Proceedings of the 2005 Winter Simulation Conference

M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

SHOULD WE MODEL DEPENDENCE AND NONSTATIONARITY, AND IF SO HOW?

Shane G. Henderson

School of Operations Research and Industrial Engineering
230 Rhodes Hall
Cornell University
Ithaca, NY 14853, U.S.A.

ABSTRACT

It can be difficult to develop, fit to data, and generate from,
models that capture dependence and/or nonstationarity in
simulation inputs. Should we bother? How should we go
about it? I will discuss these issues, focusing on three
examples: call center arrivals, ambulance travel speeds and
wind modeling for America’s Cup races.

1 INTRODUCTION

Suppose we are building a simulation model that describes
the visitor flows through an amusement park during a sum-
mer. These flows depend on the weather, and weather is
well known to exhibit dependence over time. In addition,
we can expect the weather to deteriorate towards the end
of the summer so that it is also nonstationary. Should we
explicitly capture this dependence and/or nonstationarity in
our simulation model? If so, how can we go about doing
so? The goal of this paper is to provide some help in
answering these kinds of questions.

More explicitly, the goal here is to impart a sense of
when it is worthwhile going to the trouble of capturing
dependence and nonstationarity in an input model, and
to suggest how we might do so in a high-level sense.
There is no attempt to survey models of dependence and/or
nonstationarity. For such a survey for dependence modeling,
see Biller and Ghosh (2004), or Biller and Ghosh (2006)
for more details.

In trying to offer some very general guidelines, there
is a danger that the guidelines become so general as to be
useless. I will try to keep things grounded by discussing a
number of real examples. These include call center staffing,
ambulance deployment and yacht match racing.

In our context, the term “nonstationary” describes a
situation where the distribution of a collection of random
variables is changing over time. The term “dependent”
means that there are relationships within the random vari-
ables. We can capture both terms within a single framework
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by referring, instead of “dependence and/or nonstationarity”,
to the joint distribution of a collection of random variables.
The joint distribution fully specifies the statistical behaviour
of the random variables in question, and so henceforth, we
use that term.

The question of how accurately to model the joint
distribution is really one of model complexity. Should
the model be as similar as possible to reality, or is it
acceptable to skip a few details? This question is addressed
in great length in verification, validation and accreditation
discussions; see, e.g., Law and Kelton (2000), Chapter 5).
An explicit theme there (Law and Kelton 2000, p. 265) is
that a model should be an accurate representation of the
system “...for the particular objectives of the study.”

In this paper we take the position that the simulation
study is performed to assist in making some decision. In that
case our simulation model should be as simple as possible,
but include the aspects of the underlying process that have
an appreciable bearing on the decision. This, then, is our
answer to the first question posed in the title of the paper.
We will see this principle applied in several examples below.
(There is nothing new in this answer — it is the standard
answer to questions of model complexity.)

In Section 2 we give a brief “modeling philosophy”.
Then, in Sections 3 (call center staffing), 4 (ambulance
deployment) and 5 (yacht match racing) we present our main
examples, explaining what the key decisions are, where the
complexity of the joint distribution arises, and how we apply
our modeling philosophy. Finally, we reflect on the key
observations in this paper in Section 6.

2 A MODELING PHILOSOPHY

We first need to identify the aspects of the stochastic process
under study that need to be captured with regard to the goals
of the study, i.e., answer the question “what needs to be
modeled?” The ability to answer this question is a skill
that is learnt with model-building practice, although there
are (at least) 2 concrete approaches. Users of an existing
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system usually have a very good sense of what factors play
an important role, and such knowledge should be exploited.
Also, one can use simple models to help determine what to
include, as in the ambulance example below.

Once we have determined the aspects of the stochastic
process that need to be captured, we can proceed with
identifying an appropriate model. The suggested approach
for this phase is as follows.

1. Try to capture the physics. The complex depen-
dencies of a real system are due to some causal
relationships that may be known, or at least partially
known. A model that emulates those relationships
then emulates the complexities of the dependence
structure. The call center example below is a good
example of this approach.

2. Sometimes the physical relationships that create

complex dependence are not readily apparent, or
are too complicated to implement. In that case, use
some construction whose capabilities and failings
are well understood. For example, Gaussian and
Poisson processes fall into this category. The am-
bulance and yacht match racing examples below
are good examples of this approach.
In some situations one will have access to a plethora
of clean data. In this case, resampling is a good
option. For example, Pritsker (1998) described a
simulation model of organ allocation that generates
patient arrivals using a nonhomogeneous Poisson
process. The characteristics of patients are inde-
pendently generated by using the characteristics of
a randomly selected patient out of all patients that
were registered over a 5 year period. This boot-
strapping procedure is often easily implemented,
but care needs to be taken that the data is clean
and representative.

