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ABSTRACT 

Once a regression has been fitted to data, it is usually nec-
essary to add confidence intervals to indicate the accuracy 
of the fitted regression line. This can easily be done for in-
dividual explanatory variable values. However sometimes 
confidence limits are needed simultaneously for the whole 
range of explanatory variable values of interest. In other 
words the problem is to construct a confidence band within 
which the entire unknown true regression line lies with 
given confidence. This article discusses computer intensive 
methods for doing this. The advantage of such methods 
compared with classical asymptotic methods is that accu-
rate coverages can be obtained quite easily using bootstrap 
resampling. 
 
1 INTRODUCTION  
 
We consider a typical and quite general situation where a 
regression metamodel is used to represent the output from 
a simulation study. Barton (1998) gives a good introduc-
tion to the metamodelling approach. We suppose that the 
simulation study comprises a number of independent runs, 
n say, of the simulation model and that the observed output 
of interest, denoted by y, is random but dependent on an 
independent variable x. A convenient representation of this 
situation is by means of a statistical metamodel. Our ap-
proach is much in the spirit of that adopted by Krzanowski 
(1998). The observations, which we write as a vector 

),...,,( 21 nyyy=y , can be written as 
 

   njxy jjj ,...,2,1   ,),( =+= εη θ .      (1) 
 
Here ),( θxη denotes a deterministic function, called the 
regression function, and θ is a vector of p coefficients, or 
parameters, on which the function depends. The functional 
form of ),( θxη is assumed known, but the values of entries 
in the parameterθ are assumed unknown. The jε represent 
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independent random errors or perturbations, with mean 
zero. i.e. 

 
     0)( =εE . 
 
A typical more explicit assumption is that the errors are 
normally distributed and have constant variance, i.e. 

 
        ε  ~ N(0, 2σ )         (2) 
 
but we shall not need to assume this necessarily holds. 
 The condition 0)( =εE  means that the expected  
value of y at a given x is simply 
 
    ),()( θxxyE η= .         (3) 
 
We shall assume that the determination of )( xyE for a 
given range bxa ≤≤  is the primary objective of the simu-
lation. 
 This question is meaningful if we suppose that there is 
a true, but unknown, value for θ , 0θ say. The first problem 
therefore is to estimate this value from the observations y. 
 By far the best general way estimating the parameters 
θ  is the method of maximum likelihood (ML). The 
method and the properties of the resulting estimator, θ̂ , are 
well known and are summarised in the next section. 
 The fitted y, 
  
   bxaxxy ≤≤=   ),ˆ,()(ˆ θη ,        (4) 

 
is the obvious estimate of )( xyE  . The main question then 
is ‘How accurate is the estimate )ˆ,()(ˆ θxxy η= of )( xyE ?’ 
The classical answer to this question is to use asymptotic 
theory and the so-called delta method to calculate, for any 
given value of x, a confidence interval for ),( 0θxη . The 
method for doing this is summarized in the next section 
also. 
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 A more interesting problem is to find a simultaneous 
confidence interval. For given confidence level α , we 
wish to find a confidence band B with lower and upper 
limits bxaxyxy UL ≤≤  ),(),( such that with confidence 
level )%1(100 α−  

 
    bxaxyxxy UL ≤≤≤≤  allfor  ),(),()( 0θη . 
 
Thus, with given confidence, ),( 0θxη lies within the given 
limits simultaneously for all bxa ≤≤ . This problem is 
also well-known, with established solutions. See for exam-
ple Miller (1981). When ),( θxη  is a sufficiently smooth 
function of θ , in the neighbourhood of 0θ , to admit a Tay-
lor series expansion in 0θθ − , then this can be combined 
with asymptotic theory to give a simple explicit solution to 
this problem. We outline this method also in the next sec-
tion. 
 The confidence band calculations use approximations, 
particularly the Taylor series approximation for ),( 0θxη , 
that can result, especially for small n, in the actual cover-
age being rather less than the nominal stated confidence 
level. We show how resampling methods can provide a 
method for overcoming this last difficulty. This is the main 
purpose of this paper. The resampling methods are dis-
cussed in Section 3. A numerical example involving the 
modelling of a tuberculosis notification rates is discussed 
in Section 4. 
 
