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ABSTRACT 

Current treatment of HIV patients is based on various 
guidelines that have changed with the advent of newer 
antiretroviral therapies and the emergence of resistance to 
them.  However, there remains uncertainty over the best 
time to initiate HIV therapy or when to switch.  Observa-
tional cohort studies or clinical trials are limited in the 
number of scenarios they can examine, whereas simulation 
modeling is well suited for considering various treatment 
policies.  We describe a Monte Carlo simulation of a co-
hort of HIV positive patients that explicitly models two 
key components of HIV progression: adherence and the 
acquisition of resistance.  Simulation results closely match 
cohort statistics such as survival time and length of time on 
the first three treatment regimens.  We also describe sensi-
tivity analyses and experiments such as testing the effects 
of starting therapy at different levels. 

1 INTRODUCTION 

HIV treatment has evolved considerably in the last twenty 
years.  Until the late 1990s, the standard of care was the use 
of a single antiretroviral drug, and because the HIV virus 
mutates rapidly, monotherapy was not very effective due to 
the emergence of resistant strains (Shernoff and Smith 
2001).  As a result, researchers developed triple-drug thera-
pies (also known as cocktail therapy, or Highly Active Anti-
retroviral Therapy (HAART)) in the late 1990s that allowed 
for a multi-pronged attack against the HIV virus.  There are 
four major classes of antiretroviral drugs (see Appendix for a 
glossary of terms): protease inhibitors (PIs),  nucleoside re-
verse transcriptase inhibitors (NRTIs), non-nucleoside re-
verse transcriptase inhibitors (NNRTIs), and more recently, 
fusion inhibitors (Peiperl and Coffey 2004).  HAART has 
significantly reduced the mortality rates for HIV patients 
(Palella et al. 1998). 

With the advent of new HIV therapies, the optimal use 
of them has also become less clear.  Initially, the medical 
community took a “hit hard, hit early” strategy, but more 
recently the focus has shifted more to a “hit hard, but only 
when necessary” strategy (Harrington and Carpenter 
2000).  This is reflected in the changing guidelines for HIV 
therapy from recommending starting patients on HAART 
whenever their CD4 count falls below 500 to waiting until it 
falls below 350 (Stine 2003).  No clinical trial data support 
starting above this level (Harrington and Carpenter 2000). 
 Simulation is an invaluable tool for treatment modeling.  
While randomized controlled trials (RCTs) are a necessary 
and final test of a new treatment policy, they are not practical 
for testing a wide variety of alternatives because of costs, 
sample size considerations, and possible ethical concerns.  
Cohort observations are also limited in scope and, addition-
ally, are subject to the biases inherent in patients falling into 
the different branches of the cohort.  All of these concerns are 
mitigated with a valid computer model of the clinical process.   
 In this paper, we describe the development of a com-
plex Monte Carlo simulation that allows for testing a wide 
variety of assumptions and treatment policies for HIV pa-
tients.  It is based on data from a cohort of antiretroviral na-
ive patients from several clinics and hospitals in the United 
States.  Unlike previous HIV simulation models (Wein, Zen-
ios, and Nowak 1997; D’Amato, D’Aquila, and Wein 1998; 
Freedberg et al. 2001; Richter et al. 2002) our model explic-
itly considers the development of resistance and the effect 
adherence to the prescribed drug regimen has on this devel-
opment.  As indicated above, resistance is a major problem 
in effective HIV therapy.  Additionally, HAART is a diffi-
cult drug regimen to comply with because of regimen com-
plexity, side effects, and psychosocial issues such as depres-
sion and stress (Chesney 2003).  One study demonstrated a 
significant correlation between better adherence levels and 
lower mortality rates (Carmona, Knobel, and Guelar 2000).  