3. Sometimes it is necessary to move beyond standard
constructions like Gaussian random vectors, and
little is known about the system under study. This
often happens, for example, in generating test prob-
lems for algorithms, as in Hill and Reilly (2000).
In such settings, there are a number of useful
models that are based on partially-specified dis-
tributions. For example, Biller and Ghosh (2004)
describe a number of methods that match marginal
distributions and correlations.

Once one has obtained a specification of a model, it
is then necessary to calibrate it to data, if any. It is often
a good idea to try to simplify the model before doing so,
because fitting complex models to data can be difficult.
One approach to simplification is to run simulations using
extreme values of parameters to see whether they make any
appreciable difference to the simulation output. If not, then
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such parameters can usually be dropped from the model,
with a resulting simplification in calibration.

We have presented the above steps as a linear process,
but in general it is much more of an iterative process. In
the next few sections we give examples of the application
of this philosophy that will hopefully make this point clear.

3 CALL CENTERS

The staffing problem in call centers (or, more generally,
service systems) is a problem that has been studied for a
long time; see, e.g., Edie (1954) for early work. In an
inbound call center customers arrive over time and receive
service from a limited number of agents. The decision in
question is how to schedule agents. More precisely, we wish
to identify a set of agent shifts of minimum cost that still
ensure that customers receive “satisfactory” service. There
is a dual problem to this one that seeks to schedule an
available set of employees to maximize the level of service
to customers. The problems are essentially equivalent, and
either statement is fine for our purposes.

It is well recognized that the call center staffing problem
exhibits nonstationarity in several ways. First, the arrival
rate of calls can vary with the time of day. Second, the
arrival rate can exhibit seasonality, in the sense that traffic
volumes can vary over a time scale of months. Third,
service times can vary in length depending on the time of
day; see Brown et al. (2005). We focus on modeling the
arrival process.

The Palm-Khintchine theorem plays an important role
here. See Cinlar (1972) for a very good account of this and
related results. In approximate terms, the Palm-Khintchine
theorem states that the arrival process that arises from a
large number of independent sources, where no source
contributes too much to the arrivals, is approximately a
Poisson process. (Theorem 3.10 in Cinlar (1972) is a very
general version of this result that applies not just to the
real line, and covers nonhomogeneous limits as well as
the more standard homogeneous result.) In the call center
context we have many potential callers, each with a very
small probability of calling at any given instant. The result
then allows us to conclude that the arrival process is very
well approximated by a Poisson process.

We cannot ignore the fact that the arrival rate is time-
dependent. The ratio of the maximum arrival rate to the
minimum arrival rate in a single day can be very large. Using
a flat arrival rate over the day for selecting staff levels would
imply a flat staffing level, which is completely unacceptable
from the perspective of customer service; customers calling
during peak periods would encounter very large delays and
abandon without reaching an agent.

The extension of the Palm-Khintchine theorem stated
in Cinlar (1972) suggests that an appropriate model of
arrivals is a nonhomogeneous Poisson process (NHPP).
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We then need to model the arrival rate function. Per-
haps the simplest form for this function is a piecewise
constant function with known breakpoints. This form is
described in Law and Kelton (2000), pp. 390-392) and
Henderson (2003).

Let us consider how to fit this function to data. Typically,
call center arrival data is aggregated into periods that are
on the order of 15 minutes or half an hour long. So we
assume that our data consists of the number of customer
arrivals per period, with data accumulated over some length
of time that is on the order of months or years.

Suppose we assume (as is the usual case in practice)
that the arrival rate function follows a weekly cycle. Then
we wish to fit a constant arrival rate to each of the periods
over the course of a week. If we have n weeks of arrival
data, then for each period we have n observations of the
number of arrivals in that period. The number of customer
arrivals in non-overlapping time periods in a NHPP are
independent Poisson random variables, so we fit an arrival
rate to each period ignoring observations in other periods.
If N;; is the number of arrivals in period j of week i, then
we estimate the arrival rate A; in period j using

n
5o > i=1 Nij
_] - E)
n

where the units of the arrival rate are arrivals per period.
(In a sense we have chosen our time units so that periods
are of length 1.)

Assuming that our NHPP model is correct, the collection
(Nij :i=1,...,n) should be a collection of i.i.d. Poisson
random variables. Perhaps surprisingly, call center data

often refutes this; see Jongbloed and Koole (2001),
Chen and Henderson (2001) and particularly
Avramidis, Deslauriers, and L’Ecuyer (2004) and

Brown et al. (2005). The number of arrivals is typi-
cally “over-dispersed,” that is, the estimated variance of
Nj; far exceeds the estimated mean of N;;, when under the
NHPP assumption these values should be approximately
equal. Furthermore, under the NHPP assumption, the
number of arrivals in consecutive periods should be
independent but this appears to not be the case; empirical
correlations can be extremely high.

