
Proceedings of the 2004 Winter Simulation Conference 
R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.. 
  
 
 

AUTONOMOUS PREDICTIVE-ADAPTIVE SIMULATION FOR OPERATIONS SUPPORT 
 
 

Peter C. Bosch 
 

Highpoint Software Systems, LLC 
S42 W27451 Oak Grove Lane 
Waukesha, WI 53189, U.S.A. 

 Majdi Rajab 
 

M-Solutions, Inc. 
15718 Island Grove 

Houston, TX 77079, U.S.A. 
   
   
ABSTRACT 

This paper describes a simulation system that monitors op-
erations on a production floor, periodically creating a 
model of those operations, and running a simulation that 
predicts the next several shifts’ worth of events, providing 
operators with new predictive analysis capabilities.  
 As a set of procedures is carried out in the model and 
the real world, deviations are introduced by the variations 
between the expected activities and the actual occurrences. 
More deviations arise from explicit adaptations undertaken 
by operations staff in response to already-observed anoma-
lies. With each cycle, those deviations are integrated into 
the model, heuristics are applied to estimate the likely fu-
ture course of events, and after a simulation run, a new set 
of predictions is generated from that model, and it com-
pares the new predictions with the last run’s predictions. 
Differences between the pre-loop prediction and the post-
loop prediction serve to indicate whether the situation is 
improving or degrading. 

1 INTRODUCTION 

Simulation is often used for strategic decision making, be-
cause the cost of collecting the necessary data, creating and 
validating the model, running the simulation, and then in-
terpreting the results can be weighed against the larger 
benefits that are realized from a strategic decision. 
 Tactical simulation (simulation of fine-grained opera-
tions) has received less attention because the savings to be 
reaped from a given tactical decision are usually signifi-
cantly less than for a typical strategic decision, and the 
costs must still be borne for the creation, configuration and 
provisioning of the model. 
 The equalizer in these economics, though, is that there 
are many more decisions made in day-to-day operations 
than at the strategic level. If the cost of creation and con-
figuration can be amortized across a large number of such 
decisions, the expense of creating such a model can be far 
offset by the multitude of smaller gains resultant from 
many better-informed decisions. 

 

 The challenge that must be met in order to reap a posi-
tive financial return from such an effort is two-fold. First is 
that of developing a modeling system that can integrate 
with on-line data sources. To avoid the cost of implement-
ing the necessary services, some or most of the data 
sources should probably already exist, or be a planned up-
grade apart from the modeling effort. These data sources 
should be rich enough to establish the current state of the 
model (including resources and their current states), the 
current procedures in progress (and in what stages those 
procedures currently exist), and to provide a reasonable as-
sessment of anticipated future procedures. Second, the sys-
tem must be able to use all of that information to build a 
reasonable model (especially in the face of frequently-
changing plans,) run the model, and report on the results of 
that simulation in a manner that average operators can 
readily understand, and act upon.  
 This paper describes such a system, including both the 
generalized framework we built to solve the abstract prob-
lem, and the specific implementations we layered on top of 
that framework. The whole system runs on top of the 
HighMAST framework we described in (Bosch 2003). 
 In section 2, we will describe the thought that went 
into making the business case for this application, and 
where else we might see similar justification. In section 3, 
we present a big-picture representation of the system, in-
cluding interactions with surrounding subsystems, and the 
simulation’s lifecycle. In sections 4, 5, and 6 we will dis-
cuss the surrounding infrastructures we leveraged from the 
areas of manufacturing recipe modeling, data feeds from 
execution systems such as automated control systems, in-
ventory management systems, material tracking systems, 
and the ancillary systems such as scheduling and material 
inventory systems. In section 7, we will describe the 
anomalies that can arise to complicate the matter of creat-
ing a new tactical model, followed by section 8, where we 
we will describe the mechanism we used to blend the pro-
duction plan, the execution system data and the stored 
manufacturing recipes into a tactical model for simulation. 
In section 9, we discuss the framework for running the 
newly-created model. In section 10 we describe how we 

  



Bosch and Rajab 

 
interpret the data, and in section 11, we describe the bene-
fits we expect to see in the coming months from operations 
based on this system. Finally, in section 12, we will sum-
marize the system with its inputs, transformations and  
outputs and describe some of the future efforts and feature 
growth we expect in this system. 

