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ABSTRACT

This paper reviews statistical methods for analyzing output
data from computer simulations. First, it focuses on the es-
timation of steady-state system parameters. The estimation
techniques include the replication/deletion approach, the re-
generative method, the batch means method, and methods
based on standardized time series. Second, it reviews recent
statistical procedures to find the best system among a set
of competing alternatives.

1 INTRODUCTION

The primary purpose of most simulation studies is the ap-
proximation of prescribed system parameters with the ob-
jective of identifying parameter values that optimize some
system performance measures. If some of the input pro-
cesses driving a simulation are random, then the output data
are also random and runs of the simulation program only
result in estimates of system performance measures. Un-
fortunately, a simulation run does not usually produce inde-
pendent, identically distributed (IID) observations; therefore
“classical” statistical techniques are not directly applicable
to the analysis of simulation output.

A simulation study consists of several steps such as data
collection, coding and verification, model validation, exper-
imental design, output data analysis, and implementation.
This paper reviews (a) statistical methods for computing
confidence intervals for system performance measures from
output data and (b) statistical methods for determining the
best system from a set of alternatives.

There are two types of simulations with regard to output
analysis:
Finite-horizon simulations. In this case the simulation
starts in a specific state and is run until some terminating
event occurs. The output process is not expected to achieve
any steady-state behavior and any parameter estimated from
the output data will be transient in the sense that its value
will depend upon the initial conditions. An example is the
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simulation of a vehicle storage and distribution facility over
a week.
Steady-state simulations. The purpose of a steady-state
simulation is the study of the long-run behavior of the
system of interest. A performance measure of a system is
called a steady-state parameter if it is a characteristic of the
equilibrium distribution of an output stochastic process. An
example is the simulation of a continuously operating com-
munication system where the objective is the computation
of the mean delay of a data packet.

Section 2 discusses methods for analyzing output from
finite-horizon simulations. Section 3 presents techniques
for point and interval estimation of steady-state parameters.
Section 4 reviews recent methods for identifying the best
system among a set of alternatives.

2 FINITE-HORIZON SIMULATIONS

Suppose that we simulate a system until n output data
X1, X2, . . . , Xn are collected with the objective of estimat-
ing μ ≡ E(X̄n), where X̄n ≡ 1

n

∑n
i=1 Xi is the sample mean

of the data. For example, Xi may be the transit time of unit i

through a network of queues or the total time station i is busy
during the ith hour. Clearly, X̄n is an unbiased estimator for
μ. Unfortunately, the Xi are generally dependent random
variables making the estimation of the variance Var(X̄n)

a nontrivial problem. Let S2
n(X) ≡ 1

n−1

∑n
i=1(Xi − X̄n)

2

be the sample variance of the data. The presence of auto-
correlation makes the familiar estimator S2

n(X)/n a biased
estimator of Var(X̄n). In particular, if the Xi’s are positively
correlated, one has E(S2

n(X)/n) < Var(X̄n) (see Section 3).
To overcome this problem, one can run k independent

replications of the system simulation. Assume that run i pro-
duces the output data Xi1, Xi2, . . . , Xin. Then the replicate
averages Yi = 1

n

∑n
j=1 Xij are IID random variables, their

sample mean Ȳk = 1
k

∑k
i=1 Yi is also an unbiased estimator

of μ, and their sample variance V̂R = S2(Y ) is an unbiased
estimator of Var(X̄n). If in addition k is sufficiently large,
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an approximate 1 − α confidence interval (CI) for μ is

Ȳk ± tk−1,1−α/2

√
V̂R/k , (1)

where td,δ is the δ-quantile of Student’s t distribution with
d degrees of freedom.

Alexopoulos and Seila (1998, Section 7.2.2) review
sequential procedures for determining the number of repli-
cations required to estimate μ with a fixed absolute or
relative precision. The procedure for constructing a 1 − α

CI for μ with a small absolute error |Ȳk − μ| ≤ β is based
on Chow and Robbins (1965). It starts with k ≥ 5 runs and

stops when the halfwidth tk−1,1−α/2

√
V̂R/k ≤ β. Law and

Kelton (2000) describe a method for obtaining an estimate
whose relative error satisfies Pr(|Ȳk −μ|/|μ| ≤ γ ) ≥ 1−α,
with α ≤ 0.15. The method starts with k ≥ 10 runs and

stops when the relative halfwidth tk−1,1−α/2|Ȳk|−1
√

V̂R/k

drops below γ /(1 + γ ).
The method of independent replications can also be used

for estimating performance measures other than means. Let
Y be the total cost incurred in an inventory syetem during
a certain time window, and let yp ≡ inf{y : Pr(Y ≤ y) ≥
p} denote the p-quantile of Y . Suppose that we run k

replications. Let Yi be the cost observed during replication
i, and let Y(1) < Y(2) < · · · < Y(k) be the order statistics
corresponding to the Yi . Then a point estimate for yp is
ξ̂p = Y(kp) if kp is an integer or ŷp = Y(�kp+1�) otherwise
(�·� is the floor function). A CI for yp is described in
Alexopoulos and Seila (1998, Section 7.3.2).

3 STEADY-STATE ANALYSIS

We focus on methods for computing point and interval
estimators for the mean of a discrete-time stationary pro-
cess. Analogous methods for analyzing continuous-time
output data are described in a variety of texts (Fish-
man 2001; Law and Kelton 2000). The process X =
{Xi : i ∈ Z} is called stationary if the joint distribu-
tion of Xi+j1 , Xi+j2 , . . . , Xi+jk

is independent of i for
all indices j1, j2, . . . , jk and all k ≥ 1. If E(Xi) = μ,
Var(Xi) ≡ σ 2

X < ∞ for all i, and the Cov(Xi, Xi+j ) is inde-
pendent of i, then X is called weakly stationary. We denote
the autocovariance function of X by Rj ≡ Cov(X1, X1+j )

(j = 0, ±1, ±2, . . .). Notice that R0 = σ 2
X.