So now we come to a key modeling question. Does
this matter? Or should we just model the arrival pro-
cess as a NHPP anyway, ignoring the additional com-
plexity that is apparent from the data? To answer this
question, we need to think about the purpose of the sim-
ulation model. The purpose of the model is to compute
the service level as a step towards determining staff shifts.
If the arrival process is “more variable” than a standard
Poisson process, then queueing theory suggests that the
service level will be lower than it would otherwise. This
beliefis backed up by results in Chen and Henderson (2001)
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and Steckley, Henderson, and Mehrotra (2005) that prove
a deterioration in performance under some conditions. If
that deterioration is substantial, then we need to cap-
ture the over-dispersion in our model. It is hard to
know the extent of the deterioration in service level
without implementing a more complex model to begin
with, but the results in Chen and Henderson (2001) and
Steckley, Henderson, and Mehrotra (2005) suggest that the
error can be large in some settings. So conservatively, we
lean towards developing a more complex model of the arrival
process than a NHPP. The dependence between periods is
less of a concern with regard to pre-setting staffing levels,
unless we plan to exploit that dependence, perhaps by ad-
justing staffing levels partway through the day to account
for a different-than-expected customer volume.

Continuing with our modeling framework, our next
goal is to try to capture the physical process that gives rise
to the observed data. The Palm-Khintchine theorem and
its extensions are so compelling that it is hard to discard
the idea that the arrival process is, on any given day, a
NHPP. There are at least three possible explanations for the
observed data that are consistent with this view:

1. The arrival process could be nonstationary on the
time scale of weeks, during which data was col-
lected. For example, suppose that on any given
day the arrival process is indeed a NHPP, but that
the overall arrival rate is increasing from week to
week. Then the N;js are all Poisson distributed,
but the mean is increasing with i. In the estimation
process above we envisaged them having a con-
stant mean. This would lead to over-dispersion.
It would also lead to observed correlation in the
number of arrivals in nearby periods.

2. The arrival process could be a doubly-stochastic
Poisson process. In other words, it is possible that
on any given day the arrival rate function for that
day is selected randomly and then, conditional on
the selected arrival rate function, the day’s arrivals
occur according to a NHPP with that arrival rate
function.

3.  Some combination of the above models is possible
and plausible. (We ignore this complex possibility
below.)

Should we adopt and fit one of these models? The
answer to that question depends on what is known about
the true system, and what the simulation model is designed
to achieve. Discussions with call center staff and managers,
as well as analysis of the data, can help to determine
whether there are trends in the call volumes or not, thereby
clarifying the correct situation. If that does not suggest a
strong candidate, then life is more complicated. We assume
that the simulation model is used to determine minimum
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staffing levels that we then attempt to cover by selecting
staff shifts. The shifts will remain in place for k weeks, so
that staffing levels remain constant for k£ weeks.

If k is large, then Model 2 may be a good one to
use, even if Model 1 is the correct one. To see why,
suppose that the expected number of arrivals per week
varies deterministically over the year, and that we have one
year’s worth of data. If we fit Model 2, then it will appear
that there is randomness in the arrival rate distribution.
The fitted distribution of the arrival rate will (hopefully)
approximately match a histogram of the weekly true expected
arrival rate. We will then choose a set of shifts, expecting
that performance will vary from good to poor in a random
fashion from week to week. In fact, it will vary from good
to poor in a deterministic fashion, but over the k weeks will
likely average out to the predicted overall performance.

If k is small, then it is more important which model
we select. If the arrival rate is changing in a deterministic
fashion, then fitting Model 1 is correct, while fitting Model 2
would lead us to believe that the arrival rate varies randomly,
and we would most likely overstaff. If, instead, Model 2 is
correct but Model 1 is fitted, then we would likely understaff.

The fitting process itself is not the focus of
this article. For some approaches, see Whitt (1999),
Chen and Henderson (2001) and Brown et al. (2005).

If one doesn’t believe that the above models are ap-
propriate, or if after fitting such models to the avail-
able data there is still an important discrepancy between
the fitted model and the data, then one might abandon
the “capture the physics” approach and instead turn to
a family of distributions for which the joint distribu-
tion is well understood. This is the approach taken in
Avramidis, Deslauriers, and L’Ecuyer (2004), where a fam-
ily of arrival processes is obtained that matches the depen-
dence between arrival counts in different periods better than
the models suggested above. It has the advantage that the
fit to the data is better, but the disadvantage that it is harder
to explain the models to decision makers.

As a side note, the extremely high correlations be-
tween arrival counts seen in different periods of the day in
Avramidis, Deslauriers, and L’Ecuyer (2004) show that the
customer volume seen early in the day is an extremely good
predictor of customer volumes later in the day. It seems
important to attempt to identify why this is the case. For
example, is it possible that special marketing promotions
are held from time to time that dramatically influence the
customer volumes seen at the call center, but the call center
managers are unaware of those promotions? The point is
that it may be possible to improve the prediction of call
center volumes and thereby reduce the variability that we are
trying to staff for, simply by improving the communication
between different groups within an organization.
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4 AMBULANCE DEPLOYMENT

The ambulance deployment problem is the problem of deter-
mining how many ambulances are needed, where to place
them, and at what times, in order to ensure satisfactory
response time performance. In this section we will focus
on the modeling of travel times, but first we offer some
(very) brief comments on the arrival process.