2 THE BUSINESS CASE 

There are three key aspects of a decision to undertake a 
project of this nature. These are (1) political environment, 
(2) technical achievability and (3) expected value. 
 The question of political environment is one not to be 
taken lightly, although we will not delve deeply into the 
subject here. An organization should be at least tolerant of 
change, with a majority of key stakeholders on board with 
the remaining two criteria. Project management must be 
politically skilled. 
 Technical achievability hinges primarily on there be-
ing existing systems in place, or planned, that can be inter-
faced to and depended upon for reasonably clean data 
feeds indicating current system status. In a manufacturing 
operation, this would imply a networked execution system, 
as well as probably a networked inventory control and/or 
material handling system and at least an electronic produc-
tion schedule. In a hospital operations implementation, it 
would imply a networked bed control system, as well as 
perhaps an admissions and equipment management system. 
In addition, standard operating procedures need to be de-
finable in a manner such that they can be used piecemeal to 
synthesize a model that may consist of many already-
running partial procedures. This enables us to use a single 
recipe as not only a template for an entire batch or proce-
dure, but as a source for many mini-templates for reordered 
and repeated executions of subparts of the whole. We have 
found that for a manufacturing application, at least, a hier-
archical task graph is well suited to this requirement. 
 Against the cost of implementing this project we ex-
pect to see primary benefits in the areas of increased shift 
productivity, increased product quality, improved planning, 
and a central point of connection for a range of tools that 
will serve to decrease the level of chaos inherent to a large 
and busy manufacturing floor. See section 11, Expected 
Benefits, for a more in-depth treatment of these benefits. 
 There is a class of operational areas that are well-suited 
to this approach. These are the areas in which similar, but 
not identical, procedures are executed many times over, 
most interestingly, with overlapping effects in such areas as 
equipment and material utilization. These procedures need to 
have a scope that is large enough that an average operator 
either cannot easily visualize the effects of local decisions 
(such as allocating a piece of equipment in a large manufac-
turing operation) or does not have all of the data necessary to 
support an optimal decision (such as supporting staffing or 
procedural decisions in the context of a large hospital.) 
 Current systems in many of these areas are character-
ized by reliance on a few “expert” operators or analysts 
having enough “horse sense” to (often orthogonally to 
complex documented procedures) do the right thing most 
of the time.  The primary pitfall to this reliance is the fail-
ure to realistically institutionalize knowledge and situ-
ational awareness & monitoring. The opportunity cost of 
not being able to move these experts up the food chain to 
higher-level decision making, whether tactical or opera-
tional, is high, and the impact of losing such an expert (to a 
variety of loss scenarios) is even higher. Furthermore, put-
ting in place a system that encourages thorough monitoring 
of an operational process is very likely to move the host 
organization strongly in the direction of higher process dis-
cipline, visibility, quality and controllability. 

3 THE BIG PICTURE 

Figure 1 below shows a representation of a generic system 
of data and behavioral sources surrounding the core en-
gine, and closely parallels the structures of our manufactur-
ing implementation as well as our healthcare prototype. 
 

Operational System 

Execution Plan
(Production
Schedule)

Progress Data
(Control System 

Data Feeds)

Standard 
Procedures
(Production 

Recipes)

World Status
(Inventory 

Control System)

What needs to be 
accomplished?

How much is already 
accomplished?

How do we do what 
needs to be done?

What resources are 
available to use?

Survey
Synthesize
Simulate
Predict

Repeat...

