blood banks for
blood processing within limited time frames and the
inventory management at both blood banks and hospitals to
meet the demand. Our problem of interest will concentrate
on the last aspect: on the production and inventory
management of blood platelets. Here there are a number of
conflicting aspects.

On the one hand, the demand is highly ‘uncertain’ and
despite planned surgeries (if such information is used)
roughly 50% (at week basis) still remains to be
unpredictable. And clearly, as lives may be at at risk,
shortages are to be minimized.

On the other hand, as the supply is voluntary while
such shortages may take place, blood is to be considered as
highly precious. Any spill, by outdating, of blood
(products) is thus highly ‘un’desirable if not to be avoided
at all. As an extra complicating factor, blood platelets
(thrombocytes) have a limited life-time or rather ‘shelf life’
of at most 6 days, while red blood cells and plasma in all
sorts of blood types can be kept for months up to over a
year. In addition, regular production of a platelet pool takes
about one day. Hence production volumes should be set
carefully.

Using OR-techniques, we derive an optimal strategy,
but it requires simulation to investigate its structure. From
that, a practical rule is derived and optimal parameters are
found via a simulation-based search algorithm.

4.2 Simulation and OR Approaches

Early studies and reviews on inventory management of
perishable products, such as by Nahmias (1982) and
Prastacos (1984) and various references therein, therefore
already do contain applications of and focus on blood
inventory management.

The ‘experimental’ studies reported in these references
(e.g. see Pinson et al. 1972, Katz et al. 1983) generally
concern the evaluation and comparison of different order-
up-to inventory strategies by means of simulation.

However, the question to which extent these strategies
are even ‘near-to-optimal’ remains open, especially when
9

 van Dijk et al.

taking into account several complicating aspects such as
distinguishing two types of patients: patients (mainly for
Hematology) which prefer the ‘freshest’ pools available,
and patients (mainly for general surgery) which can be
treated by pools of any age up to the maximal shelf live.

As a relatively standard OR-approach, in contrast, also
‘simple’ dynamic programming formulations for
perishable inventory management date back to these early
references (e.g. Pierskalla and Roach 1972, Cohen and
Pierskalla 1974). These however generally fail to be
implemented due to the dimensionality curse. The number
of states and computational effort becomes prohibitively
large (easily in the order of 1050 computations).
Experimental blood studies by dynamic programming have
therefore not been reported other than recently presented
(see Blake 2003), under a number of restricting simplifying
assumptions.

4.3 Combined Approach

In Haijema, Van der Wal and Van Dijk (2004 and 2006) a
combined ‘new’ approach for the blood platelet inventory
problem has therefore been followed, which combines OR
and simulation by the following steps:

Step 1: First, a stochastic dynamic programming
(SDP) formulation is provided.

Step 2: The dimension of the (SDP) formulation is
then reduced (downsized) by aggregating the
state space and demands so that the downsized
(SDP) problem can be solved numerically
(using successive approximation). That is, the
optimal value and an optimal strategy is
determined for the downsized SDP.

Step 3: Then, as essential tying step, this optimal
policy is (re)evaluated and run by simulation
in order to investigate the structure of the
optimal strategy. Therefore we ‘register’ the
frequency of (state, action)-pairs for the down-
sized problem.

Step 4: By a heuristic search procedure a simple
practical near to optimal order-up-to strategy is
then derived for a rule that resembles the
structure at the ‘simulation table’.

Step 5: The quality (near-to-optimality) of this
practical simple order-up-to strategy is then
also evaluated by simulation.

4.4 OR and Simulation Step

As the technical (mathematical) details of steps 1 and 2 are
somewhat ‘standard’ but also ‘complicated’ and worked
out in detail in Haijema, Van der Wal and Van Dijk
(2006), let us just restrict to an illustration of the essential
OR and Simulation steps 1 and 3.

280
Step 1 OR Approach (SDP)
As for step 1 the state of the system is described by (d,x)
with

d: the day of the week (d = 1,2,….,7) and
x = (x1, x2,…., xm) the inventory state with xr = the

number of pools with a residual life time of r days
(maximal m = 6 days) (A pool is one patient-
transfusion unit containing the platelets of 5
different donations).

And let

Vn(d,x): represent the minimal expected costs over n
days when starting in state (d,x).

The optimal inventory strategy and production actions

are then determined by iteratively computing (solving) the
SDP-equations for n = 1,2,…..

[]1(,) min (,) () (1, (, ,))n k d nd c k p b d t k b−= + +∑V x x V x

with

k the production action,
c(x,k) the one day costs in state x under production k,
pd(b) the probability for a (composite) demand b,
t(x,k,b) the new inventory state depending on k, b, x,

and some issuing policy, and
V0(d, x) ≡ 0.