Clearly, the sample mean X̄n is not only unbiased for μ,
but also strongly consistent by the ergodic theorem (see Dur-
rett 2005). Under the assumption that X̄n is approximately
normally distributed (which is reasonable for sufficiently
large n), the usual construction of a CI for μ requires the
derivation of an estimator for Var(X̄n). A little algebra
189
yields (Anderson 1984),

E

[
S2

n(X)

n

]
=

n
an

− 1

n − 1
Var(X̄n), (2)

where an = 1 + (2/σ 2
X)

∑n−1
j=1(1 − j/n)Rj . Then for pro-

cesses that are positively correlated (Ri > 0), equation (2)
implies that E[S2

n(X)/n] < Var(X̄n). Hence the “classical”
1−α CI for IID data X̄n ± tn−1,1−α/2

Sn(X)√
n

can have cover-
age probability that can be considerably below the nominal
value 1 − α.

A common assumption facilitating the derivation of a
CI for μ is as follows:

Functional Central Limit Theorem (FCLT) Assump-
tion. Suppose that the series

σ 2 ≡ σ 2
X + 2

∞∑
j=1

Rj (3)

is absolutely convergent and σ 2 > 0. Let

Xn(t) ≡ �nt�(X̄�nt� − μ)

σ
√

n
, t ≥ 0.

Then Xn(·) =⇒ W , where {W(t) : t ≥ 0} is a standard
Brownian motion process. We call σ 2 the (asymptotic)
variance parameter of X.

This assumption holds under several conditions (see
Durrett 2005). Examples are a condition involving con-
ditional second moments of X and the stronger ϕ-mixing
condition: X is ϕ-mixing if there are ϕk ↓ 0 such that, for
each k ≥ 0, A ∈ F j

−∞, and B ∈ F∞
j+k ,

| Pr(A ∩ B) − Pr(A) Pr(B)| ≤ ϕk Pr(A).

Here F j
i (i ≤ j ) denotes the σ -field generated by

Xi, Xi+1, . . . , Xj .
Remark 1 Contrary to popular belief, many

stochastic processes encountered in simulation output analy-
sis are not ϕ-mixing. Examples are autoregressive processes,
regenerative processes (see Section 3.3) with regenerations
not occurring uniformly fast over the state space, and virtu-
ally all open queueing networks (Glynn and Iglehart 1985).

The variance of the sample mean in terms of the auto-
covariance function is

Var(X̄n) = 1

n

[
σ 2

X + 2
n−1∑
j=1

(1 − j/n)Rj

]
. (4)

Assumption 0 < σ 2 < ∞ along with equation (4) imply
limn→∞ nVar(X̄n) = σ 2 and limn→∞ Var(X̄n) = 0; hence
X̄n is also consistent (in mean square error). Our focus
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will be on methods for obtaining CIs for μ, which involve
estimating σ 2.

Finally, the “little-oh” notation f (m) = o(g(m)) means
that f (m)/g(m) → 0 as m → ∞; and the “big-oh” notation
f (m) = O(g(m)) means that there is a positive integer m0
such that |f (m)/g(m)| ≤ C for some constant C and all
m ≥ m0.

3.1 Dealing with the Initial Conditions

Several problems arise when the process X does not start in
steady-state. For example, X̄n is not an unbiased estimator
of the mean μ. The removal of the effect of the initial
conditions is a challenging problem.

The most commonly used method for eliminating the
bias of X̄n identifies an index l and truncates the observations
X1, . . . , Xl . Several procedures have been proposed for the
detection of a cutoff index l (see Fishman 2001; Law and
Kelton 2000; Ockerman 1995; Wilson and Pritsker 1978ab).

The graphical procedure of Welch (1983) uses k in-
dependent replications, with the ith replication producing
observations Xi1, Xi2, . . . , Xin, and computes the “across-
runs” averages X̄j = 1

k

∑k
i=1 Xij , j = 1, . . . , n. Then for

a given time window w, the procedure plots the moving
averages

X̄j (w) =
{

1
2w+1

∑w
m=−w X̄j+m w + 1 ≤ j ≤ n − w

1
2j−1

∑j−1
m=−j+1 X̄j+m 1 ≤ j ≤ w

against j . If the plot is reasonably smooth, then l is chosen
to be the value of j beyond which the sequence of moving
averages converges. Otherwise, a different time window is
chosen and a new plot is drawn. The choice of w may be
a difficult problem for congested systems with output time
series having autocorrelation functions with long tails (see
Alexopoulos and Seila 1998, Example 7).

3.2 The Replication/Deletion Approach

This intuitive approach runs k independent replications,
each of length l + n observations, and discards the first l

observations from each run. (For example, l can be chosen
using Welch’s method from Section 3.1.) One then uses the
IID sample means Yi(l, n) = 1

n

∑l+n
j=l+1 Xij from the k runs

to compute the point estimate Ȳk(l, n) = 1
k

∑k
i=1 Yi(l, n)

and the following approximate 1 − α CI for μ:

Ȳk(l, n) ± tk−1,1−α/2

√
V̂R(l, n)/k, (5)

where V̂R(l, n) is the sample variance of the Yi(l, n).
The method is simple and general, but involves the

choice of three parameters, l, n and k. Here are a few
points the user should be aware of: (a) As l increases for
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fixed n, the “systematic” error in each Yi(l, n) due to the
initial conditions decreases. (b) As n increases for fixed l,
the systematic and sampling errors in Yi(l, n) decrease. (c)
The systematic error in the sample means Yi(l, n) cannot
be reduced by increasing the number of replications k. (d)
For fixed n and under some mild moment conditions that
are satisfied by a variety of simulation output processes, the
CI (5) is asymptotically valid if l/ ln(k) → ∞ as k → ∞
(Fishman 2001). This means that as one makes more runs
in an attempt to compute a narrower CI, the truncation index
l must increase faster than the logarithm of k for the CI to
achieve the nominal coverage. This requirement is hard to
implement in practice. (e) This method is also potentially
wasteful of data as the truncated portion is removed from
each replication.

The regenerative method (Section 3.3) and the batch
means method (Section 3.4) seek to overcome the aforemen-
tioned issues. Alexopoulos and Goldsman (2004) present
a thorough comparison between the methods of indepen-
dent replications and batch means and identify additional
shortcomings of the method of independent replications.

3.3 The Regenerative Method

This method assumes the identification of time indices at
which the process X probabilistically starts over and uses
these regeneration epochs for obtaining IID random variables
which can be used for computing point and interval estimates
for the mean μ. The method was proposed by Crane and
Iglehart (1975) and Fishman (1973, 1974). More precisely,
assume that there are (random) time indices T1 < T2 < · · ·
such that the portion {XTi+j , j ≥ 0} has the same distribution
for each i and is independent of the portion prior to time
Ti . The portion of the process between two successive
regeneration epochs is called a cycle. Let Yi = ∑Ti+1−1

j=Ti
Xj

and Zi = Ti+1 − Ti for i = 1, 2, . . . and assume that
E(Zi) < ∞. Then the steady-state mean μ is given by
μ = E(Y1)/E(Z1).