External
Update

External
Update

External
Update

External
Update

History 
Provisioning

 
Figure 1 : System Topology 

 
The central block, annotated “Survey / Synthesize / 

Simulate / Predict” reads the production needs, current op-
erational progress and resource availability as well as a li-
brary of standard manufacturing procedures. From these, it 
constructs a model representing the current state of the op-
erational system. It then performs one or more simulations 
using that model (enabling a Monte Carlo analysis,) and is-
sues predictions on upcoming behaviors, conditions or per-
haps limitations. A rules engine may be used to issue rec-
ommendations for corrective actions. This cycle is repeated 
as frequently as necessary to present meaningfully changing, 
but still timely, updates in predictions. In the current imple-
mentation of our production system (large, site-wide phar-



Bosch and Rajab 

 
maceutical manufacturing operations), we perform 10-15 
cycles per hour, although the system performance would 
support updates at ten to twenty times this rate. 
 The system runs on a server, displays in a control 
room, and is monitored by shift supervisors. The display 
summarizes the activities and their timing or relationship to 
the critical path, as well as predicting material outages, 
equipment bottlenecks and staff tasking. 

4 RECIPE MODELING 

A campaign is a sequence of batches whose aim is to pro-
duce a desired quantity of a given product. Generally, a 
batch runs according to a given recipe, though recipes may 
change in subtle ways during the execution of a single batch. 
We represent a recipe as a hierarchical task graph, with the 
recipe as the root-level task, registered with the model’s ex-
ecutive to be commenced at a given time, or per a given de-
pendency, probably with another batch. The units, abstractly 
representing equipment, act as containers for equipment task 
sequences, and are represented in parallel under the recipe. 
The equipments’ task sequences are in parallel under the 
unit, with the  tasks in sequence under each unit. Tasks may 
be hierarchical, with several subtasks required, perhaps, in 
order to accomplish a super task. See Figure 2 below for a 
representation of this structure. 
 

Recipe #4

Op 4.1.1

Unit 4.1

OpStep
1.1.1.2

Op 4.1.2

OpStep
1.1.1.2

OpStep
1.1.1.2

OpStep
1.1.1.2

Op 4.2.1

Unit 4.2

OpStep
1.2.1.2

Op 4.2.2

OpStep
1.2.1.2

OpStep
1.2.2.2

OpStep
1.2.2.2  

Figure 2 : Recipe Structure 
 
 Synchronization and sequencing are handled by special 
constructs that are part of the task graph, and may be applied 
to units, tasks or subtasks. Start and finish timing for any 
task, if known, can be attached to that task. Since the recipe 
is represented as a directed acyclic graph, it can be analyzed 
for critical path and related timing data. Loops and branches 
are unrolled, so that the analysis may still be performed. 
 In theory, each recipe can host multiple simultaneous 
batches (execution instances), since the recipe is stateless 
and the batch is the container of state (Gamma 1995). We 
employ this approach in the scheduling and model design 
aspects of the application suite, but chose not to do so in 
the shift view application itself. This is because in shift 
view, a given model may contain multiple variations in 
recipe structure within the same campaign, and even within 
the same batch. It was simpler to provide each batch with 
its own recipe, when there was the possibility of each be-
ing different anyway. 
 A model may contain many batches running against 
many recipes, as well as many resources and resource pools, 
material types, reaction definitions and pieces of equipment, 
all of which, together, represent the states of the plant, the 
product and the process. See Figure 3 below for details. 
 

Batch Population

Batch 001

Batch 002

Batch 003

Batch 004

Batch 005

Batch 006

Recipe Library

Resource Pool Collection

MatlInv
1

MatlInv
2

MatlInv
3

RscPool
1

RscPool
2

Eq1

Eq2

Eq3

Eq4

Eq5

Eq6

Eq7

Eq8

 
Figure 3 : Principal Model Participants 

 
 Individual behavioral objects perform resource alloca-
tion & release, material transfers, enable chemistry and 
thermodynamics calculations, and impose certain dictated 
or calculated time delays. Tasks of different types orches-
trate these behaviors according to differing protocols. 
There are currently four different types of tasks, all built on 
the HighMAST task graph object model. 