The discussion in the previous section on arrival pro-
cesses for call centers is relevant here. In particular, the
results in Cinlar (1972) suggest that the stochastic process
describing the time and location of arriving calls is well
modeled as a marked Poisson process, or equivalently, as
a Poisson process in 3 dimensional space (1 dimension for
time, and 2 for space). Resnick (1992) gives an accessible
introduction to Poisson processes in more general spaces
than the real line.

Let us return to the modeling of travel times. Through-
out this section we assume for clarity that there are no
delays before an ambulance is dispatched, such as turnout
time (the time for crews to get their ambulance on the road).

Any simulation model of ambulance operations includes
some level of modeling of travel times. This can be as
simple as using an “average speed over straight-line dis-
tance” calculation, or as complicated as a road network with
time-dependent travel speeds on the arcs and/or nodes. Ap-
proaches have been developed that fit between these extremes
as well. With some exceptions, all models use deterministic
travel speeds, even though we know that travel speeds are
random, depending, for example, on weather conditions,
traffic volumes and traffic-light phasing. Recent work ex-
plores the impact of random travel times (ODT Ltd. 2002,
Budge 2004, Budge, Ingolfsson, and Erkut 2003). Does
this make a tangible difference to the predictions? In other
words, is it worth explicitly modeling random travel speeds?
(This question is, of course, discussed in the work men-
tioned above. We merely wish to shed more light on the
answer.)

Consider a stylized model where a single ambulance
answers all calls immediately from its base, so that queueing
effects are ignored. Call locations lie inside a circle of radius
R kilometers surrounding the base. Let F(x) be the distri-
bution function of the straight-line distance from the base
to a call. For example, if the calls are uniformly distributed
in the circle, then F(x) = x2/R2. The ambulance travels in
a straight line from the base to the calls. Our performance
measure is the fraction of calls that the ambulance reaches
in r minutes or less. This long-run measure is equal to the
probability p that the ambulance reaches a new call within
r minutes under very general ergodicity assumptions.

We compute p for both deterministic travel speeds (pget)
and random travel speeds (pran). Suppose that the ambu-
lance travel speed is deterministic. To keep things simple
we let this deterministic speed be 1 kilometer per minute.
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So then the ambulance can travel exactly r kilometers in r
minutes, and pget = F(r).

Now suppose that the ambulance travel speed is random
and independent of the distance to the call. If X is the
distance to the call and § is the travel speed (assumed
positive with probability 1), then

P(X/S<r)
EP(X <rS|S)
EF(rS).

Pran

Notice that if § = 1 with probability 1 then pran = pget
as expected.

Suppose that ES = 1 so that the mean travel speed
coincides with the deterministic travel speed, and that F is
convex on the range of rS. Then Jensen’s inequality shows
that pran > pdet> 1-€., random travel times improve the
fraction of calls reached on time relative to deterministic
travel times! To understand this perhaps-counterintuitive
result suppose that F is continuously differentiable, so
that F being convex is equivalent to its derivative f being
increasing. The value f (x) gives the density of call locations
that are on a circle of radius x, which will typically be
increasing in x due to the increasing circumference of
circles of radius x. So random travel times “help” in great
generality. But how much do they help? The answer to
this question depends on the distribution of calls around the
circle of radius r and the range of the random variable rS.

To get some sense of the difference, suppose that calls
are uniformly distributed inside the circle of radius R, and
that even at the maximum possible speed, the ambulance
travels a distance that is at most R in r minutes. So S lies
in the interval [0, R/r] with probability 1. This ensures that
there is no “truncation error” in the following calculation.
Then

EF(rS)
E[r*S*/R%
rX(Var S + 1)
R

Pran

where the last equality follows since £S = 1. So the
difference in performance between using deterministic travel
speeds and using random travel speeds increases with the
variability of the travel times. The maximum variance of
S that is consistent with the requirements that S lie in the
interval [0, R/r] and have mean 1 occurs when S is discrete
and is equal to either O or R/r, in which case its variance
is R/r — 1, and then pran = r/R and pge; = r?/R>. If
r2 / R? is on the order of 80%, so that the ambulance can
reach 80% of calls if it travels at the deterministic rate,
then r/R is approximately 89%, so that “true” on-time

124

performance could be 89%. This is an enormous difference
in performance.

This simple model shows that random travel times can
have a significant effect on performance estimates. The
model relied on 2 main assumptions. First, travel speed
and travel distance are independent. However, it is generally
believed that the farther you travel, the faster your average
speed, due to the use of arterial roads where travel speeds
are higher than in smaller city streets. It is hard to predict
the effect of such dependence on the performance values
above, and we do not consider that further here. Second,
there are no queueing effects. This assumption is hard
to brush aside, since ambulances can be heavily utilized.
For example, Henderson and Mason (2004) state that in
Auckland, New Zealand, ambulances can be utilized more
than 50% of the time during peak periods. What is the
combined effect of queueing and random travel speeds?