2 MAXIMUM LIKELIHOOD ESTIMATION 
 
2.1  The Maximum Likelihood Method 
 
Suppose Y = {Y1, Y2, …, Yn} is a set of observations where 
the ith observation, Yi, is a random variable drawn from the 
continuous distribution with pdf fi(y, θ ) (i = 1, 2, …, n). 
The subscript i indicates that the distributions of the yi can 
all be different. As an example, in the regression situation 
where the errors are normally distributed then Yi ~ 

)),,(( 2ση θixN , i = 1, 2, ..., n. The pdf of Yi is then 
 

      
2

22

2

)}2/()],([exp{),(
πσ

ση θθ i
i

xyyf −−= . 

 
Thus Y is not a random sample in this case, because the 
observations are not all identically distributed. However 
ML estimation still works in this case. 
 We now describe the method. Suppose that y = {y1, y2, 
…, yn} is a sampled value of Y = {Y1, Y2, …, Yn}. Then we 
write down the joint distribution of Y evaluated at the 
sampled value y as: 
 
   ),()...,(),(),( 2211 θθθyθ nn yfyfyfLik = . 
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This expression, treated as a function of θ , is called the 
likelihood (of the sampled value y). The logarithm: 
 

   ∑
=

=

=
n

j
jj yf

LikL

1

),(log            

)},(log{),(

θ

yθyθ
 

 
is called the loglikelihood. The ML estimate, θ̂ , is that 
value of θ which maximizes the loglikelihood. 
 The MLE is illustrated in Figure 5 in the one parame-
ter case. In some cases the maximum can be obtained ex-
plicitly as the solution of the vector equation 
 

         0
θ

yθ =
∂

∂ ),(L  

 
which identifies the stationary points of the likelihood. The 
maximum is often obtained at such a stationary point. This 
equation is called the likelihood equation. The MLE illus-
trated in Figure 1 corresponds to a stationary point. 

 

 
Figure 1:   The Maximum Likelihood Estimator θ̂  

 
In certain situations, and this includes some well known 
standard ones, the likelihood equations can be solved to 
give the ML estimators explicitly. This is preferable when 
it can be done. However in general the likelihood equations 
are not very tractable. Then a much more practical ap-
proach is to obtain the maximum using a numerical search 
method. In the examples given below we have used the 
Nelder-Mead method. This is a flexible method that seems 
very robust in practice.  

 
2.2  Accuracy of ML Estimators 

 
An important property of the MLE, θ̂ , is that its asymp-
totic probability distribution is known to be normal under 
very general conditions. In fact it is known that, as the 
sample size ∞→n ,  
 
    θ̂  ~ )}(,{ 00 θVθN         (5) 

θ  

Loglikelihood 

θ̂  
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where 0θ is the unknown true parameter value and the 
variance has the form 
 
    1

00 )]([)( −= θIθV , 
 
where 

 
      ( )22 /)( θLθI ∂∂−= E  

 
is called the information matrix. Thus the asymptotic vari-
ance of θ̂  is the inverse of the information matrix evalu-
ated at 0θθ = . Its value cannot be computed precisely as it 
depends on the unknown 0θ , but it can be approximated 
by  
 

         [ ] 1
)ˆ()ˆ(

−
= θIθV . 

