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ABSTRACT 

We present a model to explain the effects of the long time 
between blood stem cell divisions and rapid cascades of 
progenitor cell divisions on the mitochondrial DNA drift. 
We allow four stochastic events in the system namely, 
mtDNA replication and degradation, cell division and 
death. To implement the conceptual model, we design two 
simulation models; one for a limited number of stem cells 
(20,000) over very long time scale (100 years) and another 
for the cell divisions of a progenitor cell resulting in a large 
number of blood cells (~10 million) over a shorter time 
span (25 days). Iterative enhancement with incremental 
builds constitutes the modeling methodology. We adopt the 
activity scanning conceptual framework for the model im-
plementation. Initial transient and memory issues are re-
solved. By output data analysis, we conclude that the varia-
tion in mutation level occurs significantly due to time and 
less so due to cell divisions.  

1 INTRODUCTION 

For the reader unfamiliar with cell biology, we include 
some basic definitions. 

Mitochondria: Cellular organelles responsible for en-
ergy production. Hence, they are called the power house of 
the cell. Mitochondria are unusual because they contain 
their own DNA molecules (mtDNA), separate from the 
DNA in the cell nucleus. 

Stem cell: An unspecialized cell with self renewing 
capabilities that gives rise to a specific specialized cell.  

Hematopoietic stem cell: A small population of un-
differentiated cells in the bone marrow which give rise to 
the mature differentiated blood cells.  

Blood progenitor cell: The ancestor cell for all types 
of blood cells originating directly from a stem cell division 
in the bone marrow. 

Symmetric cell division: Always results in two iden-
tical daughter cells (Figure 1). For example, progenitor 

 

cells in our model are known to follow such divisions 
(Marley et al., 2003). 

Asymmetric cell division: results in two daughter 
cells that are not be identical (Figure 1).  

Mixed cell division: results in two daughter cells that 
may or may not be identical (Figure 1).  

Synchronous cell division: all cells in a colony divide 
at the same time (Figure 2).  

Asynchronous cell division: cells divide independ-
ently, at different times (Figure 2). 
 

time 
- stem cell - progenitor cell

 asymmetric mixed 

 
Figure 1: Symmetric, Asymmetric and Mixed Cell Di-
visions 

 
A blood stem cell is an undifferentiated cell in the 

bone marrow that divides about once a year to yield two 
daughter cells. The divisions are asymmetric and result in 
the formation of two stem cells, two progenitor cells or one 
of each type. 
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Figure 2: Synchronous and Asynchronous Cell Divisions 

 
Progenitor cells undergo rapid cascades of  cell divisions 
yielding millions of blood cells every day. In the following 
sections, we describe the system, the model, the model ob-
jectives and the requirements of the simulation study. The 
modeling methodology is described giving attention to the 
conceptual framework and the verification and validation 
(V&V) techniques employed. An initial transient problem 
is resolved and we comment on the indications of scalabil-
ity and memory limitations from the preliminary results. 
We close with an observation regarding model insensitivity 
and offer several extensions that would incorporate more 
system features in future experimentation. 

2 THE SYSTEM 

The system to be modeled belongs in the domain of cell bi-
ology. The system consists of a number of human blood 
stem cells in the bone marrow. Each cell has a number of 
mitochondrial DNA (mtDNA) molecules (a few thousand). 
Each mtDNA molecule can be of either a wild-type mtDNA 
(W: The normal type we would expect in a cell), or a mu-
tant-type mtDNA (M: abnormal due to insertion, deletion, or 
substitution of nucleotides). Each mtDNA molecule under-
goes a process of replication wherein it creates a copy (repli-
cate) of itself. Let N = W+M be the total number of mtDNA 
in a cell. Typically, a normal cell would contain all W 
mtDNA. The state where both W and M type mtDNA occur 
in the same cell is known as heteroplasmy. mtDNA are de-
graded with a half life (T1/2). Under normal conditions, the 
cell replicates its mtDNA at a rate Ro to compensate for the 
loss of mtDNA by degradation. With both mtDNA replica-
tion and degradation events, and cell division and cell death 
events occurring independently in this stochastic system, the 
average mutation level (M/N) in the cell population drifts 
over time. The effect of this drift needs to be studied over a 
human life span. We observe the variation in the M/N level 
in a population of cells starting at different initial mutation 
levels over time. The effect of cell divisions are studied over 
a cascade of cell divisions leading to millions of cells. The 
literature supports the assumption that blood stem cells un-
dergo cell division about once a year. These divisions are 
asymmetric and asynchronous, resulting in both blood pro-
genitor cells and stem cells. A blood progenitor cell, once 
formed, undergoes a series of rapid cell divisions (approxi-
mately once a day) to yield mature blood cells after about 
18-20 levels of cell divisions (Figure 3). In each cell divi-
sion, random division determines the number of M or W 
type mtDNA that go into each of the daughter cells. 