With queueing there is interaction between calls, so
the dependence structure of travel times may be important.
Some of the effects mentioned earlier impact all trips on
a given day (weather, congestion), while others are trip-
specific (traffic light phasing). To get some sense of the
relative impacts of these different types of dependence we
look at some simple queueing models.

Our first model is again of a single ambulance. We
assume that calls arrive according to a Poisson process at
constant rate A. Service times for calls include travel to
the scene, on-scene time, transport to hospital (possibly),
hospital admittance time and time to return to base. Of
these service-time components, some are not related to
travel and others are. Accordingly, we model the service
time as consisting of a non-travel component X, and a travel
component Y.

We consider two cases for the travel-time component
Y. In Case 1, Y = D(Y; + Y2). Here Y is the time
required to travel to the call when the ambulance travels at
a “typical” speed. Similarly, Y> is the travel-time component
after the ambulance reaches the scene. The multiplier D is
common to all calls received on a given day and has mean
1. It represents the random effects that influence all calls
received on a given day. In Case 2, ¥ = C1Y] + C2Ya.
Here, Y1 and Y> have the same interpretations as before.
There is no daily effect D in this model, but now the travel
times are perturbed by C; and C», which are independently
chosen for every call, are independent of one another, and
have mean 1. Case 2 represents the extreme where there
is only a call-specific effect and no effect that is common
to all calls received on a day. We compute performance
for these extreme cases, as well as the base case where
there is no additional travel-time randomness beyond that
embodied in Y; and Y, thereby getting some sense of the
relative contributions of the two effects.

We model this system as an M/G/1 queue, where
the service times S are given by X 4+ Y. For Case 1
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we approximate the long-run performance by computing
the steady-state performance of the queue on a given day
conditional on D, and then averaging the results over D. The
Pollaczek-Khintchine formula (e.g., Wolff (1989), p. 386)),

gives the Laplace transform F(-) of the steady-state delay in
queue (exclusive of service) in terms of the Laplace trans-
form G (-) of the service-time distribution. The steady-state
time required to reach a call is the sum of this delay and
DY;. So we obtain the Laplace transform of the steady-state
response time (conditional on D) by multiplying F(s) by
the Laplace transform of DY, treating D as a constant. To
obtain the probability that the response time is ¢ minutes or
less, we numerically invert the Laplace transform using an al-
gorithm described in Abate, Choudhury, and Whitt (1999).
(To obtain the cumulative distribution function, as opposed
to the density, we first divide the Laplace transform by s.)
We then uncondition by computing the expected value of
the probabilities obtained by numerically inverting Laplace
transforms.

For Case 2, the calculations are similar, except that
there is no need to do any conditioning, since the service
times are i.i.d.

The specific distributions we use are given in Table 1.

Table 1: Distributions for the M /G /1 Calculations

Variable Distribution
X gamma, mean 45, variance 225
Y gamma, mean 7, variance 9
Y, gamma, mean 20, variance 100
D, Ci and Cy Discrete

We chose a common distribution for D, Cy and C; for
simplicity. Itis a 3-point distribution where P(D = 1) = p,
and P(D =1+ A) = ({1 - p)/2, for A € (0,1) and
p € (0,1]. Notice that when p = 1, we obtain a model
where D = 1 a.s., so that we recover results for deterministic
travel speeds. The arrival rate was 1/400 and we tookt = 12,
so we computed the probability that the response time was 12
minutes or less. The results are given in Table 2. The error
due to the numerical inversion of the Laplace transforms
was on the order of 1078 or less and so can be ignored.

Table 2: The M/G/1 Results using a
Gamma Distribution (3 sig. figs.)

Parameters | Case 1 | Case 2
p=1,A=0] 0.832 0.832
p=0,A=025] 0.828 0.828
p=0,A=05| 0816 0.817
p=0,A=0.75 1] 0.795 0.795
p=0,A=0.99 | 0.767 0.766
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First notice that our choice of arrival rate ensures that
if we ignore the travel-speed variability (p = 1, A = 0),
then the ambulance reaches 83% of calls on time. This
reasonable performance comes at the expense of low am-
bulance utilization of only 18%. Notice also that random
travel speeds have almost no effect until A = 0.75. This
represents a huge variability in travel speeds, and is far
from practical. It appears that randomness (in either case)
has almost no practical effect!

To understand these results in relation to the previous
ones, we reason as follows. The ambulance is only lightly
utilized, so it is often idle when dispatched to a call. The
main determinant of reaching a call on time is therefore
Y1. The gamma distribution used here has a density that is
low near the cutoff point of 12 minutes, so the sensitivity
to travel time randomness (and dependence) is low. If we
instead use a triangular distribution for Y7 as in our previous
model, with R = 10 we obtain the results given in Table 3.
The numerical errors are on the order of 107# or less.