 
The expectation in the definition of )(θI  is with respect to 
the joint distribution of Y and this expectation can be hard 
to evaluate. In practice the approximation 
 
   )ˆ(θV ≅ -1

ˆ
22 ]/),( [

θθ
θyθL

=
∂∂− , 

 
where we replace the information matrix by its sample ana-
logue, the latter being called the observed information, is 
quite adequate. Practical experience indicates that it tends 
to give a better indication of the actual variability of the 
MLE. Thus the working version of (5) is 
 
       θ̂  ~ })ˆ( ,{ 0 θVθN         (6) 
 
 The Hessian of second derivatives of the loglikeli-
hood, 22 /),( θyθL ∂∂ , that appears in the expression for 

)ˆ(θV , measures the rate of change of the derivative of the 
loglikelihood. This is essentially the curvature of the log-
likelihood. Thus it will be seen that the variance is simply 
the inverse of the magnitude of this curvature at the sta-
tionary point. 
  Though easier to calculate than the information, the 
observed information 22 /),( θyθL ∂∂−  can still be very 
messy to evaluate analytically. Again it is usually much 
easier to calculate this numerically using a finite-difference 
formula for the second derivatives. The expression is a ma-
trix of course, and the variance-covariance matrix of the 
MLE is the negative of its inverse. A numerical procedure 
is needed for this inversion. 
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 The result (6) provides readily calculated confidence 
intervals. For example a %100)1( α− confidence interval 
for the coefficient 1θ  is 
 

       )ˆ(ˆ
112/1 θVzαθ ±  

 
where 2/αz is the upper 2/100α   percentage point of the 
standard normal distribution. 
 We are interested not in θ  directly, but in the regres-
sion function ),( θxη . For fixed x, this is simply a given 
function of θ , )(θg  say. The general invariant property of 
the MLE then means that the MLE of )( 0θg  is 

 
     )ˆ(ˆ θgg = . 
 
The so-called delta-method provides an approximate con-
fidence interval for the unknown )( 0θg  provided )(θg  
possesses a Taylor series expansion about 0θ ; that is 

 

    )ˆ()ˆ()()ˆ( 000
0

θθθθ
θ

θθ
θ

−+−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂+= rggg

T

      (7) 

 
where )(tr is a remainder term that is of order 2−t in prob-

ability, i.e. )()( 2−= tOtr p . Then we have that 
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An approximate %100)1( α−  confidence interval for )(θg  
is thus 
 

 
θθ

θθVθθ ˆˆ )/()ˆ()/()2/()ˆ( ∂∂∂∂± ggzg Tα       (8) 

 
where )(αz is the upper α quantile of the standard normal 
distribution. In this formula the first derivative of )(θg  is 
required. As with the evaluation of the information matrix, 
it can be obtained numerically using a finite-difference cal-
culation. 
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2.3 Confidence Bands 
 
A conservative confidence band can be constructed for the 
entire regression curve ),( 0θxη , bxa ≤≤ in a similar, but 
more subtle way, to that used in calculating individual con-
fidence intervals. 
 From (7) it follows that 

 
   )ˆ)(ˆ()ˆ( 0

1
0 θθθVθθ −−= −TC        (9) 

 
is asymptotically distributed as a chi-squared variate with p 
degrees of freedom. Thus 

 
    ααχ −=≤−− − 1)}()ˆ)(ˆ()ˆPr{( 2

0
1

0 p
T θθθVθθ , 

 
where )(2 αχ p is the upper α chi-squared quantile with p 
degrees of freedom. To invert this probability and change it 
into a confidence region, we replace 0θ  by θ  and take all 
θ satisfying  
 
   )()ˆ)(ˆ()ˆ( 21 αχ p

T ≤−− − θθθVθθ .     (10) 
 

We denote this ellipsoidal region as 
 
 )}()ˆ)(ˆ()ˆ(:{)( 21 αχα p

TR ≤−−= − θθθVθθθ .    (11) 
 
Clearly we are %100)1( α− confident that )(0 αR∈θ . 
Thus )(αR is a %100)1( α−  confidence region for 0θ . 
 Now, for each x satisfying bxa ≤≤  we can also find 
the values )(xLθ  and )(xUθ  that respectively minimize 
and maximize ),( θxη , i.e. 

