Proceedings of the 2004 Winter Simulation Conference

R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters,

eds.

AN EVENT GRAPH BASED SIMULATION AND SCHEDULING ANALYSIS
OF MULTI-CLUSTER TOOLS

Shengwei Ding

Dept. of Industrial Engineering and Operation Research
University of California at Berkeley
Berkeley, CA 94720, U.S.A.

ABSTRACT

Simulation methods are extensively used in modeling com-
plex scheduling problems. However, traditional layout of
simulation models can become complicated when they are
used to find optimal scheduling in complex systems such
as multi-cluster tools for semiconductor manufacturing. In
this paper, we study a decision-moving-done method of
event driven simulation for multi-cluster tools. Based on
this method, we are able to manage all the activities in
the simulation. The proposed event graph based simula-
tion study can further be integrated into a pruning search
algorithm to find the optimal robot scheduling sequence.
Incorporated with simulation model, the search algorithm
detects deadlocks and significantly reduces the computing
time. A chemical-mechanical planarization (CMP) polisher
is used as an example of the multi-cluster cluster tools to
illustrate the proposed event graph based simulation and
scheduling analysis.
1 INTRODUCTION
Cluster tools are widely used in semiconductor manufac-
turing. In general, a single-cluster tool consists of one
or more cassette and process modules and normally one
transfer module (Figure 1(a)). Cassette modules store the
unprocessed and processed wafers and process modules ex-
ecute the semiconductor manufacturing processes, such as
deposition, etching and chemical-mechanical planarization.
Transfer modules (such as single-blade and double-blade
robots) move the wafers among process modules and be-
tween process and cassette modules. Since wafers are pro-
cessed to produce the integrated circuits through multiple
sequential process steps, modeling analysis and scheduling
of cluster tools is critical to improve the production through-
put and enhance the design of processing equipments.
The scheduling of a cluster tool depends greatly on
the design and configurations of the tool. For example,
if there are two wafers to be picked and placed, the

1915

Jingang Yi

Lam Research Corporation
CMP/Cleaning Technology Division
Fremont, CA 94538, U.S.A.

moving sequences for a single-blade transfer robot can
only be pickl-placel and pick2-place2 in series. The
scheduling of such a robot configuration is straight-
forward and can be solved analytically. In contrast, a
double-blade robot can use the second blade (or arm) as
a buffer and therefore the pick/place sequences can be
varying. For the two wafer pick/place example, the robot
moving sequences could be pickl-pick2-placel-place2,
or pickl-pick2-place2-placel, etc. = Consequently, the
analytical study of schedules becomes complicated.
In Perkinson et al. (1994), Venkatesh et al. (1997), ana-
lytical models of steady-state throughput were discussed
for a single-cluster tool. To model the processes of
cluster tools, Srinivasan (1998) and Zuberek (2001)
used Petri nets to study the performance of semicon-
ductor manufacturing processes. Several researchers
have discussed the optimal scheduling for a single-
cluster tool with residency constraints on transfer and
process modules, for example, Rostami et al. (2001)
and Rostami and Hamidzadeh (2002). Simulation
of cluster tools also plays an important role to
study the throughput and optimize the process
and design. LeBaron and Hendrickson (2000) and
LeBaron and Pool (1994) discussed the use of ASAP
to simulate the cluster performance with emulate the
real-time cluster tool scheduler. In Dimmler (1999),
genetic algorithms are utilized to improve cluster tool
performance based on simulation study. Recently, event
graph modeling of cluster tools has been studied to accu-
rately capture the throughput and identify bottlenecks for
various configurations of the tool (Nehme and Pierce 1994,
Pederson and Trout 2002).

Most of above work discussed the single-cluster tool
configuration, namely only one robot is serving multiple
process and cassette modules. Figure 1(a) shows an example
of a single-cluster tool with a single-blade robot. The geom-
etry of the single-cluster tool is compact and analysis and
scheduling for such a tool is relative straightforward. For
a multi-cluster tool , several single-cluster tools have been

Ding and Yi

inter-connected through so-called pass-through-modules (or
buffer modules) in order to accomplish complicated wafer
processes. Figure 1(b) shows an example of a two-cluster
tool. For such a multi-cluster tool, wafer flow modeling
and scheduling is much more complicated compared with
the single cluster tool and analytical methods becomes dif-
ficult to solve such problems. It is challenging to simulate
such cluster tools since traditional simulation methodologies
consider the physical layout of the tool and a multi-cluster
tool brings a lot of complexity to the simulation model.