Table 3: The M/G/1 Results using a
Triangular Distribution (3 sig. figs.)

Parameters | Case 1 | Case 2
p=1,A=0| 0.823 0.823
p=0,A=025]| 0.800 0.799
p=0,A=05]| 0.687 0.682
p=0,A=0.75]| 0.622 0.612
p=0,A=099 | 0584 0.567

We now see a strong dependence on additional ran-
domness, as expected. However, since the results for Cases
1 and 2 are so similar, it seems that there is no need to
explicitly model the day-wide effect, and that i.i.d. random
travel times are sufficient.

Let us check that this hypothesis still holds when we
consider multiple ambulances, say c¢ of them. The M/G/c
queue is difficult to analyze, so we instead use the M /G /oo
model. This model was originally used in the emergency re-
sponse context by Bell and Allen (1969). Whenan M/G/c
queue is lightly to moderately loaded, all ¢ servers are busy
only a small fraction of the time, and so the M /G /oo is
an excellent approximation. For more heavily loaded sys-
tems its predictions are less accurate but still useful. The
M /G /oo queue can be used to obtain approximations for
the probability that a call is answered immediately in an
M/G/c queue by computing the steady-state probability
that there are ¢ — 1 or fewer jobs present in the system.

The steady-state distribution of the number of jobs
present in an M /G /oo queue is Poisson with mean A/pu,
where A and p are the arrival and service rates respectively.
This distribution depends on the service-time distribution
only through its mean. Hence, if we have a model where we
only change the variability of the service time distribution
but not the mean, then there will be no effect on our
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approximation. So changes along the lines of Case 2 will
have no effect. Of course, in the true system with a finite
number of ambulances, there will still be sensitivity to the
service time variability due to the effect that was described
in our earlier model, namely having an appreciable fraction
of calls concentrated at a distance from an ambulance base
where speed variability plays a role.

So we restrict our use of the M /G /oo queue to Case 1,
where there is a daily multiplier D that is the same for all
calls. As with the M /G/1 analysis above, we condition on
D, compute steady-state performance, and then uncondition
to get our performance measure. The conditional mean of
a service time given D is EX + D(EY| + EY>). We used
the means for X, Y1 and Y, given in Table 1, increased the
arrival rate to 1, and used 80 ambulances. We used a normal
distribution for D with mean 1 and different values for the
variance, truncating the distribution to 3 standard deviations
either side of the mean. We numerically computed the
integral associated with unconditioning. For the underlying
M /G /c queue to be stable on all days with high probability,
we need to ensure that

AMEX + D(EY) + EY»)) < c.

This gives an upper bound on the variance of D (here
and henceforth we refer to the variance of the untruncated
D, although the calculations are based on the truncated
D), because the probability of instability increases with the
variance of D.

For A = 1 and ¢ = 80, the fraction of time that a call is
answered immediately ranges from 0.81 when Var D = 0
to 0.74 when Var D = 0.1. The effect is less pronounced
when we take A = 0.22 and ¢ = 20. In this case the
fractions range from 0.81 when Var D = 0 to 0.77 when
Var D = 0.22. As ¢ gets smaller (with a corresponding
decrease in arrival rate) the effect becomes less and less
pronounced. For example, with A = 0.04 and ¢ = 5, the
range is from 0.84 to 0.82.

So with this model we see that the daily effect can be
significant when the number of ambulances is large, but it
becomes weaker as the number of ambulances gets smaller.
To understand this result, note that for a given arrival rate we
chose the number of ambulances so that in the deterministic
travel speed case, the performance was reasonable. This
corresponds with the usual method for planning, where
randomness in travel speeds is ignored. The risk-pooling
effect of many-server systems (Whitt 1992) ensures that for
larger numbers of ambulances, one can utilize them more
heavily and still have reasonable response times. When
we then add travel-speed variability, this changes the daily
mean of the service times, with a consequent change in
the traffic intensity. When the number of ambulances is
small and the servers are lightly-loaded, this change has
only a very small impact on performance. But when there
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are larger numbers of ambulances that are therefore fairly
heavily loaded, the fluctuation in the mean service time
leads to larger daily fluctuations in performance.

So to summarize the main points in this extended am-
bulance example,

*  Random travel speeds can have a big impact when a
significant number of calls are close to the boundary
between reachable and unreachable calls.

e Although our non-queueing example suggested that
random travel speeds can improve performance, the
reverse was true when we incorporated queueing
effects. The reason is that, in general, variability
exacerbates queueing effects. Furthermore, daily
effects that are common to all calls essentially
modify the service time mean (on each day), and
queueing systems are sensitive to such changes,
especially when the servers are heavily utilized.

e The breakdown of travel-speed randomness be-
tween daily variability and call-specific variability
is not important, except when the system is heavily
loaded. Ambulance utilizations are often on the
order of 20 or 30%, so in such cases it does not ap-
pear to be important to determine the breakdown of
travel-speed randomness. However, as mentioned
earlier there are situations where ambulance uti-
lization can exceed 50%, and in such cases the
breakdown will play a more important role.