 

   
)].,(maxarg[)(

  )],,(minarg[)(

)(

)(

θθ

θθ

θ

θ

xx

xx

RU

RL

η

η

α

α

∈

∈

=

=
     (12) 

 
If we set 

 

      bxa
xxxy
xxxy

UU

LL ≤≤
⎭
⎬
⎫

=
=

   ,
))(,()(
))(,()(

 
θ
θ

η
η

    (13) 

 
we must have 

 
  )(  ,   ),(),()( αη Rbxaxyxxy UL ∈≤≤≤≤ θθ ,   (14) 
 
and, as we are %100)1( α− confident that )(0 αR∈θ , it fol-
lows that , ),( and )( bxaxyxy UL ≤≤  as given in (11) is a 

%100)1( α− confidence band for .  ),,( 0 bxax ≤≤θη  
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 The band is a conservative one because it is possible 
that there are )(αR∉θ for which 

 
  .   ),(),()( bxaxyxxy UL ≤≤≤≤ θη  
 
An explicit approximate formula for  )(xyL  and )(xyU , 

,bxa ≤≤  can be obtained using the delta technique if we 
use the linear approximation (7) for ),( θxη and minimize 
and maximize this linear approximation subject to (10). 
The problem is thus, for each x to 

 

 )ˆ(),()ˆ,(),(maxmin/
ˆ

θθ
θ
θθθ

θ
θ

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂+=

Txxx ηηη  

 
subject to 

 
   )()ˆ)(ˆ()ˆ( 21 αχ p

T ≤−− − θθθVθθ . 
 
This is easily solved by the method of Lagrange multipliers 
and yields the solution 

 
 bxaxhxxyxy UL ≤≤=    ),ˆ,()ˆ,()(),( θθ mη  
 
where 

 

   
θθ θ

θθV
θ
θθ

ˆˆ

2 ),()ˆ(),()()ˆ,( ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂= xxxh

T

p
ηηαχ .   (15) 

 
The form of (15) is exactly the same as for the individual 
confidence interval (8) except that )(2 αχ p  replaces 

)2/(αz  in the formula. 
 
3 BOOTSTRAP CONFIDENCE BANDS 
 
We consider two ways that the formula (15) might be made 
more exact. The first avoids the use of the linear approxima-
tion (7) for ),( θxη  but retains the asymptotic normality as-
sumption for θ̂ .  Resampling is not strictly necessary but 
can be used in this method. The second avoids the linear ap-
proximation and also uses bootstrap resampling to better es-
timate the distribution of θ̂ . Good accounts of bootstrapping 
are given in Davison and Hinkley (1997) and Hjorth (1994). 
A more general reference is Chernick  (1999)  
 
3.1  Exact Calculation of ),( θxη  
 
The first adjustment that we consider is where we avoid 
using the linear approximation (7) for ),( θxη , but simply 
calculate numerically the minimum and maximum of 
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),( θxη subject (10). We consider the most likely situation 
(which is actually that tacitly assumed in the case where 
we use a linear approximation) that ),( θxη is relatively 
slowly varying so that the minimum and maximum points 
lie on )]([ αR∂ , the boundary of )(αR . We therefore only 
need look for the minimum or maximum, using a direct 
search method like the Nelder-Mead, restricting the search 
to points on )]([ αR∂ . 
 An even cruder but quite adequate approach, at least 
when p is small, is to calculate the values of ),( θxη for a 
sufficiently large selection of points )]([ αRi ∂∈θ , and then 
take as minimum and maximum of ),( θxη the smallest and 
largest of the ),( ix θη  amongst those points evaluated. We 
only use these optimized values in the calculation 
of )( and )( xyxy UL in (13). The behaviour of ),( θxη is 
quadratic in the difference between the selected iθ and the 
optimum *θ , so this apparently crude calculation should 
be adequate provided we take sufficient points on  

)]([ αR∂ . 
 Points randomly and uniformly distributed on )]([ αR∂  
are easily obtained on noting that  

 
   )}()ˆ)(ˆ()ˆ(:{)]([ 21 αχα p

TR =−−=∂ − θθθVθθθ  
 

is simply a level surface of the density of the variable 
)ˆ( θθW −= that is (approximately) multivariate normally 

distributed )]ˆ(,[ θV0MVN . Therefore W can be written as 
 

     LZW =  
 

where L is the lower triangular matrix of the Cholesky de-
composition of V: 

 
     TLLV = . 

