
Proceedings of the 2004 Winter Simulation Conference
R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

AN ARCHITECTURE FOR DISTRIBUTED SIMULATION GAMES

Stijn-Pieter A. van Houten
Peter H.M. Jacobs

Section of Systems Engineering
Delft University of Technology
Delft, THE NETHERLANDS
ABSTRACT

In this paper we present an architecture for internet-mediated
simulation games. The challenge was to use today’s state of
the art technologies to provide a simulated environment for
decision making for which the users are trained. Current
technologies provide a means to construct a more realistic en-
vironment and to embed algorithms for operational decision
making. The services, which span the architecture, consist
of an embedded simulator, communication using messages,
scenario design and control, content management, human
and simulated players, and game administration. We im-
plemented a supply chain simulation game as a proof of
concept. It consisted of a server-side simulation and com-
munication core combined with objects representing the
players. Human players and the game administrator used
user interfaces to connect to the server via the Internet.
Further research will focus on scenario management and
algorithms for simulated decision making.

1 INTRODUCTION

Simulation has long been established as a useful method
for inquiry into complex, ill-structured problem situations.
One of its related fields is gaming, in which the tools are
called simulation games.

In this paper we argue that most currently used simula-
tion games have not incorporated the concepts, technologies
and recipes developed throughout the last decade of web-
enabled IT development. Hence such games miss several
valuable properties, as we show in section 2.

We recognized that there was a need to develop an
architecture on which distributed simulation games can be
built. Using a service-based approach and the concept of
object-oriented design, we focused on a loosely coupled
aggregation of generic and end-user specific services.
2 DRIVERS AND REQUIREMENTS FOR THE
ARCHITECTURE

The drivers and requirements for the architecture are intro-
duced in this section. The drivers and the value of these
drivers are discussed in subsection 2.1. In subsection 2.2
we continue with the requirements that are important for
the services which span the architecture and the simulation
games based on it.

2.1 Drivers for the Architecture

In order to understand the value of an architecture for gaming,
we will first focus on its drivers. Gaming, or interactive
simulation is used as a method for inquiry to gain insight or
create awareness of a certain problem situation, for learning,
or for training. In contrast to simulation, gaming actually
involves human decision making. This potentially increases
the level of understanding achieved, acceptance of results,
and the accuracy of the model and its outcome.

The disadvantages of human involvement are a that
the validation of model outcomes becomes more complex,
there is a lack of reproducibility and the amount of time
invested in decision support increases. As argued in the
introduction, technology is considered to be the driver for
the development of a multi-player, distributed architecture
for gaming. The question is: Why? To what extent have
the technological developments of the last decade improved
understanding and acceptance?

The first driver is that incorporating state of the art
web-enabled technologies in simulation gaming provides
players with a simulated environment for decision making
which actually resembles the environment for which they
are trained.

A second driver is that incorporating these technologies
in simulation gaming provides opportunities to construct a
more complex and realistic environment. If simulation
games are accessible over the web, various complexities
which are normally only encountered in real life, such as



van Houten and Jacobs
cultural, time and language barriers can now actually be
incorporated in a scenario. A realistic number of players,
products, duration, and relations can be tested.

A third driver is to embed algorithms for operational
decision making in simulation games. For example, we
can now develop a scenario for auction based acquisition
of transport by distributors which allows transport domain
experts to embed their competitive planning algorithms.

2.2 Requirements for the Architecture
and Simulation Games

When we consider simulation games, there are three "U"’s
that are important: the usefulness of the tools and methods,
for example the value that they add to the goal of a simulation
game. Then thee is their usability, for example the mesh
between users, processes and technology. And finally their
usage, for example their flexibility, their adaptivity, and their
suitability to the context of the problem environment(Keen
and Sol 2004). We explore a summarized enumeration of
requirements in the following subsections.

2.2.1 Usefulness

The first requirement is that we need to have the opportunity
to choose which players in a game are controlled by human
decision making and which players are controlled by com-
putational algorithms. Fulfilling this requirement enables
us, for example, to use simulated players to model players
which are not feasible for human control, to increase com-
plexity, or to increase dynamics. Eventually this leads to
more valuable games. Furthermore, by providing a hybrid
form, we are able to model a player in a game and let parts
of its decision making processes be controlled by a human,
and parts by the algorithms.