We offer one final thought to close this section. It is not
conceptually difficult to create a simulation with a relatively
complicated travel speed model. The difficulty really lies
in fitting the parameters of the model to the real system.
So one could just code up the complicated model and try
the extremes of parameter settings, exactly as we did in this
section for various queueing models. If the performance
sensitivity is low, then there is little need to go to the trouble
of fitting the complicated model.

5 YACHT MATCH RACING

The America’s Cup is a coveted sporting trophy with a long
history. Competitors design and build their own boats under
certain design rules that define the International America’s
Cup Class (IACC). All races are match races, which are
races between only 2 boats. The exact format of the event
varies, but invariably includes several series of match races.

The design of IACC yachts and the development of
tactics is a sophisticated business. Scale models, computa-
tional fluid dynamics, and race-modeling programs (RMPs)
are now standard aspects of the process. An RMP simulates
a race at some level, computing estimates of various perfor-
mance measures, including the probability that one yacht
design will beat another. The state of the art in RMPs is prob-
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ably ACROBAT (Philpott, Henderson, and Teirney 2003).
This is a full simulation of a match race, combining yacht
dynamics, tactics, and a model of wind behaviour over the
course of a race. ACROBAT was created to assist in yacht-
design decisions, such as the tradeoff between upwind and
downwind speed through decisions of boat width, length
and sail area.

How should one model the dynamic behaviour of wind
on two yachts that are moving over a race course for
approximately 2.5 hours? The answer to this question,
as always, depends on the questions one is trying to answer.
In the case of Philpott, Henderson, and Teirney (2003), the
key questions are yacht-design questions. In recent work
(Sheild, Henderson, and Philpott 2005), the key question is
one of tactics. It turns out that one may want to use quite
different models of wind in these two cases, as we shall
see below.

5.1 Yacht Design

Consider first the question of how to model wind when
one is looking at the question of yacht design. Here it is
important to capture time-varying wind strength, as it is
possible to design “specialist” boats that are most effective
in specific wind conditions like light air or heavy air, as
well as generalist boats that perform well in a variety of
conditions. Without a model of wind where wind strength
fluctuates with time, simulations would probably favour
specialist boats. The model also needs to capture the effect
of different wind conditions at different parts of the course.
Occasionally a yacht can “sail into a hole,” where there is
very little wind, while the other yacht enjoys a reasonable
breeze. This happens rarely, and always when the boats are
widely separated. When the boats are close together, they
see virtually identical wind conditions.

It is natural to consider building a model of wind
that gives values for the wind speed and direction
over a grid of locations covering the course at dis-
crete time points that span the duration of a race.
Philpott, Henderson, and Teirney (2003) did not pursue this
approach for 2 main reasons. First, the data available was
not up to the task of fitting such a spatially complex model.
Second, it seemed that such a model would be quite slow
to execute. Since the wind conditions were only needed at
2 locations on the course, a different approach was taken.

Philpott, Henderson, and Teirney (2003) developed a
model that was consistent with several physical observa-
tions, i.e., their model captured the physics. First, the Taylor
hypothesis states that the wind field evolves as if it were a
non-varying vector field that moves in the mean wind direc-
tion at the mean wind speed (Lawson 1980). Any “yachtie”
will tell you that it is false, but that it is approximately true:
Wind conditions experienced upwind are repeated to quite
a high degree downwind some time later. The repeated
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conditions are not identical to the earlier ones, and therein
lies the approximation. Second, the wind speed and wind
direction were found to be approximately statistically in-
dependent processes, so they were modeled independently.
This reduces the model to one where we generate a process
of 2-vectors of wind speeds (one component for each boat),
and a process of 2-vectors of wind directions independently.
The wind speed was then modeled as a bivariate autore-
gressive process, while the wind direction was modeled as
a bivariate Markov chain to capture a phenomenon where
wind direction tends to persist for some time before abruptly
switching to a new direction.

The final aspect of this model was to employ the Taylor
hypothesis to help model the spatial behaviour of wind. The
wind conditions on the upwind boat were generated first. The
Taylor hypothesis then asserts that these wind observations
will percolate in the direction of the mean wind direction,
and therefore, towards the downwind boat. The conditions
on the downwind boat were generated conditional on these
observations.

This model has a number of shortcomings, not least
of which is that the modeled spatial-temporal dependence
structure of wind is somewhat unclear. However, it served its
purpose of providing a believable wind model that captured
enough physical characteristics of wind to assist in design
decisions. In that sense, it was successful.