 

stem cell progenitor cell  
Figure 3: Cell Division Model for Blood Stem Cells 

3 STUDY OBJECTIVES 

Important in the understanding of the mtDNA mutation 
load on the blood cells are the relative contributions of two 
factors; the length of the interval separating divisions of 
the stem cell and the rate of the cascade of cell divisions 
among the progenitor cells. The objectives of this simula-
tion study are: 

 
1. How does the mutation level of mtDNA 

(M/(W+M)) drift over a time span of 100 years? 
2. How does the mutation level of mtDNA drift over 

rapid cascades of cell division resulting in at least 
220 (a million) blood cells? 

3. How does the drift in mutation level in the stem 
cells compare with that occurring in the progeni-
tor cell division cascade? 

4 THE MODEL 

The model we develop will represent the above system 
with the following assumptions: 

 
1. During cell division, roughly 50% of total 

mtDNA is distributed to each daughter cell.  
2. A cell dies and is removed from the population 

only if its mutation level exceeds the set threshold 
level (~90%). 

3. mtDNA replication, mtDNA degradation, cell di-
vision and cell death are the only events that af-
fect the mtDNA mutation load in the cell. 
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4. The progenitor cells in Figure 3 divide to produce 
several specialized cell types. However, the model 
treats all these cells as the same type.  

4.1 MODEL EQUATIONS 

Table 1: Table of Model Parameters and Equations 
Description Para- 

meter 

Set to value 

The target total mtDNA 
population in a cell 

Nt ~5000 

The time between cell 
divisions 

D 1 year (stem cells) 
1 day (progenitor 
cells) 

The number of wild-
type mtDNA in a cell 

W W = pp*Nt 

The number of wild-
type mtDNA in a cell 

M M = (1-pp)*Nt 

Half life of mtDNA T1/2 10 days (from litera-
ture) 

The wild-type mtDNA 
level in a cell 

pp set to a value be-
tween 10% to 90% 

The simulation time step  ∆t 1 hour (for both 
stem and progenitor 
cell models) 

The probability of a cell   
division occurring in 
time ∆t 

 ln(2) * ∆t / D 
 

The mtDNA destruction 
coefficient 

τ  τ = T1/2 / ln(2) 
 

The mtDNA replication 
rate 

Ro Ro=Nt/τ+ln(2)*Nt/D 

The mean value parame-
ter for the poisson sub-
routine  

xm xm = Ro * ∆t 

The probability of a cell 
death event occurring in 
a time interval (t, t+∆t) 

 = (number of living 
cells at time 
t)*∆t/(D*Nt) 

4.2 MODEL PARAMETERS TO BE SET 

MAXCELLS: Maximum number of cells that could ex-
ist at anytime 

MAXDIV:  Maximum number of cell division cas-
cades in the synchronous model 

MAXHOUR: Maximum number of hours that the 
simulation should run 

THRESHOLD: A cell dies and is removed from the 
population if its mutation level exceeds 
the set threshold level (~90%) 

5 MODELING METHODOLOGY 

Iterative enhancement with incremental builds constitutes 
the methodology of model development. Different perspec-
tives are offered in the literature (Balci 2001, Sargent 2001). 
While we do not use a specific methodology, the simulation 
model is developed with careful consideration to the meth-
odology and CF. To achieve the objectives and meet the re-
quirements, we design two simulation models; one for a lim-
ited number of stem cells (20,000) over very long time scale 
(100 years) and another for the cascaded cell divisions of a 
progenitor cell resulting in a large number of blood cells (10 
million) over a shorter time span (25 days). Separating the 
programmed stem cell model from the progenitor cell model 
is the strategy adopted to overcome memory and time limita-
tions of the PC. The RNG and probability distribution sub-
routines are verified, first, the stem cell model with synchro-
nous cell divisions is implemented and results verified. The 
next step is to extend stem cell model to asynchronous divi-
sions. We then build the synchronous and asynchronous cell 
division versions of the blood progenitor cell model. This is 
followed by design and execution of simulation experiments 
and output data  analysis.  