 
We can therefore form a point on )]([ αR∂  by taking W 
with components  

 

        ∑
=

=
p

j
jipi zzW

1

222 /)(αχ  

 
where the pizi ,...,2,1 , =  are p independent )1 ,0(N vari-
ables. (See section 5.5.2 in Banks, 1998)  
 The projection of a sample of 500 W’s each of dimen-
sion 3 onto a two dimensional plane is illustrated in Figure 
2. 

 

244
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3

 
Figure 2: 500 Randomly Generated 3-Dimensional Points 
on the Surface )]([ αR∂ Projected on 2-Space. 

 
3.2  Bootstrap Resampling of θ̂  
 
Bootstrap resampling can be used as an alternative to avoid 
the assumption of asymptotic normality of the distribution 
of θ̂ . We consider just the case of parametric bootstrap-
ping. A y*, bootstrap sample of y, can be obtained with the 
components of y* generated from  

 
  njxy jjj ,...,2,1  *,)ˆ,(* =+= εη θ , 

 
where, for simplicity we assume that the 

njj ,...,2,1  *, =ε are independent )ˆ,0( 2σN  variates. For 
each such sample we carry out ML estimation of θ  to ob-
tain the bootstrap MLE *θ̂ . This therefore yields a boot-
strap value of C defined in (9) as 

 
       )ˆ*ˆ)(ˆ()ˆ*ˆ(* 1 θθθVθθ −−= −TC . 

 
We can (easily) replicate the bootstrapping, B times say, to 
produce a bootstrap sample of C values: 

 
   *}*,...,*,{* )()2()1( BCCC=C . 

 
A simple estimate of the upper α  quantile, which we write 
as C*(α), can be obtained from the empirical distribution 
function of the sample *C  (or a smoothed version of it). 
This quantile estimator, C*(α), can then be used instead of 

)(2 αχ p in the definition of )(αR∂ used to calculate the lim-
its , ),( and )( bxaxyxy UL ≤≤ of (13). 
 In the next Section, we illustrate the sampling methods 
just described.  
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4 A NUMERICAL EXAMPLE 
 
Though we have discussed the calculation of confidence 
bands in a simulation setting, the method does not depend 
on whether the data is real or simulated. 
 The following is a set of data giving the number of no-
tifications of pulmonary TB (per 100,000) in Morocco in 
four selected years 1980, 1986, 1993, 2000, grouped by 
age.  

 
Table 1: Morocco Pulmonary TB notifications per 100,000 

Av. 
Age Year 1980 1986 1993 2000 

2 0-4 1.26 2.78 0.63 0.34 
7 5-9 3.53 4.10 1.31 0.91 

12 10-14 11.98 13.14 9.86 6.53 
19.5 15-24 90.82 97.12 75.85 59.46 
29.5 25-34 83.45 116.62 104.00 80.85 
39.5 35-44 55.98 67.28 79.33 82.66 
54.5 45-64 66.32 78.53 69.10 67.27 
75 65+ 39.42 55.35 60.76 73.20 
 
 