Now suppose that one simulates the process X over
n cycles and collects the observations Y1, . . . , Yn and
Z1, . . . , Zn. Then μ̂ = Ȳn/Z̄n is a strongly consistent
estimator of μ. Furthermore, CIs for μ can be constructed
by using the IID random variables Yi − μZi, i = 1, . . . , n

and the central limit theorem (see Iglehart 1975).
The regenerative method is difficult to apply in prac-

tice because the majority of simulations have either no
regenerative points or very long cycle lengths. Two classes
of systems this method has successfully been applied to
are inventory systems and highly reliable communications
systems with repairs.
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3.4 The Batch Means Method

The method of nonoverlapping batch means (NBM) is a
popular approach for computing point and CI estimators for
the mean μ of a stationary process. Original accounts on
the method were given by Conway (1963), Fishman (1978),
and Law and Carson (1979); see Alexopoulos and Goldsman
(2004) and Fishman (2001) for detailed coverage.

Suppose that the sample X1, . . . , Xn is divided into
k contiguous batches, each consisting of m observa-
tions (for simplicity, we assume n = km). For
i = 1, . . . , k, the ith batch consists of the observations
X(i−1)m+1, X(i−1)m+2, . . . , Xim and the ith batch mean
Yi,m = 1

m

∑m
j=1 X(i−1)m+j is the sample average from

batch i. The NBM-based estimator of the mean is the
grand sample mean

X̄n = 1

k

k∑
i=1

Yi,m = 1

n

n∑
i=1

Xi.

Clearly, the stationarity of X implies E(X̄n) = μ and the
stationarity of the batch means sequence {Yi,m : i ≥ 1}.

The motivation behind the NBM method is simple.
First, under the FCLT, one can show that as m → ∞,
the batch means become uncorrelated (Law and Carson
1979) and normally distributed. Since the grand mean X̄n

is the sample average of the batch means, one has the
approximation

nVar(X̄n)
.= nVar(Y1,m)/k = mVar(Y1,m).

Hence the NBM estimator for σ 2 is

V̂B(k, m) ≡ m

k − 1

k∑
i=1

(Yi,m − X̄n)
2, (6)

which is m times the sample variance of the batch means.
An approximate 1 − α CI for μ is

X̄n ± tk−1,1−α/2

√
V̂B(k, m)

n
. (7)

Of course, the fundamental issue is the choice of the
batch size and the number of batches. Several early studies
(e.g., Fishman 1978; Schmeiser 1982) addressed this issue,
but without the rigor of recent studies.

To motivate the description of the modern procedures,
we focus on the mean square error (MSE) of V̂B(k, m) and
the coverage of the CI (7). Here we let σ 2

n ≡ nVar(X̄n),
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and define the “center of gravity” constant

γ ≡ −
∞∑

j=−∞
jRj = −2

∞∑
j=1

jRj . (8)

One can show that

E[V̂B(k, m)] = 1

k − 1
(kσ 2

m − σ 2
n ).

If in addition E(X4
1) < ∞, and the process X is ϕ-mixing

with ϕj = O(j−4−ε) for some ε > 0, then γ exists and

σ 2
n = σ 2 + γ /n + o(1/n). (9)

Combining the last two equations we obtain

E[V̂B(k, m)] = σ 2 + (k + 1)γ /n + o(1/n). (10)

Hence, V̂B(k, m), usually has negative first-order bias for
positively autocorrelated processes.

Also, the additional assumptions E(X12
1 ) < ∞ and

ϕj = O(j−9) allow one to write

Var[V̂B(k, m)] = 2σ 4(k + 1)

(k − 1)2 + O(1/(km1/4))

+O(1/k2) (11)

(Chien, et al. 1997). Then the MSE of the variance estimator
V̂B(k, m) has the form

MSE[V̂B(k, m)] = O(1/(km1/4)) + O(1/k2) → 0, (12)

as m, k → ∞. Property (12) implies weak consistency
for the estimator V̂B(k, m), but does not guarantee the
asymptotic validity of the CI in equation (7). Before we
discuss batching rules that yield the last property, we briefly
examine how the variance estimator V̂B(k, m) approaches
σ 2. As in Fishman (2001, p. 251), equation (10) allows us
to write

V̂B(k, m) − σ 2 = σ 2
n − σ 2︸ ︷︷ ︸

error due to
finite n

− σ 2
n

1 − σ 2
m/σ 2

n

1 − m/n︸ ︷︷ ︸
error due to

ignoring correlations
between batch means

+ εn︸︷︷︸
error due to

random sampling

, (13)

where the error εn has mean zero and variance given by
equation (11). We call the first two terms on the right-
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hand side of equation (13) a systematic error; by equation
(9) this error behaves as O(1/m). On the other hand,
equation (11) implies that the standard deviation of εn

behaves as O(k−1/2). These growth rates reveal the tradeoff
between the two types of error induced by k and m. Since
σ 2

n approaches σ 2 from below for a variety of systems
with positive autocorrelation functions, the systematic error
induces a negative bias in V̂B(k, m) that dissipates as the
batch size increases. Then the error due to random sampling
fluctuates around zero and decreases at rate O(k−1/2).

The recent literature contains a variety of rules for
selecting batch sizes {m
} and batch counts {k
} as the sample
size increases. The most intuitive rule fixes the number of
batches and doubles the batch size at each iteration. This
assignment is computationally attractive because at every
iteration, pairs of existing batch means are averaged to
compute the new batch means.

Fixed Number of Batches (FNB) Rule. Start with
k batches of size m1. At stage 
 ≥ 2, use batch size
m
 = 2m
−1 and sample size n
 = km
.

Under the FCLT assumption, one can show that for

fixed k and m → ∞, V̂B(k, m)
d−→ σ 2χ2

k−1/(k−1), where
χ2

d denotes a chi-square random variable with d degrees
of freedom; and the CI in equation (7) is asymptotically
valid (Glynn and Whitt 1991). If we assume uniform
integrability for V̂ 2

B(k, m) (see Billingsley 1968), we have
limm→∞ E[V̂B(k, m)] = σ 2 and limm→∞ Var[V̂B(k, m)] =
2σ 4/(k−1); hence the FNB rule does not yield a consistent
variance estimator. This is in agreement with equation (13)
as the error O(k−1/2) due to random sampling does not
diminish. Therefore the CI in equation (7) tends to be wider
than CIs based on consistent variance estimators.