In Section 2 we describe the model in more detail.  
Section 3 provides validation results while section 4 re-
ports results from sensitivity analyses.  In Section 5, we 
describe some of the results from different policy experi-
ments.  Finally, we provide conclusions and directions for 
future research in Section 6. 
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2 MODEL DESCRIPTION 

In the medical decision making literature, our model would 
be labeled a Monte Carlo Markov cohort microsimulation 
in which individual patients enter the model independently 
of each other, and events are updated at fixed time inter-
vals (in our case, monthly).  It is common to model disease 
progression at fixed time intervals, and because HIV pro-
gression in individual patients is our primary concern, our 
model does not take the form of more traditional discrete-
event simulation models which consider competition for 
resources and random times until events.   

2.1 Model Flow 

Patients enter the model one at a time with a CD4 count, 
viral load, and age generated from distributions based on 
the actual cohort of patients.  An entering patient is then 
updated monthly  until he dies, at which point the next pa-
tient goes through the same routine, with a different stream 
of random numbers.  In this way, we can run many replica-
tions of patients starting with the same CD4 count, viral 
load, and age to estimate the average outcomes for patients 
with those initial characteristics.  The basic flow of the 
model is shown in Figure 1.  
 At the start of each monthly cycle, we determine if the 
patient should start HAART or not.  The main factor that 
drives the start decision is the patient’s CD4 count; if the 
patient’s CD4 count falls below a pre-defined constant, the 
patient begins therapy.  He then remains on therapy until 
he either runs out of available therapies or dies. 
 If the patient is on HAART at the start of the month, 
we determine the level of adherence exhibited by the pa-
tient over that month.  We assumed that patients who fail 
to take one drug at a particular time are more likely to miss 
the other drugs at that same time, and we implemented this 
by increasing the probability of nonadherence to the other 
drugs if the patient misses any one of the drugs.   
 Once we know if the patient is on a HAART regimen 
and his level of adherence and resistance, we update the 
CD4 count, viral load, and age that change over the course 
of that  month.  CD4 and viral load changes were obtained 
from regression equations based on the patient cohort.  The 
changes depend, among other things, on whether the pa-
tient is on HAART, the level of adherence and existing re-
sistance, and which regimen number the patient is on.  
With these updated values, we determine if the patient dies 
of HIV or non-HIV-related causes that month.  Because the 
success of HAART has turned HIV into a chronic disease 
(Selwyn and Rivard 2003), a significant number of HIV 
patients are dying from causes not related to HIV (Cohen 
et al. 2002).  The probability of dying from HIV-related 
causes is a function of age, time on HAART, CD4 level, 
and viral load, and the risk of dying from non-HIV-related 
causes is  a function of age. 
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Figure 1: Overview of Model Flow 

 
If the patient does not die, then we determine if the pa-

tient changes to a different drug regimen.  This can happen 
in two ways: 1) the patient decides on his own or with his 
doctor to stop taking that particular regimen completely, or 
2) the current regimen has become ineffective because 
there is resistance to all three drugs the patient is taking.  If 
Case 1 occurs, then the patient gets assigned a new regi-
men and advances to the next month.   
 To determine if Case 2 occurs, we first need to deter-
mine if any new resistant mutations developed this month.  
We do this by transforming the mutation rate (based on the 
patient’s viral load) into a probability of observing a muta-
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tion that month.  Then we consider selection pressure on 
the different drug classes mentioned earlier and determine 
if the mutation is resistant to the drug class that was se-
lected for (we do not consider the fusion inhibitors in our 
model as these were just approved by the FDA in 2003, 
and therefore little data is available on them (Peiperl and 
Coffey 2004).  Cross resistance is often a problem in HIV 
therapy, so if the model determines there is resistance to 
one of the drugs in the selected class, it checks for cross-
resistance to the other drugs in the same class (if the pa-
tient is taking more than one drug from that class).  Cross 
resistance is especially a problem for the PI and NNRTI 
drug classes (Centers for Disease Control and Prevention 
2002).  The probabilities of primary resistance and cross 
resistance are based on drug class.  If, after updating the 
resistance levels, the virus is resistant to all three drugs the 
patient is taking, the patient get assigned a new regimen.  
 New regimens are assigned by considering the cumu-
lative number of mutations to each of the three drug classes 
and determining which class is least likely to encounter a 
resistant mutation.  The patient is assigned two drugs from 
that class and a third from one of the remaining two.  Upon 
receiving a new regimen, we assign a new regimen-
specific probability of adherence and continue on to the 
next month.  Patients are limited to at most 8 regimens, and 
we assume they are always on HAART from the time they 
start until they either die or exhaust all available regimens. 