 We fitted the model 
 

,
)](exp[1

)](exp[
)(

35

352
642 j

j

j
jjj x

x
xxy ε

θθ
θθ

θθθ +
−+

−
++=  

 
where jε ~ ),0( 2

1θN . The model can be criticized on vari-
ous grounds. We treated all 32 observations as being inde-
pendent and as have the same variance. Neither assumption 
is fully justified. However the example is for illustration 
only so we will not investigate its adequacy any further. 
The model is highly nonlinear and the form has been care-
fully selected to give a meaningful parameterization. The 
ML estimates for the parameters are given in Table 2. 
 We then calculated 90% confidence intervals and con-
fidence bands using the asymptotic methods of Section 2  
and the bootstrapping methods of Section 3. 
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 The resulting bands are shown in Figure 3. It will be 
seen that the bands are broadly similar. The confidence 
bands are wider than the confidence intervals. The more 
accurate version of the bootstrap confidence bands are, as 
expected, somewhat wider than the bands using the linear 
approximation for ),( θxη . Also the bootstrap versions ar-
guably have the better characteristics. For example the 
bootstrap bands do not go negative, a weakness of the 
bands constructed from asymptotic normality theory. 
 

Table 2: MLE’s for the Morocco TB Model 
Parameter MLE 

1θ  10.17 

2θ  153.79 

3θ  17.26 

4θ  -2.58 

5θ  0.455 

6θ  0.01746 
 

 
5 CONCLUSIONS 
 
The resampling and bootstrap methods for constructing 
confidence bands are easy to apply. The spreadsheet im-
plementations are available and can be downloaded from 
the author’s personal Web page at 
www.maths.soton.ac.uk/staff/Cheng/Teach
ing/GTPBootstrap and can be easily modified to 
handle particular problems. 
 The bootstrap versions are based on bootstrap percen-
tile confidence intervals. It is generally accepted that use of 
bootstrap studentized intervals can give more accurate 
coverage. A detailed discussion of different possible confi-
dence intervals is given in Davison and Hinkley (1997). 
This has not been attempted in this paper. It is hoped that 
this work will be carried out shortly and that simulation 
comparisons will be made in which actual coverage prob-
abilities are determined. 

http://www.maths.soton.ac.uk/staff/Cheng/Teaching/GTPBootstrap
http://www.maths.soton.ac.uk/staff/Cheng/Teaching/GTPBootstrap
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Asymptotic 90% Confidence Curves
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Bootstrap 90% Confidence Curves
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Figure 3: Asymptotic and Bootstrap Confidence Curves for the Moroccan TB Data. 
246



Cheng 
REFERENCES 

Banks, J. 1998. Handbook of simulation. New York: Wiley. 
Barton, R.R., 1998. Simulation metamodels. Proc. of the 

1998 Winter Simulation Conference, D.J. Medeiros, 
E.F. Watson, J.S. Carson and M.S. Manivannan, eds., 
IEEE, Piscataway, NJ. 167-174. 

Chernick, M.R. 1999. Bootstrap methods, a practitioner's 
guide. New York: Wiley. 

Davison, A.C. and Hinkley, D.V. 1997. Bootstrap methods 
and their application. Cambridge: Cambridge Univer-
sity Press. 

Hjorth, J.S.U. 1994. Computer intensive statistical methods. 
London: Chapman & Hall. 

Krzanowski, W.J. 1998. An introduction to statistical mod-
elling. London: Arnold. 

Law, A.M. and Kelton, W.D. 1991. Simulation modeling 
and analysis, 2nd Ed., New York: McGraw-Hill. 

Miller, R.G. 1981. Simultaneous Statistical Inference. New 
York: Springer. 
 

247
AUTHOR BIOGRAPHY 

RUSSELL C. H. CHENG is Professor and Head of Op-
erational Research at the University of Southampton. He 
has an M.A. and the Diploma in Mathematical Statistics 
from Cambridge University, England. He obtained his 
Ph.D. from Bath University. He is a former Chairman of 
the U.K. Simulation Society, a Fellow of the Royal Statis-
tical Society and the British Computer Society, Member 
of the Operational Research Society. His research inter-
ests include: variance reduction methods and parametric 
estimation methods. He was a Joint Editor of the IMA 
Journal of Management Mathematics. His email and web 
addresses are R.C.H.Cheng@maths.soton.ac.uk 
and www.maths.soton.ac.uk/staff/Cheng 

mailto:R.C.H.Cheng@maths.soton.ac.uk
http://www.maths.soton.ac.uk/staff/Cheng

	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