Depending on the complexity of the problem at hand,
it is useful to support long (> 1 day) playing times. This
enables players to grasp the complexity better and hence to
support better decision making. Persistency of data and a
scenario service suitable for long time control are needed
to support long games. Furthermore, the scenario service
is useful to support complex games, which often involves
a lot of administration and actions while playing.

2.2.2 Usability

One of the big advantages of a service-based architecture
is that it is possible to use the presentation layer, that is
user interfaces placed on top of generic services. This
could make it possible for game designers to design and
deploy games more easily using the generic services below
the representation layer. To support this we need services
which, for example, take care for distributed usage or the
communication between players. Requirements which fur-
ther come to mind are the deployment of the game, security
scenario design (the scenario service), and the design and
tuning of algorithms.

2.2.3 Usage

Scalability is needed to support variable amounts of players.
Persistency is needed to support the saving of data

when a (human) player is deliberately not on-line, or when
the connection with a player is unexpectedly lost. Saving
occurs at fixed and/or flexible points in time. Furthermore
persistency provides users with a possibility to go back to
earlier moments in a game, and replay certain phases.

Other requirements are related to reliability, robustness,
credibility and adaptivity. Reliability and robustness require
a system which is unlikely to break or fail. Therefore we
need a stable server and to test the whole architecture
thoroughly. Credibility includes, for example, support the
players native language and a description of the context
of an environment. The focus of adaptivity is managing
different scenarios and changing business logic or strategies
during game play.

2.3 Existing Games

The games that we have found until now most of the
times provide a subset of above mentioned requirements,
for example distributed usage and long playing times. Often,
these game are well suited to the goal they were designed
for, but due to their ’lock-in’ to a certain problem domain
or environment, they are less usable for applications that
require a different setting, for example a different scenario,
changes in business logic, changing numbers of players etc.

3 AN ARCHITECTURE FOR
DISTRIBUTED SIMULATION GAMES

An architecture for distributed, multi-player simulation gam-
ing is introduced in this section. A brief introduction to
systems, sub-systems, layered systems and vertically divided
systems is given in subsection 3.1.

We continue with an overview of the proposed architec-
ture in subsection 3.2. Several services are described which
coherently foresee in the prescribed requirements. A de-
scription of the technologies used in a reference specification
of the architecture is given in subsection 3.3.

3.1 Designing Information Systems

Taking into account the requirements of operability, mod-
ularity, validity, communicabilities, etc, it became an ob-
vious choice to use Object-Orientation as our meta-model
for system description. A first set of design principles di-
rectly resulted from this choice. These are referred to as



van Houten and Jacobs
the principles of Object-Orientation of which the principles
of delegation, encapsulation and late binding are good ex-
amples. A more detailed description of these principles can
be found in (Lee and Tepfenhart 2002).

Although these principles form a good basis for design,
they tend to prescribe the structure of individual objects and
relations instead of the design of complex, dynamic clusters
of objects. So the question is: What kind of strategy should
we apply to the division of systems into sub-systems?

Each major component of a system is called a sub-
system. Each sub-system should deal with a separate subject
matter called a domain. Lee and Tepfenhart (2002) define
a domain as a separate real, hypothetical, or abstract world
that has its own terminology and specific semantic meaning.

Now we know the basis for dividing a system into sub-
systems, the next question concerns the relation between a
sub-system and the rest of the system. This relation can be
peer-to-peer (P2P) or hierarchical.

In an autonomous P2P relation, either side may have
access to the other’s services. This relation leads to vertically
partitioned systems which divide the system into several
independent and weakly coupled sub-systems.

The opposite relation is the hierarchical relation between
a sub-system and the rest of the system. This leads to a
layered system which is an ordered set of sub-systems in
which each of the sub-systems is built in terms of the ones
below it and provides the basis for building the ones above
it.

3.2 Services of the Architecture

An overview of the architecture and its services is given
in figure 1. Each of the services is briefly described in
subsections 3.2.1 to 3.2.7. The human players’ and game
administrator user interface services have a P2P relation
with the other services, which are all located within a
server. However, it is very well possible that the content
management system for example, is placed on a different
server to manage server load etc. The services are composed
of multiple sub-systems in a hierarchical way.