5 MANUFACTURING CONTROL SYSTEMS 

In the last 10 years we have witnessed major growth in op-
erations and execution management systems in many indus-
tries. This has had the positive effect of moving execution 
data from the paper to the digital medium. Figure 4, below 
shows a typical taxonomy of such digital information.  

Furthermore, several market drivers have convinced 
many industries to standardize the format of their execu-
tion data through consortiums. Example market drivers are 
the need to exchange execution data between multi-vendor 
systems and the need to consolidate execution data from 
multiple vendors to feed higher level management systems. 
Examples of such standards are ISA’s S88 and S95 [ISA 
SP88] which provide general formats for batch manufac-
turing production records. The standards define abstract 
data entities such as campaigns, batches, procedures, op-
erations, materials and equipment.  

In this paper we will examine execution data that is 
typical for a chemical multi-product batch manufacturing 
operation. 



Bosch and Rajab 

 

A tactical simulation solution must be able to consume 
two main types of data from such a system: 1) Batch Rec-
ipe Data; and 2) History Data. The following is an example 
diagram that shows the major components of a recipe: 
 

MASTER RECIPE
<Header>
<Formula>
<Equipment Requirements>
<Other Information>
<Procedure>

MASTER RECIPE
<Header>
<Formula>
<Equipment Requirements>
<Other Information>
<Procedure>

UNIT PROCEDURE
<Header>
<Formula>
<Equipment Requirements>
<Other Information>
<Procedure>

UNIT PROCEDURE
<Header>
<Formula>
<Equipment Requirements>
<Other Information>
<Procedure>

UNIT PROCEDURE
<Header>
<Formula>
<Equipment Requirements>
<Other Information>
<Procedure>

UNIT PROCEDURE
<Header>
<Formula>
<Equipment Requirements>
<Other Information>
<Procedure>

OPERATION
<Header>
<Formula>
<Equipment Requirements>
<Other Information>
<Procedure>

OPERATION
<Header>
<Formula>
<Equipment Requirements>
<Other Information>
<Procedure>

OPERATION
<Header>
<Formula>
<Equipment Requirements>
<Other Information>
<Procedure>

OPERATION
<Header>
<Formula>
<Equipment Requirements>
<Other Information>
<Procedure>

PHASE
<Header>
<Formula>
<Equipment Requirements>
<Other Information>
<Procedure>

PHASE
<Header>
<Formula>
<Equipment Requirements>
<Other Information>
<Procedure>

 
Figure 4 : Execution System Data Taxonomy 

 
Execution System history data can be divided into six 

general categories – examples of the contents and format 
of each data record follow: 

 
a) Equipment Measurements 

 
 
b) Batch Events 

 
where # is a sequence number 

 
c) Control System Alarms 

 
 
d) User Actions 

 
 
e) Equipment Failure Events 

 
 
f) Material Records 

 
 

 Each of these records is expressed differently with dif-
ferent standards, lately, typically in a text stream contain-

TimeStamp LotID 

TargetEquipmentID 

UserID MaterialID 

Quantity 

TimeStamp EquipmentTag FailureID FailureString 

TimeStamp EquipmentTag ActionString UserID 

TimeStamp EquipmentTag AlarmString 

TimeStamp RecipeID 

ProcedureID:# 

UserID UnitID 

OperationID:# 

PhaseID:# 

TimeStamp EquipmentTag Value Quality 
ing snippets of XML such as Batch Markup Language 
(World Batch Forum 2003). Legacy systems are typically 
constructed of proprietarily-coded packet streams. 