2.2 Model Statistics 

The model outputs a number of statistics based on averages 
of the total number of patient runs.  Of primary importance 
are survival time, time until treatment failure of the first 
three regimens, average time on HAART, the percentage 
who die from HIV vs. non-HIV-related causes, the propor-
tion of regimen changes resulting from patients stopping 
on their own vs. triple-drug resistance, and the proportion 
who die within 1, 3, and 5 years.  The model also generates 
survival and time until treatment curves for easy compari-
son with the curves generated by the real cohort data (dis-
cussed in Section 3).    

2.3 Variance Reduction 

One of the primary reasons for building a medical simula-
tion is to have a fairly inexpensive, quick, and risk-free 
method of evaluating alternative treatment policies.  In do-
ing so, we want to reduce the variance on the differences in 
outputs between policies so that we can have greater confi-
dence that the observed differences are real.  To that end, 
we implemented the variance reduction technique of com-
mon random numbers (CRN) (Law and Kelton 2000). 

The key to the CRN technique is to use the same ran-
dom numbers for similar reasons between simulations.  For 
example, if the first patient in the simulation of Policy A 
has a probability p1A of dying from HIV in month 1 and we 
generate a uniform[0,1] random number u1 to determine if 
he dies, then we want to use that same u1 to determine if 
the first patient in the simulation of policy B dies from 
HIV with probability p1B in the first month.   

To facilitate this method, we dedicated one random 
number stream to HIV deaths, one to non-HIV deaths, one 
to adherence, and one to resistance.  Furthermore, because 
different policies may induce different survival times, we 
had to make sure that each new patient started at the same 
place in the dedicated random number stream.  Since one 
does not know a priori how many random numbers a given 
policy will use, we also dedicated sections within each 
stream to each patient.  For example, we use one random 
number per month from the HIV death stream until the pa-
tient dies.  Therefore, we can safely assume that we need at 
most 100*12=1,200 random numbers from that stream for 
each patient.  Then if patient 1 from Policy A lives 120 
months and the same patient from Policy B lives 133 
months, they each use 120 and 133 random numbers from 
the HIV death stream, respectively.  Then patient 2 from 
each policy starts with the 1,201st random number from the 
HIV death stream in the first month.   

3 VALIDATION  

Resistance and adherence—critical to HIV progression—are 
also components for which it is difficult to get good meas-
ures.  We therefore altered the mutation rate and probability 
of adherence within reasonable bounds until the model out-
puts matched closely with the cohort outputs with respect to 
overall survival time and time until treatment failure of the 
first three regimens (see Figures 2 and 3 for the survival 
curve and the curve for time until treatment failure of the 
first regimen.  The curves for the second and third regimen 
are not shown.  Figures are reprinted with permission from 
Braithwaite et al. 2004).  The probability of adherence is 
with respect to a single drug of the three-drug regimen.  For 
these runs, we ensured simulated patients started on HAART 
right from the beginning to correspond with the cohort pa-
tients.  The close proximity of each of the curves gave us  
 

0.88

0.9

0.92

0.94

0.96

0.98

1

0 1 2 3 4 5 6 7 8
YEARS

ACTUAL

SIM

 
Figure 2: Overall Survival Time 
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Figure 3: Time until Failure of Regimen 1 

 
confidence that the simulation was a reasonable representa-
tion of the patients in our cohort. 