3.5 Consistent Batch Means Estimation
Methods

Alternative rules that yield strongly consistent estimators
for V̂B(k, m) are based on the following assumption:

Assumption of Strong Approximation (ASA). There
exists a constant λ ∈ (0, 1/2] and a finite random variable
C such that, as n → ∞,

|√n(X̄n − μ)/σ − W(n)/
√

n| ≤ Cn−λ, w.p.1,

where W is a standard Brownian motion process defined
on the same space as the standardized process {X̄n}.

A λ close to 1/2 indicates a marginal normal distri-
bution and low correlation among the Xi . Conversely, a
λ close to zero indicates the absence of at least one of
these properties (Philipp and Stout 1975). The following
theorem proposes batching assumptions which along with
ASA yield a strongly consistent estimator for σ 2. (Notice
that the batching sequences are indexed by the sample size.)
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Theorem 1 (Damerdji 1994a) Suppose that the ASA
holds and that {mn} and {kn} are deterministic sequences
of batch sizes and batch counts, respectively, such that
mn → ∞, kn → ∞, n1−2λ ln(n)/mn → 0 (as n → ∞),
and

∑∞
n=1 k

−q
n < ∞ for some finite integer q ≥ 1. Then,

as n → ∞, V̂B(kn, mn) → σ 2, w.p.1 and

Z(kn, mn) ≡
√

n(Xn − μ)√
V̂B(kn, mn)

d−→ N(0, 1), (14)

where N(0, 1) is a standard normal random variable.
Suppose that mn

.= nθ , for some θ ∈ (0, 1). One can
verify that the conditions of Theorem 1 are satisfied if θ ∈
(1 − 2λ, 1). In particular, the square root (SQRT) rule that
uses mn

.= kn
.= √

n (θ = 1/2) yields a strongly consistent
variance estimator when 1/4 < λ < 1/2. In addition to
the derivation of a strongly consistent estimator for σ 2, the
SQRT rule induces an optimal property: Assuming that
E(X20

1 ) < ∞ and that X is ϕ-mixing with ϕj = O(j−13),
Chien (1989) showed that the CDF of the standardized
statistic Z(k, m) converges to the standard normal CDF
at the fastest possible rate. Unfortunately, the CIs for μ

that result from an implementation of the SQRT rule often
exhibit low coverage for small sample sizes (see Example
11 in Alexopoulos and Seila 1998).

Although both the FNB and SQRT rules yield asymp-
totically valid CIs for μ, each has desirable properties and
limitations. To close the “gap,” Fishman andYarberry (1997)
proposed the LABATCH.2 suite of algorithms. Among the
two recommended algorithms, LBATCH and ABATCH, we
present the latter because it is more conservative with re-
gard to the coverage of the resulting CI (7). This method
uses von Neumann’s test (von Neumann 1941ab; Young
1941) to assess the hypothesis H0: “the batch means are
independent.” The associated test statistic is

�(k, m) ≡
√

k2 − 1

k − 2

[
1 −

∑k−1
i=1 (Yi,m − Yi+1,m)2

2
∑k

i=1(Yi,m − X̄n)2

]
.

Assume that the hypothesis H0 is true. If the batch
means are normally distributed, the distribution of �(k, m)

is very close to N(0, 1) for k as small as 8. On the
other hand, if the batch means are nonnormal, the first four
cumulants of �(k, m) converge to the respective cumulants
of the N(0, 1) distribution as k → ∞. Hence, under H0,
�(k, m) ≈ N(0, 1) for large m (the batch means become
approximately normal) or large k. To guard against positive
correlation, one can use a one-sided test and reject H0 at
level β when �(k, m) > z1−β , where zδ is the δ-quantile
of the standard normal distribution.

The ABATCH algorithm evolves as follows. For a
complete description, see Fishman (2001).
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Algorithm ABATCH

• Select initial batch size m1, initial batch count k1,
confidence level 1 − α, and type I error β for von
Neumann’s test.

• On iteration 
 ≥ 1: Compute von Neumann’s
statistic �(k
, m
). If �(k
, m
) > z1−β , reject H0
and use the FNB rule on iteration 
+1. Otherwise,
use the SQRT rule on iteration 
 + 1.

Since the ABATCH algorithm uses random m
 and
k
, Theorem 6.6 of Fishman (2001) lists conditions that
imply strong consistency for V̂B(k
, m
) and asymptotic

validity for the CI X̄n ± z1−α/2

√
V̂B(k
, m
)/n
. The

FNB and SQRT rules can be implemented easily within
the ABATCH algorithm by setting β = 0 or β = 1,
respectively. Two features of the LABATCH.2 suite that
are often overlooked are algorithm efficiency and low space
requirements: each algorithm requires O(n) total time
and O(log2 n) space. Although similar complexities are
known for static fixed-batch-size algorithms (e.g., all the
methods in the remainder of this paper have a linear time
complexity per iteration), the dynamic setting of ABATCH
offers an important additional advantage not present in the
static approach: as the analysis evolves with increasing
sample path length, it allows a user to assess how well the
estimated variance of the sample mean stabilizes, in linear
total time. This assessment is essential to gauge the quality
of the variance parameter estimates and the CI for the mean.
C, FORTRAN and SIMSCRIPT II.5 codes of LABATCH.2
can be downloaded via anonymous ftp from the site
<http://www.or.unc.edu/∼gfish/labatch.2
.html> .

Steiger et al. (2004) proposed an alternative sequen-
tial NBM approach, ASAP3, that delivers a CI for μ that
satisfies user-specified requirements on absolute or relative
precision as well as coverage probability. This approach
takes advantage of the fact that the batch means often become
approximately multivariate normal random variables before
achieving independence. ASAP3 operates as follows: the
batch size is progressively increased until the batch means
pass the Shapiro-Wilk test for multivariate normality; and
then ASAP3 fits a first-order autoregressive (AR(1)) time
series model to the batch means. If necessary, the batch
size is further increased until the autoregressive parameter
in the AR(1) model does not significantly exceed 0.8. Next
ASAP3 computes the terms of an inverted Cornish-Fisher
expansion for the classical batch means t-ratio based on the
AR(1) parameter estimates; and finally ASAP3 delivers a
correlation-adjusted CI based on this expansion. Although
ASAP3 does not possess the computational efficiency of the
LABATCH.2 algorithms, it performs very well with regard
to conformance to the precision and coverage probability
requirements as well as with regard to the mean and variance
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of the half-length of the delivered CI. Related papers, exper-
imental results, and the ASAP3 software are accessible from
the site <http://www.ie.ncsu.edu/jwilson>.