However, for a realistically sized problem for one of the
Dutch regional blood banks the computational complexity
of this SDP for a one-week iteration already becomes of an
order 1014, which makes the computation prohibitively
large.

Therefore, we have downsized the demands and
inventory levels by aggregating the pools in quantities of 4.
This strongly reduces the computational complexity, so
that an optimal strategy can be computed for this
downsized problem by the optimizing actions of the SDP.
However, in practice one needs a simple rule and this
optimal strategy has no simple structure. For example, it
prescribes the following production volumes on Tuesday at
the following states, which all have the same total
inventory level of 14 pools, but of varying ages:

Table 2: Part of the Optimal Strategy of the SDP

Production Inventory (old,…, young)
7 (0, 0, 5, 0, 0, 9)
8 (0, 0, 6, 0, 0, 8)
9 (0, 0, 8, 0, 0, 6)

10 (0, 6, 2, 0, 0, 6)
10 (5, 0, 3, 0, 0, 6)

 van Dijk et al.

 Table 3: Simulation Frequency Table of (State, Action)-Pairs on Tuesdays from Simulation
 of Optimal SDP Solution for 100,000 Weeks

I 2 3 4 5 6 7 8 9 10 11 12 13 14 cum.
Order-up-to

23 4 4
22 28 28
21 96 96
20 267 267
19 2 748 3 753
18 18 1928 31 1 1978
17 6331 4490 353 26 1 11201
16 8260 2078 783 7 11128
15 3131 14123 20926 23646 10087 2593 39 74545
:
0

cum. 3131 14123 20926 23646 18347 11002 5330 2290 805 272 96 28 4 100000

Anticipating outdating we aggregate the predicted final
inventory, after subtracting average demand according to
some issuing policy for the two types of demands.

Step 3 Simulation
In order to derive a simple order-up-to strategy which only
depends on the total predicted inventory, the actual platelet
production-inventory process is therefore simulated for
100,000 replications so as to register how often which total
predicted final inventory level (I) and corresponding action
occurs under the optimal strategy (as determined by SDP)
for the downsized problem. As an illustration, for a
particular day of the week (in this case Tuesday) and the
dataset of the regional blood bank, this led to the
‘simulation table’ in Table 3.

For example, it shows by row 15 and column 7 that
during the 100,000 replications 2593 times a state was
visited with a total expected final inventory (I) of 7
followed by a production decision of 8 (order-up-to 15).
Order up-to-level 15 occurs in 74.5% of the states visited,
however often a higher production is optimal. The order-
up-to level can be seen as a target-inventory level for
Wednesday mornings.

We conclude that a simple order-up-to rule might
perform well. By investigating the states at which the
optimal production volume is higher we have derived an
even better rule that closely resembles the optimal
production strategy.

The search for the best values of the order-up-to
parameters for the original, full-sized problem is done via a
simulation-based search algorithm, as reported in Haijema,
Van der Wal and Van Dijk (2006). Finally we have used
simulation models to verify the results, when to take into
account the multiple blood types and the uncertainty at the
supply side, see Haijema, Van der Wal and Van Dijk
(2004).
281
4.5 Results

Applying this approach to data from a Dutch regional
blood bank, we could draw the following conclusions:

1. The simple order-up-to rule reduces the spill from
roughly 15 to 20%, as a figure that also seems
rather standard worldwide, to less than 1% (while
also shortages were reduced and nearly vanished).

2. The combined SDP-Simulation approach led to
accuracy within 1% of the exact optimal value for
the downsized problem.

For the detailed results we refer to Haijema, Van der Wal
and Van Dijk (2004 and 2006).

5 RAIL-TRACK SCHEDULING

5.1 Motivation

An example of yet another class of decision problems is
found in rail-track scheduling. Despite their length rail-
tracks are a scarce resource for railways and train
scheduling. Occasionally two or more trains arrive more or
less at the same time at some point where it has to be
decided which train goes first, e.g. at the junctions depicted
in Figure 6.

Also, trains may occupy tracks for a stretch of miles
while trains with different speeds cannot simply pass by at
one and the same track. Particularly due to freight trains,
which have a large variability in speed, track conflicts may
arise not only due to junctions, but primarily due to speed
differences. Resolutions of track conflicts can be sought
in temporarily rerouting at sidetracks to let trains pass by
or by deceleration and acceleration of trains. Clearly, such
resolutions require insight, experience and continuous
monitoring and are ad hoc. In addition, the resolutions may
lead to delays of other trains that have spread through the
network. These in turn may have cascading effects for

 van Dijk et al.

further delays. A more structural resolution approach with
locally resolving and optimizing procedures, that could be
automated, would thus be highly welcome.

To a certain extent the basis of this decision process is
deterministic but practice proves that it is also highly
stochastic. The problem thus has the flavor of both a
scheduling and a queueing problem.