3.2.1 Simulator

The architecture uses a discrete event simulator as the events
which take place in a simulation game are events that
can be pointed out as a single event at a certain point in
time. Common functionalities of a simulator are control
commands, like start, stop and changing the simulator speed.
These controls enable us to distort time to help emphasize
and control the attention and focus of the players.
3.2.2 Message Server

The message server is used to take care of the communica-
tion between players in a game. The message server consists
of a number of sub-services. It enables distributed com-
munication that is loosely coupled, it manages persistency
of messages, it supports peer-to-peer and publish/subscribe
mechanisms, priority, acknowledgement, asynchronous and
synchronous messaging, and life-time of messages.

3.2.3 Scenario

The scenario service consists of a number of sub-systems.
This service communicates with all other components of
the architecture. The service is able to schedule events on
the simulator, send messages to users or refresh scores of
users in the content management system.

The scenario service supports extended games, and
complexity by automating a lot of activities a game admin-
istrator usually has to manage. Furthermore it supports the
scenario service design and management of scenario’s. For
example, the service is able to save the state of multiple
scenario’s and in this way make it possible to compare
scenario’s and the decisions taken in a detailed way.

3.2.4 Simulated Players

The simulated players service incorporates the behavior of
players. To do this we use algorithms for operational deci-
sion making. This service is used to improve the complexity
and dynamics of a game and hence increase its value. It
furthermore can be used to test all kinds of algorithms.

3.2.5 Human Players

The human players service, incorporates representations of
players which humans are able to control. Representations
of these players exist within the server. However, a human
is able to connect via the Internet with its server-side repre-
sentation using an user interface. Using the user interface,
a human is able to take decisions and participate in the
game. The user interface is furthermore used to support
communication with other players in a game. A user in-
terface supports formal ’business’ messages and provides
possibilities to send for example e-mail-like messages for
a more informal messages.

3.2.6 Game Administrator

The game administrator service supports an administrator in
managing and controlling a game. The administrator is the
one person that can view the data of all the users and apply
changes. Its primary functions are to take care of the smooth
progression of a game and to solve all the kinds of problems



van Houten and Jacobs
Simulator

Human Players
Graphical User

Interfaces

Content
Management

System

Human Players

Scenario

Game
Administrator
Graphical User

Interface

Simulated
Players

messages

information/messages

initial values

initial values

messages

messages messages
Message Server

messages messages

messages

messages

information

messagesmessages

messages

messages

Game
Administrator

messages

messages

messages

messages

client-side

client-side

Figure 1: Overview of the Architecture
that may arise. An administrator is able to subscribe to all
kinds of (critical) events and to communicate with users.

An administrator is not supposed to schedule all kinds
of events, see also scenario service, to make sure a certain
scenario is followed. However, an administrator is able to
schedule events if this is desired. Just as with a human
player, an administrator uses an user interface to connect
to the service.

3.2.7 Content Management System

Besides managing content, the content management system
(cms) is also used as a web portal. A separate section
of the cms is used for each game, as each game has a
different story-line and role descriptions. The sections that
each player has access to may also differ. Access to these
separate sections is managed based on user credentials.
The cms is able to provide story-lines, role descriptions,
in between scores, automatically updated by the scenario
service, and a help and frequently asked questions section.
It is furthermore used as a debriefing service.

3.3 Technologies and Tools Used for
Implementation

Before we come to the proof-of-concept in section 4, we
conclude this section with an overview of the technologies
used to specify the above sub-systems and services.

The reference implementation is a J2EE system which is
hosted on a JBOSS & Tomcat combination. The simulation
core was provided by the DSOL (Jacobs, Lang andVerbraeck
2002) suite for simulation which was accessed through RMI.
A combination of HTML and JSP pages provided most of the
content to the actual players. Persistency of the game was
provided by MySQL and game scenarios were parsed from
locally accessible XML-files. The Java Message Service is
used for the message service.

4 A PROOF OF CONCEPT:
SUPPLY CHAIN GAME

In this section we describe the game we designed as a
proof of concept of the feasibility of our architecture. We
implemented a supply chain simulation game.