Overlapping Batch Means

An interesting variation of the traditional batch means
method is the method of overlapping batch means (OBM)
proposed by Meketon and Schmeiser (1984). For given
batch size m, this method uses all n − m + 1 overlapping
batches to estimate μ and Var(X̄n). The first batch consists
of observations X1, . . . , Xm, the second batch consists of
X2, . . . , Xm+1, etc. The OBM estimator of μ is

ȲO = 1

n − m + 1

n−m+1∑
i=1

Y ′
i,m,

where Y ′
i,m = 1

m

∑i+m−1
j=i Xj (i = 1, . . . , n − m + 1) are

the respective batch means. The OBM-based estimator of
σ 2 is

V̂O(k, m) = nm

(n − m + 1)(n − k)

n−m+1∑
i=1

(Y ′
i,m − X̄n)

2,

with k ≡ n/m. The OBM variance estimator is almost
identical to Bartlett’s spectral estimator (seeAnderson 1984).

Under conditions similar to those required to derive
equations (10) and (11) one has (Song and Schmeiser 1995)

E[V̂O(k, m)] = σ 2 + γ /m + o(1/m) (15)

and, as m → ∞,

Var[V̂O(k, m)] → 2(2k2 − 3k − 3)σ 4

3(k − 1)2
.= 4σ 4

3k
. (16)

Equations (10) and (15) show that the estimators V̂B(k, m)

and V̂O(k, m) have the same asymptotic means (as k, m →
∞). However a comparison between equations (11) and
(16) reveals that

Var[V̂O(k, m)]
Var[V̂B(k, m)] → 2

3
, as k, m → ∞.

Thus, the OBM method gives better (asymptotic) perfor-
mance than NBM with regard to MSE. Also, the behavior
of Var[V̂O(k, m)] appears to be less sensitive to the choice
of the batch size than does the behavior of Var[V̂B(k, m)]
(see Song and Schmeiser 1995, Table 1).

An approximate 1 − α CI for μ is X̄n ±
td,1−α/2

√
V̂O(k, m)/n, with the degrees of freedom d cho-

sen so that V̂O(k, m) is asymptotically σ 2χ2
d /d. Meketon

and Schmeiser (1984) use the value d = 1.5(k−1) whereas,

http://www.or.unc.edu/~gfish/labatch.2.html
http://www.or.unc.edu/~gfish/labatch.2.html
file:ftp.ncsu.edu/pub/eos/pub/jwilson/installasap3.exe


Alexopoulos and Kim
based on Monte Carlo studies, Schmeiser (1986) recom-
mends the larger value d = 1.5(k−1)[1+(k−1)−0.5−0.6k].

The OBM method can also yield a consistent vari-
ance estimator. If X satisfies ASA, and the determinis-
tic sequences satisfy the assumptions of Theorem 1 and
limn→∞(k2

n/n) = 0, then Var[V̂O(kn, mn)] → σ 2, w.p.1
(Damerdji 1994a).

Using equations (15) and (16), one can show that
for a sample size n, the batch size that minimizes the
MSE[V̂O(k, m)] is given by

m∗ =
(

3γ 2n

2σ 4

)1/3

. (17)

Song (1996) developed methods for estimating the ratio
γ 2/σ 4 for a variety of processes, including moving average
processes and autoregressive processes. Then one can obtain
an estimator for m∗ by plugging the ratio estimator into
equation (17).

Welch (1987) noted that both traditional batch means
and overlapping batch means are special cases of spectral
estimation at frequency 0 and, more importantly, suggested
that overlapping batch means yield near-optimal variance
reduction when one forms sub-batches within each batch
and applies the method to the sub-batches. For example,
a batch of size 64 is split into 4 sub-batches and the first
(overlapping) batch consists of observations X1, . . . , X64,
the second consists of observations X17, . . . , X80, etc.

3.6 Methods Based on Standardized Time Series

Now we turn to estimators based on standardized time
series (STS). We start with estimators based on the entire
sample, and then present estimators based on standardized
time series applied to batches.

The STS for the sample X1, . . . , Xn is formed as follows
(see Schruben 1983): One defines D0,n ≡ 0 and Di,n ≡
Ȳi − Ȳn, for i = 1, . . . , n; scales the sequence {Di,n} by
i/(σ

√
n); and then scales the time index i of the resulting

sequence to the unit interval by setting t = i/n. The
resulting STS is

Tn(t) ≡ �nt�(X̄n − X̄�nt�)
σ
√

n
, 0 ≤ t ≤ 1.

If X satisfies a FCLT, it can be shown that, as n → ∞,

(
√

n(X̄n − μ), σTn) =⇒ (σW(1), σB), (18)

where B is a standard Brownian bridge process on [0, 1]
defined by B(t) = W(t) − tW(1) (for a set of sufficient
conditions, see Glynn and Iglehart 1990). In addition, the
STS Tn(·) is asymptotically independent of X̄n. Recall that
all finite-dimensional joint distributions of B are normal
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with E(B(t)) = 0 and Cov(B(s), B(t)) = min(s, t) − st ,
0 ≤ s, t ≤ 1.

The Weighted Area Estimator

We start with the weighted area estimator (Goldsman et
al. 1990; Goldsman and Schruben 1990; Schruben 1983).
Suppose that the function f is continuous on the interval
[0, 1] and normalized so that Var(

∫ 1
0 f (t)B(t) dt) = 1.

Then
∫ 1

0 f (t)B(t) ∼ σN(0, 1). The square of the weighted
area under the STS is defined by

A(f ; n) ≡
[

1

n

n∑
i=1

f (i/n)σTn(i/n)

]2

.

Under mild conditions, the continuous mapping theorem
(see Billingsley 1968, Theorem 5.1) implies

A(f ; n)
d−→ A(f ) ≡

[∫ 1

0
f (t)σB(t) dt

]2

∼ σ 2χ2
1 ,

as n → ∞. For this reason, we call A(f ; n) the weighted
area estimator for σ 2.