6 ANCILLARY SYSTEMS 

The systems deemed ancillary to this project are the sched-
uling and material inventory systems. They are helpful to 
the goals of the project, but neither are they critical, nor do 
they have a great effect upon the architecture or execution 
path of this project. 
 The scheduling system is a portion of a large applica-
tion that is used to create a master production plan, with 
information on campaigns, batches, and material consump-
tion & production. The schedule also contains macroscopic 
expectations of start and finish times – that is, such times 
are specified to the batch level. This system is considered 
ancillary because it stores the schedule to a database, and 
our provisioning infrastructure reads from that database – 
therefore we need not integrate with the scheduling system, 
and for our purposes, anything from a spreadsheet to a 
commercial ERP package could serve our needs with re-
spect to scheduling. 
 The material inventory system is considered ancillary 
because while it is not strictly a part of the execution sys-
tem, its functionality is a part of the execution system data 
feed. The data feed, where possible, decorates the control 
events with the material quantities it can read from the ma-
terial inventory system. Without the material inventory 
systems, we might lose some of the benefits of predic-
tive/adaptive simulation, but we would still be able to 
achieve most of its goals. 

7 COMPLICATING FACTORS 

Recall from Figure 2 that a recipe is a hierarchical struc-
ture of tasks that take time, but some of which may pro-
ceed in parallel. A schedule has a similar structure, as seen 
in Figure 5 below (we represent the detail under one cam-
paign only, for the sake of the diagram’s size.) This simi-
larity allows us to represent the entire schedule as a hierar-
chical structure with entities ranging from “Schedule“ at  
 

Manufacturing Campaign-A

Batch A1

Batch A2

Batch A3

Batch A4

Batch A5

Batch A6

Recipe Aa

Recipe Ab

Manufacturing Campaign-B

Manufacturing Campaign-C  
Figure 5 : Schedule Structure 



Bosch and Rajab 

 
the root, all the way down to “operation steps” at the bot-
tom (leaf nodes). Each entity has a start and finish time 
(milestone). When a milestone is past (i.e. it has already 
occurred in the plant, and we have control data for either it 
or a successor,) the time represents a historically observed 
or inferred time. If it is a future milestone, the time repre-
sents a predicted time.  
 We must track these data points from one run of the 
simulation to the next. We chose to represent this as two 
separate hierarchies, mirroring the schedule structure. In 
these two hierarchies, the planned and observed structures 
exist separately. In summary, there is a hierarchical struc-
ture to a recipe, a hierarchical structure to a schedule (each 
of which references one or more recipes) and a pair of hi-
erarchical data structures that mirror the schedule structure, 
for tracking time data. 
 Figure 5 describes the first, and largest, complicating 
factor of the system. Since recipes can be modified while a 
batch is in process (notice batch A.4, which starts out run-
ning on recipe Aa, and mid-run, switches to recipe Ab) our 
builder needed to be able to construct a model using parts 
of two different recipes in the same batch. 
 Another complicating factor arises from the fact that 
we do not know a priori the number of times a looping op-
eration (such as a titration/sample loop) will execute. 
Therefore we may unexpectedly branch or not branch, and 
must be able to correctly construct the model in the face of 
such historical data. 
 The final, and most intricate requirement is that the 
model construction must gracefully react to unexpected 
presence or absence of history data. User domain analysis 
led to the following rules. 
 

1. If  an additional, unexpected instance of a past op-
eration is the last observed historical event, it is to 
be executed, but considered an aberration. The pre-
dicted execution path is to continue with the next 
operation following the last expected operation. 

2. If an unexpected instance of a future operation is 
the last observed historical event, it is to be exe-
cuted, and considered an ad-hoc jump forward. 
The predicted execution path is to continue as 
though the jump forward were planned. This ac-
commodates the overt jump forward, as well as an 
apparent (but erroneous) jump forward due to 
missing data. 

3. Expected operations, whether the result of a linear 
execution, or a loop or branch, simply serve to ad-
vance the pointer to the next expected operation. 

 
Note that historical events define the observed execu-

tion path – it is only the last observed event (and the state 
of the expected events list) that drives the predicted future 
execution path. In the case where a predicted future path is 
incorrect, two eventualities preside – first, the next update 
of the system will have more history data, and therefore 
may more reasonably predict the future, and second, addi-
tional rules are relatively easy to inject into the algorithm, 
so as we observe and learn, we can update the algorithm.  