5.2 Approaches

OR Approach
Partially this track conflict problem can be regarded as a
‘standard’ OR-problem; more precisely as a job shop
problem with blocking and no wait constraints (see Mascis
and Pacciarelli 2002). By identifying the trains as jobs and
the tracks as machines, an ‘optimal’ train order for a track
can be found by a branch-and-bound technique. It is a job-
shop with blocking and no-waiting as an occupied track
section blocks a successive train to enter that section so
that the waiting takes place at the preceding section. This
formulation however has two shortcomings.

First of all, it assumes pre-allocated fixed track routes
for each train. This limits the number of possible solutions
substantially and can lead to sub-optimal solutions. This
restrictive assumption can partially be relaxed by a flexible
job-shop model as handled by Mastrolilli and Gamberdella
(2000). The second shortcoming, however, is of a more
serious and fundamental nature. The job-shop problem
uses fixed handling times without delays and variability. If,
in contrast, one would describe the states of the decision
process as a multi-dimensional Markov Decision Problem
to include stochastic aspects, the number of states would be
tremendously large while only a small fraction of these
states will ever appear.

Figure 7: The Railway Infrastructure of The Netherlands
and Sub-network for Test Case
282
Simulation Approach
As these delay aspects and variabilities in travel times are
crucial for the track conflict problem in the first place, a
stochastic approach is necessarily required. Clearly,
simulation would thus be in place despite the fact that it
would not optimize at all. Sahin (1999) extends the
simulation in this direction. In this study the dispatcher can
dynamically adjust the train order. However, the effects of
accelerations and decelerations cannot be included.
Furthermore, the study is executed for a line-section and
cannot be extended to a network level.

5.3 Simulation-OR Approach

In Al-Ibrahim and Van der Wal (2005), a somewhat
different approach will therefore be suggested. Roughly it
works as follows.

Just mimic the process by simulation and wait for the
moments upon which some decision has to be taken. For
those decision moments one may think of different
decision techniques. A natural candidate would be to solve
some sort of stochastic scheduling problem. Another
option would be to choose from a small number of
queueing scenarios, the simplest one being FCFS, but there
may also be various priority rules that will outperform
FCFS. More precisely, a combined approach is suggested,
which combines simulation with a conflict resolution and
optimization algorithm in a number of steps, as briefly
outlined below, as based upon three modules:

• A simulation module,
• A conflict-prediction module,
• A resolution and optimization module.

Step 1: (Initialization) Trains are generated for some

network infrastructure according to some
global schedule but with a number of
stochastic elements such as to include initial
randomness and speed differences. The
dispatching-rule is standardly initialized by
FCFS (in order of arrival) train order
scheduling.

Step 2: (Simulation) The train process starts to be
simulated by the simulation module until a
conflict is detected by the conflict-prediction
module is activated.

Step 3: (Resolution and optimization) The simulation
run is interrupted; the conflict registered and
the algorithm module activated. This module
first collects all train information (the
positions, types, speeds and routes assigned).
Next, all feasible train orders are detected and
enumerated. A cost function is defined which
leads to a cost value for a given order
decision. Next, by a Finite horizon Dynamic

 van Dijk et al.

Programming type algorithm the ‘best’ train
order is determined which leads to a minimal
local delay for the conflict situation in order.

Step 4: The steps 2 and 3 are repeated under the new
train orders and iterated up to some stop
criterion (a given number of iterations or
convergence limit).

Step 5: The delay process is (re)evaluated by
simulation under the ‘best’ found dispatching
rule (train orders).

In short, simulation is thus used as a platform:

• to generate conflicts and
• to evaluate decisions made.

While an OR-type algorithm is used to detect-resolve-and
locally optimize these conflicts. Though this conflict
resolution and optimization is local, simulation studies
executed, as illustrated below, seem to indicate that this
combined approach substantially improves the FCFS-train
order scheduling as is commonly used by railway operators.
 Example In cooperation with ProRail (the Dutch
Railway operator) the approach has been applied to a small
but nevertheless complicating sub-network within The
Netherlands, as shown in Figure 6, with one crucial
conflicting junction and track conflicts by different types
of trains (passenger and freight trains), as illustrated in
Figure 8 (trains 6 and 8 are freight trains).

Figure 8: Train Conflicts around the Junction

 By the combined approach for a range of realistic cases,
the average delay was reduced by a factor ranging from 0.4
to 0.7 depending on the frequencies and number of freight
trains. The FCFS-order rule was adjusted in roughly 30 to
40% of conflicts.
283
6 EVALUATION

Simulation is standardly used and known for
evaluation purposes of process performance. Its application
for optimization purposes, however, remains limited to a
simple comparison or what-if analyses of scenarios.

In this paper in contrast, it is illustrated that simulation
can also be used more sophisticated in combination with
OR-techniques and results for ‘optimization’ purposes.