The following theorem gives expressions for the mean
and variance of the weighted area estimator.

Theorem 2 (Foley and Goldsman 2000; Goldsman
et al. 1990) Suppose that X is ϕ-mixing and satisfies a
FCLT, the constant γ in equation (8) exists, and A2(f ; n)

is uniformly integrable. Then, as n → ∞,

E[A(f ; n)] = σ 2 + [(F (1) − F̄ (1))2 + F̄ 2(1)]γ
2n

+ o(1/n)

and

Var[A(f ; n)] → Var[A(f )] = Var(σ 2χ2
1 ) = 2σ 4,

where F(s) ≡ ∫ s

0 f (t) dt , 0 ≤ s ≤ 1, and F̄ (u) ≡∫ u

0 F(s) ds, 0 ≤ u ≤ 1.
Notice that the limiting variance does not depend on

the weight function f .
Example 1 Schruben (1983) studied the area es-

timator with constant weight function f0(t) ≡ √
12, for

t ∈ [0, 1]; in this case, Theorem 2 implies that E[A(f0; n)] =
σ 2 + 3γ /n + o(1/n).

If one chooses weights having F(1) = F̄ (1) = 0, the
resulting estimator is first-order unbiased for σ 2, i.e., its
bias is o(1/n). An example of a weight function yielding a
first-order unbiased estimator for σ 2 is f2(t) ≡ √

840(3t2 −
3t + 1/2) (Goldsman et al. 1990; Goldsman and Schruben
1990).

Other examples of weight functions yielding first-order
unbiased estimators for σ 2 are given by the family fcos,j (t) =√

8πj cos(2πjt), j = 1, 2, . . .. Foley and Goldsman (2000)
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showed that this “orthonormal” sequence of weights pro-
duces area estimators A(fcos,1, n), A(fcos,2, n), . . . that are
not only first-order unbiased, but asymptotically indepen-
dent; that is, A(fcos,1), A(fcos,2), . . . are IID σ 2χ2

1 .

Batched Area Estimators

Up to now, the STS-based variance estimators have been
constructed directly from a single long run of n observations.
We now examine what happens if we (a) divide the run
into contiguous, nonoverlapping batches; (b) form an STS
estimator from each batch; and (c) take the average of the
estimators.

The STS from batch i (i = 1, . . . , k) is

Ti,m(t) ≡ �mt�(Yi,m − Yi,�mt�)
σ
√

m
, 0 ≤ t ≤ 1,

where Yi,j = 1
j

∑j

=1 X(i−1)m+
. Under the same mild

conditions as before, one has

(
√

m(Y1,m − μ),
√

m(Y2,m − μ), . . . ,√
m(Yk,m − μ); σT1,m, σT2,m, . . . , σTk,m)

=⇒ (σZ1, σZ2, . . . , σZk; σB0, σB1, . . . , σBk−1),

where the Zi are IID standard normal random variables,
and Bs denotes a standard Brownian bridge on [s, s + 1],
for s ∈ [0, k − 1]. That is,

Bs(t) = W(s+t)−W(s)−t[W(s+1)−W(s)], 0 ≤ t ≤ 1.

One can easily show that the Brownian bridges
B1, B2, . . . ,Bk are independent.

The area estimator from batch i is

Ai(f ; m) ≡
[

1

m

m∑

=1

f (
/m)σTi,m(
/m)

]2

, i = 1, . . . , k,

and the batched area estimator for σ 2 is

V̂A(f ; k, m) ≡ 1

k

k∑
i=1

Ai(f ; m). (19)

Since the Ti,m, i = 1, . . . , k, converge to independent Brow-
nian bridges as m becomes large (with fixed k), we shall
assume that the the Ai(f ; m) are asymptotically indepen-
dent as m → ∞. Then by the discussion above, we have

V̂A(f ; k, m)
d−→ σ 2χ2

k /k, and an approximate 1 − α CI

for μ is X̄n ± tk−1,1−α/2

√
V̂A(k, m)/n.
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Theorem 2 implies

E[V̂A(f ; k, m)] = E[A1(f ; m)]
= σ 2 + [(F (1) − F̄ (1))2 + F̄ 2(1)]γ

2m
+o(1/m). (20)

Further, if we assume uniform integrability of V̂ 2
A(f ; k, m)),

we can also make an analogous statement concerning the
variance of the batched area estimator: As m → ∞,

Var[V̂A(f ; k, m)] = k−1Var[A1(f ; m)]
→ k−1Var[A(f )] = 2σ 4/k. (21)

Equations (20) and (21) indicate that the batched area esti-
mator has a bit more bias than the area estimator obtained
from the entire sample, but smaller asymptotic variance (by
a factor of k).

It is worth mentioning that, under the assumptions of
Theorem 1, Damerdji (1994ab) showed that the batched area
estimator V̂A(f ; k, m) is a strongly consistent estimator of
σ 2.

Remark 2 Another class of estimators is based on
the weighted area under the square of the STS (Goldsman
et al. 1999). Also, additional benefits result from com-
bining NBM-based and area estimators (Schruben 1983) or
by forming area estimators based on overlapping batches
(Alexopoulos, et al. 2005ab).

3.7 Quantile Estimation

A variety of methods have been proposed for estimating
quantiles of steady-state data (see Iglehart 1976; Moore
1980; Seila 1982ab; Heidelberger and Lewis 1984). The
methods differ in the way the variance of the sample quantile
is estimated. It should be mentioned that quantile estimation
is often a harder problem than the estimation of steady-state
means.

3.8 Multivariate Estimation

Frequently, the output from a single simulation run is used
for estimating several system parameters. The estimators of
these parameters are typically correlated. As an example,
consider the average customer delays at two stations on
a path of a queueing network. In general, Bonferroni’s
inequality can be used for computing a conservative confi-
dence coefficient for a set of CIs. Indeed, suppose that Di

is a 1 − α CI for the parameter μi , i = 1, . . . , m. Then
Pr[∩m

i=1{μi ∈ Di}] ≥ 1 − ∑m
i=1 αi.

This result can have serious implications as for m = 10
and αi = 0.10 the r.h.s. of the above inequality is equal to
0. If the overall confidence level must be at least 1−α, then
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the αi can be chosen so that
∑m

i=1 αi = α. Multivariate
estimation methods are described in Charnes (1989, 1990,
1991) and Chen and Seila (1987).