8 MODEL SYNTHESIS 

Figure 1 depicts a central box containing the label, “Sur-
vey, Synthesize, Simulate, Predict.” This section describes 
the manner in which the system surveys the current state of 
the system, and synthesizes a model. The model it creates 
represents a time slice from very recent past to some time 
in the future, in which the modeled state associated with 
current time will closely represent that of the real world 
under study. This allows the user of this model to treat the 
progression from the current time forward as a prediction 
of near-term plant conditions. 
 The problem of model synthesis is at the heart of this 
system. There is a set of recipes, each of which represents an 
ideal process for manufacturing a product. There is a stream 
of control system data that represents what is really going on 
in one’s plant. There is a production plan that represents the 
way we would like to apply our recipes to a set of produc-
tion goals. How do we merge them together into a single ex-
ecutable model that can predict with reasonable accuracy, 
the near-term future activities in the plant? We will examine 
first the structure of these data, and then the algorithm ap-
plied to synthesize the model from them. 
 The ShiftViewBuilder reads the schedule as a series of 
milestones. With each starting milestone of a batch, a data-
base is consulted and the nominal start and finish times of 
each of the constituent tasks in that recipe are read. The 
milestones are reflected into the schedule with the appro-
priate offsets contributed by the starting time of the batch 
in question, such that the result is an interlaced sequence of 
milestones, each of which refers to its campaign, batch, 
recipe, unit, and task of origin. 
 The execution system produces a similar data stream, 
with three exceptions. First, there is a range of data points 
also provided that represent physical system parameters such 
as the mass or temperature of material in a vessel or inven-
tory point. Second, the data stream proceeds only up to the 
current time, and third, the milestone times represent actual 
observed times, rather than nominal calculated times. 
 The third data source used in the generation of a model 
is the recipe. While the execution of a recipe can involve 
cycles, recipes are a hierarchical task graph which is a di-
rected acyclic graph. Each node represents a milestone, and 
each edge represents a task with duration, and that usually 
affects system state. Cycles are represented as decorations 
on tasks detailing branch targets & typical branch counts. 
 Each unit and each task in a recipe can be reconsti-
tuted separately, and its relationships reestablished by the 
ShiftViewBuilder. Relationships are represented by an or-
dered list of participants’ version independent unique iden-
tifiers (VIIDs), and a relationship type. 



Bosch and Rajab 

 
 The ShiftViewBuilder runs the following algorithm. 
 

// First, process history. 
foreach ( IEvent evt in history.Milestones ) { 
    SequenceBuilder sb =  
      GetSequenceBuilder(evt); 
    sb.Process(evt); 
} 

 
 Each SequenceBuilder is responsible for assembling a 
sequence of tasks that, along with its relationships, is inte-
grated into the final model. Sequence builders maintain a list 
of expected tasks, an under-construction recipe sequence 
(which will eventually be merged into the actual execution 
model), and the VIID of the recipe that contains the se-
quence it is modeling. A sequence typically corresponds to a 
given piece of equipment, and the operations that run on it. 
 With the GetSequenceBuilder(evt) method above, the 
ShiftViewBuilder retrieves the SequenceBuilder that corre-
sponds to the recipe and sub-recipe (i.e. sequence) to 
which the historical event belongs. If the SequenceBuilder 
does not yet exist, it is created and initialized.  
 Initialization of a SequenceBuilder involves reading the 
sequence steps from the stored recipe, creating an empty list 
to contain executable operations as they are created, and cre-
ating a list of expected operations. It is in the reading of the 
recipe and the creation of this list of expected operations that 
loops are unrolled and branches speculatively executed. This 
means that upon completion of model construction, that the 
model is still a directed acyclic graph, against which critical 
path analysis can be performed. The list of expected opera-
tions is equipped with a cursor, initially pointing at the first 
element in the list, that represents the next expected opera-
tion. This cursor moves as historical events are observed, 
and is used to predict the future course of events, once no 
more historical data exist. 
 Once created and initialized, the SequenceBuilder 
executes the following code on each event: 
 