In this paper, we will introduce a highly abstracted
methodology to model, simulate and schedule the multi-
cluster tools. Event graph modeling approach is em-
ployed. We transmute all time consuming tool activities
into decision-moving-done cycles that drive the simulation.
Instead of detailed layout, event graph based simulation
model is very simple and can mathematically manage the
activities of multi-cluster tools. Based on such a simulation
model, a straightforward tree search method can be applied
to find the optimal steady-state scheduling sequence. The
fundamental period of cluster tools is calculated based on
the minimum cyclic period of all feasible scheduling se-
quences. Therefore the maximum steady-state throughput
can be achieved. A CMP polisher is used as an example of
the multi-cluster cluster tools to illustrate the event graph
based simulation and scheduling.

The paper is organized as follows. In section 2, we
discuss the event graph based simulation modeling for a
multi-cluster tool. Section 3 presents the analysis and
process scheduling for a multi-cluster tool based on the event
graph modeling. An example of the modeling analysis and
process scheduling is investigated in section 4 for a CMP
polisher. Computational reduction of simulation modeling
is also discussed through a model partition method in this
section. The concluding remarks are presented in section 5.

2 EVENT GRAPH BASED SIMULATION MODEL
2.1 Event Graph

Event graph based modeling and simulation were used for
semiconductor manufacturing. Pederson and Trout (2002)
discussed the applications of event graph simulation model
to the deposition cluster tools. Figure 2 shows an example
of the event graph simulation modeling. A discrete event
graph model consists of three elements: variables to rep-
resent the state of the model, events that will cause the
state of the model to change (such as A and B in Fig-
ure 2), and the causality relationships between these events
(“Statement 1” in Figure 2). Graphically, the events are
represented as nodes on a graph and the causality relations
are directed edges between the related nodes. Time delays
between events and the conditions needed for this edge to
be activated are noted on the edges. When an event is

1916

Process modules

Transport
modules Cassette

modules

(a)

Cluster #2

Transport
- modules

Cassette
modules

(b)
Figure 1: A Schematic of Cluster Tools, (a) Single Cluster
Tool, (b) Inter-Connected Multi-Cluster Tool

scheduled, it can receive arguments called parameters. In
the example given by Figure 2, event A will schedule event
B to occur ¢ time units in the future if “Statement 17 is
true when event A is executed. The scheduled event B
will be of type “i”. The ~-like shape on the edge indi-
cates that this is a conditional edge. The characteristic of
the event graph modeling allows sets of events with sim-
ilar characteristics to be modeled without having to have
duplicate nodes for each cluster (Nehme and Pierce 1994,
Pederson and Trout 2002).

In the following sections, we first use an example
of a single cluster tool to illustrate the methodology of
constructing event graph based simulation model. Then we
generalize the methodology for any multi-cluster tools. In
this study we assume that there are always wafers in cassette
module C that wait for processing and that there are always
spaces in cassette C to put wafers in (we use C;, i = 1,2

Ding and Yi

to denote cassette modules, and P; (Pj;), i = 1,---, N
to denote N process modules within a single cluster (jth
cluster).)

{Statement 1}

t

B

Figure 2: A Schematic of Event Graph Simulation Models

B
{type}

2.2 Event Graph Based Simulation Model: A Single-
Cluster Example

We consider an example of a single-cluster tool with two
process modules, P; and P», and a single-blade transfer robot
R as shown in Figure 1(a). We consider a single-visit, single
route wafer flow without any parallel processing modules. If
there exist multiple processing modules that achieve the same
process steps, the simulation model discussed in this section
should be similar. Denote the wafer flow as: C; — P, —
P, — C,, where the arrow stands for wafer transferring
by robot R. Figure 3 shows the simulation event graph
built for the single-cluster tool in Figure 1(a). In the graph,
each solid circle represents one event. For transfer action
event, such as “Cy — P;”, we represent one node in
the graph. For process action events, we represent them
by two nodes, one for process starting (e.g. “P; proc.”)
and another for process finishing (e.g. “P; done”). We
separate the process action events into two nodes because
this separation will help us simplify the event graph model
in following discussions. Connecting arrows without “~”’
sign represents a time-consuming activity. For example,
connection from event “C; — P;” to the event “P; proc.”
represents the activity that the robot takes one wafer from
C1 and put it to P;. A connection with a ~ represents a
conditional trigger of an event (or a decision making). For
example, the activity “P; done” may trigger an activity of
“P; — P»” if the robot R is available and module P; is
empty. Detailed conditions, CN Dy, --- , CN D7, are listed
in Table 1.