The algorithm used to generate a uniform random 
number taken from the book “Numerical Recipes in C” is 
originally proposed by Park and Miller (1988). The 
subroutines for generating a Poisson distribution and 
binomial distribution are also taken from the same source. 
All these subroutines are implemented as ‘C’ functions and 
included as a header file. A poisson distribution is used to 
set the number of W and M mtDNA that are degraded 
during each time step. A binomial distribution is used to 
set the number of W and M type mtDNA to be copied 
during a time step based on the current numbers in the cell.  

6 CONCEPTUAL FRAMEWORK 

For implementing the simulation model, we adopt the Activ-
ity Scanning (AS) Conceptual Framework (CF) with fixed 
increment time flow mechanism (TFM) (Balci 1988). Our 
objectives require that we perform statistical analysis on the 
state of the system at specific intervals of time in order to 
make valid predictions. For example, consider the following 
questions: Given an initial number of stem cells to start with, 
what are the number of cells living after 50 years? What are 
the number of blood cells produced per day? Starting from a 
given initial mutation level in given number of cells, how 
does the mutation level decay over a 5, 10, 20 year span? To 
answer such questions, AS with fixed time increments al-
lows a simple and logical design of the program flow. Sec-
ond, the simulation termination condition is time based and 
statistical routines are to be called at regular intervals of time 
in order to save the system state at those times. Third, since 
there are only four different events that can occur at each 
time point namely, cell division, cell death, mtDNA copy, 
and mtDNA degradation, it is easy to scan them. Lastly, we 
deal with a large number of cells (millions), and an ES ap-
proach would mean scheduling (or queuing) millions of 
events whenever an event occurs (since several events are 
expected to at each time step). This would be memory inef-
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ficient (Derrick, Balci, and Nance 1989). AS overcomes this 
problem by assigning a probability of occurrence of an event 
in each time step. Also, we do not save all the attributes of 
the system at every time step, but only those averaged over 
intervals of time.  

7 MODEL V&V TECHNIQUES  

We build the model with particular attention to model 
Verification and Validation. We adopt the following 
V&V techniques: 

Analysis by plot: Individual subroutines such as 
RNG, Poisson, binomial, cell division, and statistics sub-
routines are verified using short programs and plotting the 
output data. Subroutines derived from published sources 
such as Park and Miller (1998) are subject to one time veri-
fication to eliminate any implementation errors. For the 
blood cell model, one of the V&V procedure is to analyze 
the counts of the number of cells living and dying due to 
mutation threshold (Figure 4). We note that there is no sin-
gle cell death in the first twelve days and thereafter the 
death count raises exponentially as the living cell count 
does. In addition, the death events are small in number in-
dicating that the cascaded cell divisions do not cause many 
cells to exceed the mutation threshold. 
 

 
Figure 4: Blood Cell Counts Dying Due to Mutation 
Threshold Compared with Living Cell Counts over Time 

 
Desk checking: Subroutines that are derived from re-

liable sources are subjected to a one time desk checking 
before utilizing them in the simulation. However, the simu-
lation programs are subjected to routine desk checking 
whenever additions or modifications are made. 

Figure 5 is used for desk checking purposes to ensure 
that the data structures for the critical parameters are stor-
ing the right data. The validation criteria set for this model 
are based on the standard expectations or the biological 
scenario derived from literature. The total number of 
mtDNA in a cell (N = W+M) should be fairly constant 
(very little initial variation and then it stabilizes). If the 
model is implemented right, the average number of W and 
M type mtDNA in all living stem cells should behave as 
shown in Figure 5. 

 

 
Figure 5: A Plot of Mean Values of W, M and N for a 
Stem Cell Simulation Run Starting at 95% Mutation 
Level with the Threshold for Cell Death Set to 100%. Nt 
is Set to 5000 and W and M are Set to 5% and 95% of Nt 
Respectively 

 
Simulation runs performed for exact parameter set 

with different random number seeds (idum) serve as a veri-
fication procedure. 