We chose to model a supply chain as it is difficult to
teach students and others, for example people from business
organizations, all the aspects involved in managing supply
chains. It is almost impossible to get a clear view of, and to
predict all the effects of, decisions made in a supply chain.
Furthermore, ever-increasing complexity and accelerating
changes are faced by organizations in supply chains. This
brings with it a need for games that can be used to transmit
the knowledge and skills needed for this kind of environment
(Lainema and Makkonen 2003).

We used a spot buy market for the supply chain. The
spot market was formed of multiple yellow pages which
kept track of sellers for certain products. Buyers interested
in a product contacted a yellow page to retrieve a list of
sellers. Then they could contacted these sellers and start
the process of acquiring the products. The supply chain
consisted of a number of simulated and human players. The
customers and suppliers were all simulated. Simulated and
human players were used for retailers and manufacturers.



van Houten and Jacobs
A lot of the functionalities described for the scenario and
game administrator services have not yet been implemented,
personalization of content for players using the content
management system was also not implemented. The game
was played using the Internet as the connecting medium. The
simulator, and other objects were instantiated on a server.
An impression of the user interface used for a manufacturer
in the game is given in figure 2.

5 CONCLUSIONS

This paper gives a description of an architecture for internet-
mediated simulation games. A Java™based implementation
of the services which span the architecture resulted in a
"ready to use" design of a simulation core and multiple
remote user interfaces.

The architecture presented in this paper shows the vari-
ous possibilities for this type of architecture with its human
and simulated players, and the value this has for modeling
complex, multi-actor environments.

Several topics remain for further research and imple-
mentation. First, the implementation of the architecture
presented in this paper has not yet resulted in a completed
set of services that are ready to use for the life-cycle of a
simulation game. Furthermore we have found that the man-
agement of a scenario and a game require more attention and
skills than initially foreseen. For example, the visualization
of several processes like initializing a scenario, for exam-
ple type of players, their parameter values, behavior, and
the visualization of control during a game require further
research.

A second area requiring further research is the complex-
ity of simulated players, as their complexity increases with
the level of detail in a game. Research on the algorithms
used for operational decision making remains a challenge.

REFERENCES

Jacobs, P. H. M., N. A. Lang, and A. Verbraeck. 2002.
D-SOL; A distributed java based discrete event simu-
lation architecture. In Proceedings of the 2002 Winter
Simulation Conference, ed. E. Yücesan, C.-H. Chen, J.
L. Snowdon, and J. M. Charnes, 793-800.

Keen, P. W. G., and H. G. Sol. 2004. Rehearsing the
Future. To appear.

Lainema, T., and P. Makkonen. 2003. Applying construc-
tivist approach to educational business games: Case
realgame. Simulation & Gaming 34 (1): 131-–149.

Lee, R. C., and W. M. Tepfenhart. 2002. Practical object-
oriented development with uml and Java™. Prentice
Hall, Upper Saddle River.
AUTHOR BIOGRAPHIES

STIJN-PIETER A. VAN HOUTEN is a Ph.D. student at
Delft University of Technology. His research is focused
on services for decision support environments, special-
izing in interactive distributed simulation. His e-mail
address is <s.p.a.vanhouten@tbm.tudelft.nl>
and his web page is
<www.tbm.tudelft.nl/webstaf/stijnh>.

PETER H.M. JACOBS is a Ph.D. student at Delft
University of Technology. His research is focused on the
design of simulation and decision support services for the
web-enabled era. His previous experience at the iForce
Ready Center, Sun Microsystems (Menlo Park, CA), and
his engineering education at Delft University of Technology
gave rise to his interest in this research field. His e-mail
address is <p.h.m.jacobs@tbm.tudelft.nl>,
and his web page is
<www.tbm.tudelft.nl/webstaf/peterja>.

mailto:s.p.a.vanhouten@tbm.tudelft.nl
http://www.tbm.tudelft.nl/webstaf/stijnh
mailto:p.h.m.jacobs@tbm.tudelft.nl
http://www.tbm.tudelft.nl/webstaf/peterja


van Houten and Jacobs
Figure 2: A Proof of Concept Implementation for a Supply Chain Game


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 2081
	02: 2082
	03: 2083
	04: 2084
	05: 2085
	06: 2086