4 RANKING AND SELECTION METHODS

Up to this point we reviewed output analysis methods for a
single system. In this section we focus on comparing a num-
ber of alternative systems. There exist at least four classes
of comparison problems that arise in simulation: finding the
system with the largest or smallest expected performance
measure (finding the best), comparing alternative systems to
a standard (comparisons with a standard), finding the system
with the largest success probability (Bernoulli selection),
and finding the system with the largest probability of be-
ing the actual best (multinomial selection). Goldsman and
Nelson (1998) give detailed definitions for each class of the
above comparison problems and review the relative proce-
dures. Kim and Nelson (2003) provide an advanced tutorial
on the construction of ranking and selection procedures for
selecting the best simulated system.

This section focuses on the problem of finding the
best. By “best” we mean the system with a maximum
performance measure, assumed to be the expectation of a
random variable, such as throughput or delay time. We
review recent procedures to find the best system among a
relatively large number of simulated systems, say more than
20 systems.

Many classical procedures assume that the output data
generated by each system are IID and normally distributed.
However, as we discussed in the preceding sections, raw
data from within a single run are generally dependent and
not quite normal. For finite-horizon simulations, the “IID
normal” assumption is not a problem since within-run sam-
ple means across a number of independent replications are
basic observations (see Section 2). For steady-state simula-
tions, the assumption still makes sense if one is willing to
use the replication/deletion approach as discussed in Section
3.2. Even when the single-replication design is employed,
batch means from sufficiently large batches are approxi-
mately IID normal (see Section 3.4). However, Goldsman
et al. (2000, 2001) and Kim and Nelson (2005) discuss
the inefficiency of using within-run sample means or batch
means as basic observations in steady-state simulations and
suggest that individual observations (such as individual wait
times) should be used as basic observations. Issues related
to comparisons with regard to steady-state measures will
be discussed more in Section 4.3.

The goal is to compare m systems via simulation and
find the best system (with the largest expected performance),
guaranteeing a correct selection with probability at least
1 − α. Let Yij denote the j th observation from system i

(i = 1, 2, . . . , m). We assume that the Yij are either within-
run averages for system i or batch means from a single
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sufficiently long run after accounting for the elimination
of the initialization bias. Thus it will always be assumed
that the outputs from system i (Yi1, Yi2, . . .) are IID and
normally distributed.

4.1 Indifference-Zone Procedures

In stochastic simulation, it is impossible to find the true best
with certainty; so many procedures employ the Indifference-
Zone (IZ) approach as a good compromise. This approach
attempts to find a system whose mean is at least a user-
specified amount better than the means for the other systems
while guaranteeing a “correct selection” with high probabil-
ity. The user-specified amount δ is called the indifference
zone parameter and it is interpreted as a practically sig-
nificant difference worth detecting. Goldsman and Nelson
(1998) and Law and Kelton (2000) present IZ-based pro-
cedures that have been proven to be useful. The problem
is that IZ procedures become inefficient when the number
of alternatives is large. This is due to the fact that these
procedures are developed under the Least Favorable Con-
figuration (LFC) condition, which is considered as the most
difficult to resolve. Therefore, if a procedure guarantees at
least 1 − α probability of correct selection under the LFC,
it will do so for all other configurations. The Slippage
Configuration (SC) is known to be the LFC in most pro-
cedures. Under SC, the expected performances of all other
systems are assumed to be exactly δ smaller than that of
the best, so that all inferior systems are equally close to the
best. As IZ procedures are developed under the assumption
that all inferior systems are close to the best, they become
conservative when the number of systems is larger than 20.

To overcome this inefficiency of IZ approaches, one
can introduce screening. When the number of systems is
large, the performance measures for the systems are likely
to spread out. Thus, after obtaining some observations, we
may identify clearly inferior systems with high probability
and then stop sampling from those inferior systems. If
many systems can be eliminated early, one can save a
lot of observations making the procedures more efficient.
Gupta (1965) and Gupta and Huang (1976) proposed single-
stage subset selection procedures that divide systems into a
“maybe-best” group and a “clearly-not-best” group. Nelson
et al. (2001) proposed a subset selection procedure that
handles unknown and unequal variances and new procedures
that combine subset selection algorithms with two-stage IZ
algorithms. Also, Kim and Nelson (2001) proposed a fully
sequential procedure where the systems in contention are
compared after every observation until only one system
survives. Procedures presented in Kim and Nelson (2001)
and Nelson et al. (2001) have been shown to be efficient
when hundreds of systems are compared.

Below we review two recent procedures: the NSGS
procedure due to Nelson et al. (2001) and the KN procedure
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due to Kim and Nelson (2001). Both procedures employ
the IZ approach where basic observations are either within-
run sample means or batch means, and utilize screening to
gain efficiency in the case of many systems. The NSGS
procedure does not use common random numbers (thus it
requires systems to be simulated independently) while the
KN procedure allows the use of common random numbers.

Procedure NSGS

• Specify the overall desired probability of correct
selection 1 − α, the IZ parameter δ, a common
initial sample size from each system k0 ≥ 2, and the
initial number of competing systems m. Further, set
t = t

k0−1,1−(1−α/2)
1

m−1
and obtain Rinott’s constant

h = h(k0, m, 1 − α) from the tables in Wilcox
(1984) or Bechhoffer et al. (1995).

• Take k0 observations from each system. Cal-
culate the first-stage sample means Ȳ

(1)
i =∑k0

j=1 Yij /k0 and marginal sample variances S2
i =

1
k0−1

∑k0
j=1(Yij − Ȳ

(1)
i )2, for i = 1, 2, . . . , m.

• Subset Selection. Calculate the quantity

Wi
 = t

(
S2

i + S2



k0

)1/2

for i �= 
. Form the screening subset I , containing
every alternative i such that 1 ≤ i ≤ m and

Ȳ
(1)
i ≥ Ȳ

(1)

 − (Wi
 − δ)+ for all 
 �= i.

• If |I | = 1, then stop and return the system in I as the
best. Otherwise, for all i ∈ I , compute the second-
stage sample sizes Ki = max{k0, �(hSi/δ)

2�},
where �·� is the ceiling function.

• Take Ki − k0 additional observations from all sys-
tems i ∈ I .

• Compute the overall sample means ¯̄Yi =∑Ki

j=1 Yij /Ki for all i ∈ I . Select the system

with the largest ¯̄Yi as best.