Simulation/theoretical comparison: The simulation 
output data is compared to the experimental data sets on 
blood cells provided by Rahman et al., (2001) that spans 
over a 19-year time frame and Howell et al., (2000) data 
spans just about 7 years. We observed a good overlap be-
tween the W and M levels in the cells with the experimental 
values. This served as the major verification procedure for 
this research. However, not enough data is available on 
longer time scales; as such experiments are both costly and 
become infeasible to conduct in one’s lifespan. Despite all 
this, some experiments are ongoing in this direction using 
the blood samples at birth and present. If blood samples are 
saved at birth, comparing the values from those with current 
values in the same person can give us the data across the 
kind of time-scales we are looking at. With that, we should 
be able to provide a standard behavior curve (for each set of 
initial conditions) using this simulation model for experi-
mentalists to compare with.  

Subject matter expert: Several of the plots and desk 
checking procedures are designed based on the experience 
and intuition of a domain expert. 

8 RESULTS 

Simulation output data analysis is performed using Origin 
package from OriginLab.  

Stem cell model: From experiments, it is known that 
cells can survive and even function normally with mutation 
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level of up to 85%. Since it is not exactly known what the 
threshold level for cell death is, we need to test if the exact 
threshold value affects the model behavior significantly. A 
simulation experiment is conducted with THRESHOLD set 
at 100% so that a cell would die only if the mutation level 
reached 100% in that cell. The result for the two simulation 
runs starting at 75% and 95% initial M level is shown in 
Figure 6. Another simulation experiment is setup with 
THRESHOLD set to 90%. Interestingly, the behavior with 
90% THRESHOLD for cell death does not deviate much 
from the behavior observed at 100% threshold even over a 
time scale of 100 years (plot not shown).  
 

 
Figure 6: A Plot of Mean M Level (M/N) versus Time 

 
Progenitor cell model: The results from the cascaded 

cell division model of progenitor cells shows that the aver-
age M level of all cells resulting from a cascade of cell di-
visions did not differ from that of the progenitor cell (Fig-
ure 7). As shown in Figure 7, the variation in the mean M 
level in about 10 million cells resulting from a single pro-
genitor cell is in the order of 10-3 which is negligible. 

 
 

 
Figure 7: Mean M Level of Blood Cells as a Function 
of Their Cell Count 
9 THE PROBLEM OF INITIAL TRANSIENT 

Figure 6 also shows the problem of initial transient for two 
simulation runs starting at 75% and 95% mutation levels. 
The run at 75% mutation level takes longer for individual 
cells to exceed the set 100% threshold for cell death. While 
the M level starts to decay after about 10 years in the 75% 
case, the same starts in less than 5 years for the 95% case. 
One reason is that in a single simulation run, all cells are ini-
tialized to the same initial state, which is not very close to 
the natural situation. Hence, we allow the first few years of 
simulation to allow randomization of the initial state of dif-
ferent cells. Figure 8 shows the stem cell population 
distribution for a simulation run starting at year 0 and 70% 
mutation level, after 6 years and after 60 years. As we can 
see, the distribution after 6 years is spread around the mean 
70% level from 40% to 90%.  However, after a span of 60 
years, the population has spread the entire spectrum from 0 
to 90% with more than 1500 cells fixed at all W type cells. 
The current procedure to determine the end of transient 
period is more ad hoc and expert heuristic based. A much 
cleaner way of handling this issue of initial transient is still 
of interest.  