// - SequenceBuilder.Process(IEvent event) -  
if ( IsRelevant(evt) ) { 
 if (RecipeChanged(evt)) { 
  LoadAndSyncNewRecipe(evt); 
 } 
 
 if ( AccordingToPlan(evt) ){ 
  // History unfolding according to plan. 
  m_rsuc.Add(NextPlannedOperation()); 
  AdvanceNPECursor(evt); 
 } else if ( FailedToJump(evt) ){ 
  m_rsuc.Add(GetOperationForEvent(evt)); 
  AdvanceNPECursor(evt); 
 } else if ( JumpedBackward(evt) ) { 
  m_rsuc.Add(GetOperationForEvent(evt)); 
 } else if ( JumpedForward(evt) ) { 
  m_rsuc.Add(GetOperationForEvent(evt)); 
  AdvanceNPECursor(evt); 
 } else { 
  // Report an error. 
 } 
} 

 
 The SequenceBuilder only reacts to events that contrib-
ute to the building of the recipe – this filters out extraneous 
events such as valve operations, data reads, and other sub-
operations that, while relevant to the stream of operations, 
are below the level of what is modeled in our system. 
 Once it has determined that an event is relevant, the 
first thing the SequenceBuilder does is to check the recipe 
that originated that historical event, and if it has changed 
from the one that originated the last observed event, loads 
the new recipe. Loading a new recipe basically consists of 
deleting events from the expected events list that have not 
been read from history, and replacing them with the corre-
sponding events from the new recipe. 
 The recipe sequence under construction always re-
ceives a new operation, corresponding to the history event 
that was just read. The sequence builder then determines if 
the new history event represents the expected train of exe-
cution (the observed event matches the expected event, 
which is the event under the cursor in the list of expected 
operations.) If it does, then that cursor is advanced. 
 Once all history events have been read, the model has 
been constructed up to the representation of current time in 
the real world. At this point, each SequenceBuilder is di-
rected to complete its sequence, which involves creating one 
executable operation at a time from the template operation in 
the expected operations queue, until no more operations re-
main. At this point, all sequences contain a mix of observed 
historical, and best-guess anticipated future, events. 
 The final step is for the ShiftViewBuilder to reconcile 
relationships between sequences – these represent transfers, 
charges, discharges and other similar relationships. They are 
provisioned into the model as a simple token exchange pro-
tocol, where a token is offered and subsequently accepted. 
The synchrony of the relationship is determined by whether 
the offering is a blocking operation or a non-blocking one. 

9 MODEL EXECUTION 

Once a model has been built, the next step is, of course, to 
execute it. This execution is performed by external control 
(a portion of the ShiftView application that is outside of 
our model builder), but the current algorithm controlling 
that execution is that the model re-runs every five minutes 
unless there is new historical data since the last synthesis 
was begun. A synthesis/execution cycle may not be inter-
rupted by new data. This way, a model does not become 
stale in the presence of no activity (which may signal an 
issue, if activity was expected), but it also does not thrash 
in the face of a steady stream of data arriving. This cycle 
may be throttled by specifying that synthesis may not be-
gin until, for example, at least three minutes after the last 
cycle began. This algorithm is encapsulated so that it may 
be easily modified or replaced. 

10 DATA INTERPRETATION 

After a model has been executed, the next task is to corre-
late the newly-predicted milestone times with those same 
times as they were predicted in the last iteration. Since the 



Bosch and Rajab 

 
model is hierarchical, and each element has data associated 
with it, a tree structure is used to hold timing data. We use 
two such structures, one to represent the times that we plan 
(or planned) to reach the milestone, and one for the ob-
served time that we actually did reach the milestone. 
 After a simulation run, we populate the tree structure 
with the new data, and record also into the milestone data 
the change we observed in the time the milestone was 
reached from the last simulation run to this one. 
 The two trees are tied together by a binder that allows 
us to iterate through the trees in time sequence, pulling data 
from the historical tree, switching to the predicted tree as the 
model time passes current world time. This construct makes 
it easy to visualize the entire timeline as one, from both the 
observed history and the predicted future perspectives. 