4 SENSITIVITY ANALYSES 

Calibrating a model to two parameters does not guarantee 
that the model is accurate with respect to those or other pa-
rameters in the model.  Therefore, we performed one-way 
sensitivity analyses on some of these factors to examine their 
effects on output.  Table 1 gives the overall mean survival 
time (and the half-length of the 95% confidence interval) for 
the baseline run and the baseline values of certain parameters. 
The mut_rate represents the average number of mutations per 
year. The prob_comp parameter gives the probability of a pa-
tient complying to any one drug in a given month, and 
assoc_comp indicates the degree to which not complying to 
one drug affects the probability of not complying with the 
other drugs in the regimen (if assoc_comp = 0, then there is 
no correlation, and if assoc_comp = 1, then the patient will 
certainly not take the other drugs).  Prob_mut_res gives the 
probability that a new mutation is actually resistant to at least 
one of the drugs still susceptible to resistance.  The table then 
shows how the survival time changes as these parameters 
change while holding the other parameters at their baseline 
values.  Again, for these runs, patients start on HAART upon 
entering the model.   
 The assoc_comp parameter represents the clustering of 
adherence between drugs at the same time—i.e., the degree 
to which not complying with one drug at a certain time 
causes the person to not comply with the other drugs at the 
same time.  A value of 0 indicates the there is no associa-
tion whereas a value of 1 indicates 100% nonadherence to 
other drugs if there is nonadherence to one drug.  
Prob_mut_res gives the probability that a given mutation is 
actually resistant to one of the drug classes (currently we 
assign the same probability regardless of the drug class).   
 Keeping the chosen parameters within reasonable 
bounds, none of them changed the overall survival by more 
than 1.5 years.  Furthermore, because the model calibrated 
well with the baseline values for mut_rate and prob_comp, 
the relative lack of sensitivity to these parameters gave us 
further confidence in using the derived values. 
Table 1: Baseline and Sensitivity Analyses Output 
Baseline Values 

mut_rate 0.01 
prob_comp 0.755 
assoc_comp 0.9 
prob_mut_res 0.5 
survival 22.86 (.24) 

Parameter Value Survival 
mut_rate 0.005 24.09 (.25) 
mut_rate 0.015 21.97 (.24) 
prob_comp 0.7 21.75 (.24) 
prob_comp 0.8 23.97 (.25) 
assoc_comp 0.5 22.60 (.24) 
assoc_comp 1 23.09 (.24) 
prob_mut_res 0.3 23.88 (.25) 
prob_mut_res 0.7 22.12 (.24) 

5 EXPERIMENTS 

5.1 Effects of Starting Criteria on Total Lifetime 

As mentioned in the introduction, one of the most impor-
tant questions in HIV therapy is when to begin therapy.  
This is usually framed in terms of what CD4 threshold to 
wait until to start therapy.  Commonly analyzed thresholds 
are 200, 350, and 500.   

Figure 4 shows the median survival times from wait-
ing until these three thresholds to begin therapy for various 
hypothetical patients. We assumed each patient started 
with a CD4 of 500 and varied the starting age to be 30, 40, 
or 50 and the starting viral load to be 4, 5, or 6.  For each 
of these strata, we simulated 10,000 patients to estimate the 
average response for those types of patients. As can be 
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seen, for each type of patient, starting therapy earlier re-
sults in a higher median survival time.  For example, for a 
50 year old patient with a viral load of 4 the estimated me-
dian survival time is 20.25, 22, or 23.42 years, for starting 
therapy at CD4 counts of 200, 350, and 500, respectively. 