 

 
Figure 8: Stem Cell Population Distribution Based on 
Their M Level 

 
To check the effects of starting simulation runs on 

cells with different starting conditions, the initial mutation 
level is set to a range of values from 20% to 75%. Figure 6 
shows the decay in M levels in cell populations starting at 
different initial M levels (75% and 95%). From the plot, 
both lines are nearly parallel, i.e., initial condition does not 
noticeably impact the slopes. The explanation for this is 
that the amount of time needed for the cells to exceed the 
M THRESHOLD for cell death is proportional to the initial 
M level at which each cell starts. In our model, all cells 
start with the same M level in a particular simulation run. 
But, the rate at which the M level decays itself does not 
depend on the initial M level of the cell. 
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10 MEMORY AND SCALABILITY ISSUES 

One point to mention here is the memory limitation posed 
by data structure design. With the initial cell class defini-
tion, each instance of the cell object has 4 float variables 
(W and M values for private and public access) and 
1boolean variable (cell dead or alive). The maximum num-
ber of cells that can be statically declared at the beginning 
of the program is about half a million because of the lim-
ited memory available on the stack. Since the requirement 
is to simulate at least a million cell objects (~ 220), we con-
sider the following improvements: 

 
1. Shift to dynamic memory allocation in which case, 

we would have to create a cell object every time a 
cell division event occurred and destroy one, every 
time a cell death event occurred. Traversing a 
linked list of more than a million cells at every time 
step is highly inefficient. This shift would be quite 
costly in terms of resources and effort. 

 
A way around this problem is to declare the array 
of objects in the heap instead of on the stack.  

 
i.e., instead of declaring: 
 
// This allocates memory on the stack 
Cell cell[MAXCELLS];  

 
declare this way: 
 
// This allocates memory on the heap 
Cell *cell; 
cell = new Cell[MAXCELLS];  

 
In this case, the number of cell objects 

(MAXCELLS) is limited only by the amount of 
available secondary memory on the computer. 
This imposes an additional overhead on the pro-
gram, as it now has to handle more of segmenta-
tion issues than before to get cell objects between 
main and virtual memory to perform operations.  

 
2. Reduce the memory requirements of each cell ob-

ject so as to hold many more cells. We achieved 
this by eliminating two private float variables to 
save W and M values for each cell. The model is 
still intact since we have the two public variables 
that undergo changes as events occur at every 
time step.  

11 CONCLUSIONS AND FUTURE WORK 

Results: We present a simplified model of mtDNA drift in 
blood stem cells. The main result of the model is that long 
times between divisions allows the mtDNA mutation levels 
to increase beyond the threshold for cell death. Hence, such 
population of cells will show a decrease in mutation level as 
more and more cells die. On the other hand, the drift in mu-
tation level introduced by rapidly dividing progenitor cells 
yielding millions of blood cells is negligible. All cells result-
ing from a single progenitor cell would have nearly identical 
mutation level i.e., the variation in the M level occurs mainly 
due to time and not due to rapid cell divisions.  

Simulation run times: The current stem and progeni-
tor cell simulation models take approximately about 4.5 
hours each to complete on a Intel P4 2.4 GHz processor 
with 256 MB RAM. The stem cell model is set to run for 
100 years and the progenitor cell is set to expand to about 
12 million cells. We note that the model design is highly 
amenable to parallelization to achieve faster simulation for 
even larger numbers of cells for even longer durations.  

Model complexities: The cell object can be made 
more complex to include other cellular compartments 
and/or the model can be applied to a growing cell culture 
or an embryo. The blood stem cell model can be extended 
to include the various types of specialized blood cells that 
could be produced such as erythrocytes, platelets, etc. The 
model is easily adaptable to other stem cell types.  

Model extensions and applications: Incorporating 
the actual mtDNA sequence data in the model and apply-
ing a particular mutation could be one of the extensions of 
the model. One question that such a model would help us 
examine concerns the idea that mtDNA with large deletion 
mutations would take less time to replicate than wild-type 
mtDNA since the number of base pairs replicated would be 
much less. Preimplantation Genetic Diagnostics (PGD) 
for advising gravid couples regarding genetically inherited 
mitochondrial diseases (Dean et el., 2003). Since cancer 
involves uncontrolled proliferation of cells (Byrne and 
Preziosi 2003), an extension of our current model can be 
used to examine specific questions about the characteristics 
of cancer cells and the role of mitochondrial mutations in 
cancer (Breward, Byrne, and Lewis 2003). Apoptosis or 
programmed cell death, which has sparked (or renewed) 
significant interest in the recent past can be studied by ex-
tending the current model. Cancer can be thought of as a 
condition where cell death fails to occur at a reasonable 
rate with cell proliferation occurring at normal pace. Un-
derstanding the two in tandem will give valuable insights 
into the basic science of apoptosis in cancer cells. 
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