11 EXPECTED BENEFITS 

The primary benefits we expect to see are threefold: 
 

1. Increased shift productivity.  Knowing what is 
coming up ahead of time enables better human 
and equipment resource planning.  Also having 
shift targets improves accountability of shift per-
sonnel to the production goals. 

2. Increased quality.  Having a mechanism to identify 
“critical path” tasks in order to focus resources on 
those tasks enables manufacturing to become more 
consistent which leads to better quality. 

3. Improved planning.  Having a mechanism to iden-
tify in real-time when a production slow-down has 
impacted a future delivery date will enable planners 
to have more time to develop alternative plans.  
The sooner the scheduling problem is identified the 
easier and cheaper the problem is to deal with. 

 
 An additional class of benefit that parallels, rather than 
leverages, the simulation aspects of this system is that of 
providing a point of chaos reduction. 
 Chaos reduction represents the fact that there is one 
well-engineered central point of information and connec-
tion for shift changeover expectations (the predicted event 
stream) & notes, staff task assignments (through an elec-
tronic work instruction system), and material tracking and 
a host of other data management systems. 
 Benefits that could also be realized in a system of this 
type would come from situations where a what-if decision 
must be made in response to an exception case. In our 
healthcare prototype, we are exploring using a set of simula-
tions to explore the cost effectiveness and supportability of 
each event path associated with a specific class of decisions. 

12 SUMMARY AND FURTHER READING 

ShiftView represents a new simulation paradigm, wherein 
a simulation engine, integrated with an execution system, 
is used to provide a continuously adapting and updating 
prediction of a near-future train of operations. With this 
foundation, operations personnel can react to developing 
situations before they become critical, or sometimes before 
they even become visible. 
 ShiftView is built on the HighMAST™ library. This 
library represents an acknowledgment that simulation de-
velopment and application development are often one and 
the same, and takes a significant step toward bringing 
simulation development up to the state of the art in applica-
tion development. 
 For more information on ShiftView or HighMAST™, 
please visit <http://www.highpointsoftware. 
com>. 

REFERENCES 

Bosch, Peter. 2003. Introduction to HighMAST. In Proceed-
ings of the 2003 Winter Simulation Conference, ed. S. 
Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, 

1852-1859. Piscataway, New Jersey. Institute of Electrical 
and Electronics Engineers. 

Gamma, E., Helm, R., Johnson, R., Vlissides, J. 1995. De-
sign Patterns. Reading, MA:  Addison-Wesley. 

Instrumentation, Systems & Automation Society. 2002. 
ISA-SP88 Batch Record Specification Draft 5 [online]. 
Available online via <http://www.isa.org> 
(Accessed August 22, 2004). 

World Batch Forum. 2003. Batch Markup Language Ver-
sion 02 [online]. Available online via <http:// 
www.wbf.org>  (Accessed August 23, 2004). 

AUTHOR BIOGRAPHIES 

PETER C. BOSCH is a founder of Highpoint Software 
Systems, a small and attentive decision-support technology 
firm in the upper Midwest. He holds a BSEE from the 
State University of New York, and is a Certified Java De-
veloper and Microsoft Certified Solution Developer. Pete 
has published numerous technical articles on object-
oriented development in these environments. Pete has been 
designing and building simulations since 1991 for Fortune 
100 firms in aerospace, medical imaging, pharmaceutical 
manufacturing and investment banking.  He has been lead-
ing large software projects since 1995. 

MAJDI RAJAB is a senior associate with Highpoint 
Software Systems, and the managing director of M-
Solutions, Inc, a firm that specializes in several types of 
software development, including .Net application and 
component development. Majdi holds a Bachelor’s degree 
from the University of Liverpool, and a Master’s degree in 
Management Science from the University of Texas. Majdi 
has more than 15 years’ experience in software, much of it 
in the areas of industrial process automation & control and 
distributed systems architecture. 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 2018
	02: 2019
	03: 2020
	04: 2021
	05: 2022
	06: 2023
	07: 2024