5.2 Effects of Starting Criteria on  
Quality Adjusted Life Years 

Adverse side effects of HAART, which both decrease 
quality of life and can increase the risk of death, may cause 
physicians and patients to consider delaying the start of 
therapy.  Medical decisions often involve a tradeoff be-
tween quality of life and quantity of life which is why a 
commonly used outcome measure in medical decision 
making is the total quality adjusted life years (QALYs) 
(Drummond et al. 1997).  Our baseline model considered 
total life years, which may not be the best measure upon 
which to base decisions.  We therefore wanted to incorpo-
rate quality-adjustments into our model to see how this af-
fects starting decisions.  It seems plausible that if the qual-
ity of life from being on HAART is low enough, it may 
make sense to delay the start of therapy.   
 To generate QALYs, we included utility weights for 
two different states in the model: HIV off of HAART, and 
HIV on HAART.  Future work will consider the quality of 
life at finer levels of detail such as considering what CD4 
category the patient is in.  We assumed an off-HAART 
utility of .8 and tested two on-HAART utilities of .5 and .7.  
We also considered the increased risk of non-HIV-related 
death when patients are on HAART by multiplying that 
death rate by 3.   
 Figure 5 shows the gain or loss in median QALYs (z-
axis) by starting therapy at a CD4 count of 500 vs. starting 
at 200 for each combination of age and viral load (x-axis) 
and each on-HAART utility of .5 and .7 (y-axis).  We as-
sume all patients start with a CD4 of 500.  When the pa-
tient’s utility for being on HAART is .7, then it is still bet-
ter to start therapy at 500 for all categories except for the 
 

4 5 6 4 5 6 4 5 6
0.5

-1.5

-1

-0.5

0

0.5

1

1.5

2

QALYS

UTILITY
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age = 50, viral load = 4 category (a gain of .317 QALYs by 
starting at 200).  For the same age and viral load, if the pa-
tient’s utility for being on HAART is .5, then there is an 
even bigger gain in QALYs (1.44) by waiting until the 
CD4 falls below 200.  Furthermore, there are other catego-
ries for the .5 utility for which it appears better to delay 
therapy.  A natural question is to ask which starting thresh-
old results in the optimal QALYs, which we leave for fu-
ture research.  Finally, we note that if we just considered 
total life years, it was always better to start therapy earlier 
even with the toxicity multiplier of 3 (data not shown).   
Therefore, the variability of patient utilities can play an 
important role in the decision making process. 

6 CONCLUSIONS 

We have described our simulation of HIV patients under-
going HAART until they either die (from HIV or non-
HIV-related causes) or they have exhausted all reasonable 
regimens.  We model the monthly changes in critical com-
ponents of HIV progression (CD4 count, viral load, adher-
ence, and resistance) and track numerous output such as 
survival time, time until treatment failures, proportion of 
deaths attributable to HIV vs. non-HIV causes, and average 
time on HAART.  The model and output can be used to 
compare different treatment policies such as when to start 
or switch therapy. 

Our model can easily be changed to include future en-
hancements.  Some of these include a more detailed model-
ing of the available regimens, resistance and adherence.  
For example, we currently consider only three major 
classes of drugs and do not consider specific drugs within 
each class.  Along those lines, we want to model specific 
mutations to specific drugs.  Also, we would like to model 
better the dependency of adherence on the specific drugs 
being taken. 

This model can provide insights into a variety of thera-
peutic decisions regarding HIV care.  The value in our simu-
lation model is that we can test alternatives with little cost, in 
a short amount of time, and without risk to real patients. Af-
ter incorporating more enhancements to our model, we hope 
that it can be used as a tool to guide clinical trials. 
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APPENDIX: GLOSSARY OF TERMS 

Antiretroviral drugs: Drugs designed to stop or suppress 
retroviruses, one of which is HIV. 

CD4 cells: White blood cells that help the body fight off 
infection.  These are the cells that the HIV virus attacks. 



Shechter, Braithwaite, Schaefer, and Roberts 

 
CD4 count: The number of CD4 cells per microliter of 
blood. 

Viral load: The amount of HIV RNA per milliliter of blood 
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