To this end, four illustrations are provided in each of

which simulation is used in a non-standard way more than
just for evaluation purposes in combination with different
OR-techniques such as

• queueing
• linear programming
• dynamic programming and
• heuristic dynamic scheduling

The results, as based upon different practical

applications, seem to indicate that this combined
Simulation-OR (SimOR) approach can be most fruitful.
Further application and research of this approach is
therefore suggested.

REFERENCES

Al-Ibrahim, A., and J. van der Wal. 2005. Conflict
Management in Railways using Finite Horizon
Dynamic Programming-type Algorithm. Working
paper, forthcoming.

Atkins, D., M.A. Begen, B. Lucnny, A. Parkinson, M.L.
Puterman. 2003. Right on Queue. In OR/MS Today 30,
issue 2.

Blake, J. T. 2003. Using dynamic programming to
Optimize the Platelet Supply Chain in Nova Scotia. To
appear in Proceedings of the 29th Meeting of the
European Working Group on Operational Research
Applied to Health Services. Edited by M. Dlouh´y.
Prague, Czech Republic: ORAHS.

Cohen, M. A. and W. P. Pierskalla. 1974. Perishable
Inventory Theory and Its Application to Blood Bank
Management. Working Paper, Department of
Industrial Engineering and Management Sciences,
Northwestern University, Evanston, Illinois..

Duin, C. W., and H. J. van der Sluis. 2004. On the
complexity of Adjacent Resource scheduling. To
appear in Journal of Scheduling.

Haijema, R., J. van der Wal and N. M. van Dijk. 2004.
Blood Platelet Production: a Multi-type Perishable
Inventory Problem. In ‘Operations Research
Proceedings 2004: Selected Papers of the International
Conference on Operations Research (OR 2004)’, ed. H.
Fleuren, D. den Hertog and P. Kort, 84-92. Springer.

 van Dijk et al.

Haijema, R., J. van der Wal and N. M. van Dijk. 2006.

Blood Platelet Production: Optimization by Dynamic
Programming and Simulation. To appear in a special
issue on OR and Health Care Management of
Computers and Operations Research.

Krug, W. 2002. Modelling, Simulation and Optimisation
for Manufacturing, Organisational and Logistical
Processes. Erlangen, Deutschland, Gruner Druck
GmbH.

Katz, A. J., C. W. Carter, P. Saxton, J. Blutt and R. M.
Kakaya. 1983. Simulation analysis of platelets
production and inventory management. In Vox Sang
44: 31-36.

Mascis, A., and D. Pacciarelli. 2000. Job-shop scheduling
with blocking and no-wait constrains, In European
Journal of Operational Research 143: 498-517.

Mastrolilli, M., and L. M. Gambardella. 2000. Effective
Neighborhood Functions for the Flexible job Shop
Problem. In Journal of Scheduling 3: 3-20

Nahmias, S. 1982. Perishable Inventory Theory: A
Review. In Operations Research 30: 680-708.

Pierskalla, W. P. and C. D. Roach. 1972. Optimal Issuing
Policies for Perishable Inventory. In Management
Science 18: 603-614.

Pinson, S. D., W. P. Pierskalla and B. Schaefer. 1972. A
computer Simulation Anaysis of Blood Bank
Inventory Policies. Technical Report, Department of
Industrial Engineering and Management Sciences,
Northwestern University, Evanston, Illinois.

Prastacos, G. P. 1984. Blood Inventory Management: an
Overview of Theory and Practice. In Management
Science 30: 777-800.

Sahin, I. 1999. Railway traffic control and train scheduling
based on inter-train conflict management. In
Transportation Research Part B, 33: 511-534.

Van Dijk, N. M., and H. J. van der Sluis. 2003. Check-in
computation and optimization by simulation and IP in
combination. To appear in European Journal of
Operations Research.

Van Dijk, N. M., and H. J. van der Sluis. 2004. To pool or
not to pool in Call Centers. Working paper,
Department of Quantitative Economics, University of
Amsterdam, The Netherlands.

Van Dijk, N. M., and H. J. van der Sluis. 2005. Pooling is
not always the answer. Working paper, Department of
Quantitative Economics, University of Amsterdam,
The Netherlands.

284
AUTHOR BIOGRAPHIES

NICO VAN DIJK is a full professor of Operations
Research leads this OR-research group at the University of
Amsterdam, and he is also affiliated to the simulation
company Incontrol Enterprise Dynamics.

ERIK VAN DER SLUIS is an associate professor at the
University of Amsterdam within the Faculty of Economics
and Econometrics.

RENÉ HAIJEMA is a Ph.D. student at the University of
Amsterdam.

ASSIL AL-IBRAHIM is a Ph.D. student at the University
of Amsterdam.

JAN VAN DER WAL is a full professor of Operations
Research at the University of Amsterdam, within the
Faculty of Economics and Econometrics.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