Thus far we have focused on wind behaviour during a
race, that is, on a time scale of hours. Butinrecent America’s
Cup tournaments, the winner between two yachts is the first
yacht to win 5 races. Since there are typically 4 race days
per week, a series can take a long time to complete. Should
we model the nonstationary behaviour of weather on this
longer time scale in the simulation? The answer seems to
be no. We can view the simulation model as a subroutine
that gives, for a given set of wind conditions, the probability
that one boat design beats another in a single race. These
single-race probabilities can then be combined using some
higher-level model of the series to determine the probability
that one boat design beats another in a race series.

5.2 A Tactical Question

In recent work, Sheild, Henderson, and Philpott (2005)
consider a question of tactics. America’s Cup races are
run over 6 legs that alternate between upwind and down-
wind directions. At the start of the first leg, yachts vie
for a particular position on the starting line and a starting
tack, i.e., a direction to head from the starting line. Let us
call the choice of starting position and tack the “starting
decision.” The starting decision is very important because
it is a major factor in determining which yacht will be ahead
of the other when the yachts next come close together in the
first leg, which in turn has a very strong influence on the
outcome of the race. The starting decision is usually based
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on wind observations made prior to the race by members of
a syndicate that are on boats upwind of the course. These
people communicate a recommendation to the racing yacht
5 minutes before the race, after which communication be-
tween the racing yacht and elsewhere is no longer allowed.
The goal of this work is to help with the starting decision
by conditioning on the known weather conditions prior to
the start of the race.

The nature of the data available to the
model has changed since the work described in
Philpott, Henderson, and Teirney (2003). We now have a
time series of wind speed and direction on a coarse grid of
locations over the course. The improved data availability
and the different nature of our goal now ensures that
we should model a time series of wind conditions over
the entire course (and perhaps for some area upwind
of the course), due to the need to condition on starting
information.

A model that captures wind speed and direction, or
equivalently the x and y components of wind speed, on
a grid of locations on the course will have a large state
space. This suggests that a general Markov chain model
as used previously will require an enormous data set to
fit the transition probabilities, unless we impose substan-
tial additional structure. Therefore, we abandon the type
of model used in Philpott, Henderson, and Teirney (2003),
which was very physically motivated, and instead look for
a well-understood stochastic process that has the features
we desire.

The desire for tractable conditional distributions sug-
gests that some sort of Gaussian model might be appro-
priate. Since wind speeds are nonnegative we model the
log of the wind speeds as Gaussian. Our goal is a process
(X(t,x,y) : ¢t >0,(x,y) € %), where X (¢, x,y) € R
gives the log-components of wind velocity at the point (x, y)
at time 7.

The specific model that Sheild, Henderson, and
Philpott (2005) propose uses a vector autoregressive Gaus-
sian process for the wind velocities on a grid, with additional
variables for the wind velocities at the yacht locations. The
structure of the coefficient matrix in the autoregression is
tailored to the Taylor hypothesis, in that downwind con-
ditions depend on upwind conditions at earlier time steps,
thereby linking the spatial and temporal dependencies.

The model is, in essence, a simplified version of a
Gaussian process in space and time. It is simplified because
it is not easy (computationally speaking) to fit and generate
Gaussian processes in general. A key difficulty lies in
the problem that one must condition on all values that have
been generated thus far when generating a new value. From
the usual Cholesky decomposition approach to generating
Gaussian random vectors, one can see that conditioning on
all previous values can lead to an increasing computational
load as the simulation progresses. So there is a tradeoff
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between computational tractability and faithfulness to the
true Gaussian joint distribution. More research is needed
to develop flexible classes of Gaussian models that are both
easily fitted to data, and from which random quantities can
be generated rapidly.

The details of the model beyond the sketch above are
not important for our discussion. What is important is
the process by which we arrived at this point. The model
choice was determined by the goals of the study and data
availability. The model has limitations: It is unlikely that it
can capture the persistence of wind directions that was well-
modeled in Philpott, Henderson, and Teirney (2003). This
sacrifice gains us a great deal: The conditional distributions
are straightforward to compute, as are forecasts of future
wind conditions given present information.

6 REFLECTION

In this paper we have described a modeling philosophy, and
applied it to a variety of examples. Some of the key themes,
along with some additional thoughts, are as follows.

e Capturing the physics of the system is probably the
most reliable way to ensure that complex depen-
dence relationships are captured accurately. This
often leads to a reduction of the dimensionality
of the parameters of a model that must be fitted,
thereby simplifying the calibration phase.

e Analysis of simple models can inform decisions
about the required level of model detail.

e Gaussian and Poisson random fields have an im-
portant role to play in simulation models of spatial
phenomena, due to their relative tractability and
physical interpretations. Models that are both eas-
ily fitted to data and efficiently generated are in
short supply.

e We must often attempt to calibrate models with
very little (relatively speaking) data. This occurs
because we are trying to model a multidimen-
sional random vector (or even a full time series)
rather than a univariate random vector. The curse
of dimensionality is the key problem. This dif-
ficulty with calibration suggests that methods for
addressing input uncertainty will play an important
role in simulations involving random vectors with
complicated joint distributions.
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