Procedure KN

• Setup. Select confidence level 1−α, IZ parameter
δ and first stage sample size k0 ≥ 2. Set

η = 1

2

[(
2α

m − 1

)−2/(k0−1)

− 1

]
.

• Initialization. Let I = {1, 2, . . . , m} be the set of
systems still in contention, and let h2 = 2η(k0−1).
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Obtain k0 observations Yij (j = 1, 2, . . . , k0) from
each system i ∈ I and let Ȳi (k) = 1

k

∑k
j=1 Yij

denote the sample mean of the first k observations
from system i.
For all i �= 
 compute

S2
i
 = 1

k0 − 1

k0∑
j=1

(
Yij − Y
j − [

Ȳi (k0) − Ȳ
(k0)
])2

,

the sample variance of the difference between the
sample means for systems i and 
. Set r = k0.

• Screening. Set I old = I . Let

I =
{
i : i ∈ I old and

Ȳi (r) ≥ Ȳ
(r) − Wi
(r), ∀
 ∈ I old, 
 �= i
}

,

where

Wi
(r) = max

{
0,

δ

2r

(
h2S2

i


δ2 − r

)}
.

Notice that the continuation region Wi
(r), shrinks
monotonically as the number of replications r in-
creases.

• Stopping Rule. If |I | = 1, then stop and select the
system whose index is in I as the best. Otherwise,
take one additional observation Yi,r+1 from each
system i ∈ I , set r = r + 1, and go to Screening.

NSGS is a two-stage procedure while the KN proce-
dure is fully sequential because it takes only a single basic
observation from each alternative still in contention at each
stage. Also, if there exists a clear evidence that a system
is inferior, then it will be eliminated from our consider-
ation immediately — unlike the NSGS procedure, where
elimination occurs only after the first stage. As the KN
procedure accounts for common random numbers and has
more chances to detect inferior systems, it is expected to be
more efficient than the NSGS procedure. Kim and Nelson
(2001) showed that the KN procedure is uniformly superior
to two-stage procedures with or without screening and its
superiority is more noticeable as the number of systems
increases. However, the KN procedure requires simulta-
neous simulation of all systems with many stoppages and
restarts of simulation due to switching between systems.
Hong and Nelson (2005) present a procedure that minimizes
the cost of sampling and switching among the simulations
of alternative systems.
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Table 1: The Five Alternative Inventory
Policies
Policy i s S Expected Cost

1 20 40 114.176
2 20 80 112.742
3 40 60 130.550
4 40 100 130.699
5 60 100 147.382

Table 2: Simulation Results for the (s, S) Inventory
Policy Example

NSGS KN
Policy i # Obs. Average # Obs. Average

1 209 114.243 98 114.274
2 349 112.761 98 113.612
3 10 130.257 16 130.331
4 10 128.990 10 128.990
5 10 147.133 10 147.133

Total 588 232

4.2 An Application

This subsection illustrates NSGS and KN using an (s, S)

inventory system with the five inventory policies as described
in Koenig and Law (1985). The goal of this study is to
compare the five polices given in Table 1 and find the
one with the smallest expected average cost per month for
the first 30 months of operation. Table 1 also contains
the expected cost (in thousands of dollars) of each policy,
which can be analytically computed in this case. We set
δ = $1000, k0 = 10 initial replications, and 1 − α = 0.95.

Table 2 shows the results of the simulation study for
each procedure, including the total number of outputs taken
and the sample average cost per month for each policy.
In NSGS, policies 3, 4, and 5 were eliminated after the
first stage of sampling, so only policies 1 and 2 required
second-stage samples. Under KN , only policies 4 and 5
were eliminated after the first stage, but the elimination of
policies 1 and 3 occurred after they received 16 and 98
observations, respectively. This illustrates the value of the
tighter initial screen in NSGS, which takes only one look at
the data, and the potential savings from taking many looks,
as KN does. Both procedures chose policy 2 as the best
(which is in fact correct). Since δ is smaller than the true
difference, NSGS and KN will choose the true best with
95% confidence. However, in general we do not have any
information about the true differences; therefore, the best
we can conclude without prior knowledge is that policy 2 is
either the true best, or has expected cost per month within
$1000 of the true best policy, with 95% confidence.
198
4.3 Finding the Best System in Steady-State

The procedures presented in the previous subsections can
be applied to steady-state simulation as is if one is willing
to use within-run sample means or batch means. How-
ever, as discussed in Section 3.2, the replication/deletion
approach is usually inefficient due to the elimination of
data during warm-up period at each replication. Nakayama
(1995, 1997) presented single-stage multiple-comparison
procedures, and Damerdji and Nakayama (1999) developed
two-stage multiple-comparison procedures to select the best
system using steady-state simulations. These procedures use
batch means from a single sufficiently long run for each
system as basic observations. The batch means method
lessens the loss of data compared to the replication/deletion
approach, but it can still be inefficient in fully sequential type
procedures using large batches; see Goldsman et al. (2000,
2001) and Kim and Nelson (2005). The last three references
propose three procedures that take a single replication from
each system and use a single individual observation as a
basic observation. One is a two-stage procedure based on
a procedure due to Rinott (1978) and the others are the
extensions of the KN procedure to steady-state simulation.
Those three procedures require an estimator of the asymp-
totic variance parameter σ 2 and their performance is affected
a lot by the quality of the variance estimator. Goldsman
et al. (2000, 2001) and Kim and Nelson (2005) illustrate
the performance of each procedure with NBM, OBM, and
first-order unbiased weighted area estimators (Section 3.6)
for a number of different batch sizes when the number of
raw observations is fixed. Since the OBM estimator has the
largest number of degrees of freedom and smallest variance
among the three estimators, it appears to work best.

Kim and Nelson (2005) prove the asymptotic validity
of the extensions of the KN procudure (called KN + and
KN ++) as δ goes to zero and show that KN ++, which
updates the variance estimator as more observations become
available, is highly efficient compared to other competitors.

4.4 Closing Comments

Some researchers have considered completely different ap-
proaches from than IZ approach. Chen et al. (1997) propose
a procedure to find a system that maximizes the probability
of correct selection under a budget constraint. Chick (1997)
and Chick and Inoue (2001ab) approach this problem from a
decision-theoretic point of view. Chick and Inoue (2001ab)
and Inoue et al. (1999) show that their Bayes procedures
work fairly well when hundreds of systems are compared.
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