To manage all actions mathematically, we define the
state variables vector S(r) = [S;(z)] associated with all
transfer and process modules. A set of integer values are
assigned for each state variable S;(¢),i =1,--- ,N+1,to
represent the all possible state status at time ¢. Table 2 shows
the assigned values of state variables for the example of the
single-cluster tool. We also define the action index, denoted
as ACT, for all actions for all transfer and process modules.
Table 3 shows the values of ACT for all transferring and
processing actions discussed above for the example.

1917

t7 +1tg3 (Pr—Co

Figure 3: An Event Graph Simulation Modeling for the
Single-Cluster Tool Example by Figure 1(a)

In order to handle a more complex transfer actions such
as use of double-blade robots, we consider to further separate
the transfer activities into two actions: pick and place. With
this separation method, the event graph as shown in Figure 3
can be simplified as decision-moving-done cycles.

Table 1: Causality Conditions for the Example Tool

Label | From To Satisfied Conditions
Cy has wafers, R free

CNDi| Run |L1—C; P empty
CND»| Py done| P{— P, |P; finishes, R free, P, empty
CN D3| Py done|Py—C» P, finishes, R free
CN Dy| P, proc.|C1— Py R free, P; empty
CNDs| Cy out | Py— P»| R free, P done, P, empty
CN Dg| Py proc.|P,—C; R free, P, done
CND7| Cy out |Ci1— Py R free, P; empty

Table 2: State Variable Values S for the example of single-
cluster tool

Values S1 (R) S> (P1) S3 (P2)
—1 |In pick/place|In pick/place | In pick/place
0 Free Free Free
| Ready for Ready to Ready to
next action process process
2 In processing |In processing
3 Process done | Process done

All separated actions in an event graph (Figure 3) can be
categorized into three types: Decision, Move (or action), and
Done. The following steps can be employed to simplify the
event graph model in Figure 3 into a decision-moving-done
cycle shown in Figure 4:

1. All actions shown in Table 3 can be represented
by two types of nodes — a starting event “Move”

Ding and Yi

and ending event “Done”. We can always do so
because of action separation.

For each action index ACT, define a decision logic
LOG given by a mapping f : ACT — S as the
state values at which action ACT can happen.
Table 4 shows the state values when an action can
be triggered (“x” stands for any arbitrary value).
The decision logic can be represented by node
“Decision” in event graph.

At each node “Move” for action ACT, we update
the state variables S < S + AS(ACT), where
AS(ACT) is defined as the state change due to
ACT. Table 4 shows the values of AS(ACT) for
each action ACT for the example of the single-
cluster tool.

At each node “Done” for action ACT, we update
the state variables S by a mapping g(ACT,S) :
S x ACT — S. Table 4 shows the mapping
values of g(S, ACT) for each action ACT for the
single cluster example (“I” stands for an identity

mapping.)

Table 3: Action Labels for the Example of the Single-Cluster
Tool

ACT | Action 1\11\?1232 mn Flgi)?)ne Time #; (s)
1 Ci — R|C|— P; (pick)|C1— P; 5
2 R— P|Ci— P (ple) |C1— P 5
3 P proc. P; proc. P; done 30
4 Py — R|P1— P> (pick)| Pi— P> 5
5 R — P2 p1— P, (plc.) | P1— P, 5
6 P, proc. P, proc. P> done 35
7 P, - R|P,— Ly (pick)| P,— L, 5
8 R — C3| P,—C; (ple.) | C out 5

. ACT 14
' Run : D ACT

Figure 4: A Simplified Event Graph for Simulation of a
Cluster Tool

1918

2.3 Event Graph Based Simulation Model for Multi-
Cluster Tools

In the previous section, we described how to construct a
event graph simulation model for an example of a single
cluster tool. Using a similar method, we can build event
graph simulation models for multi-cluster tools as following
steps:

1. Define a state variables vector S that each of its
components is associated with each of processing
modules, blades of robots and buffer modules be-
tween two inter-connected clusters. Table 5 shows
some examples of state variable values for different
modules.

Define an action index variable ACT and assign
each action an index value for all transferring and
processing actions. Note that each action ACT has
been decomposed into two event nodes, “Move”
and “Done”.

Determine the decision logic mapping f : ACT —
S for each action ACT.

Construct the state change AS(ACT) of each action
value ACT for the node “Move”.

Construct the state update mapping g : SXxACT —
S for each action value ACT for the node “Done”.

The above event graph modeling method can be used to
handle random or deterministic timings with various process
configurations and any time horizon. Moreover, the decision
logic and state update mappings (such as these shown in
Table 4) can be automatically generated after we define the
state variables, action orders and causality conditions.

Table 4: Decision Logics Mapping f (“Decision”), State
Change AS (“Move”) and State Update Mapping g (“Done”)
for the Example Tool.

ACT 112|134 (5|6]|7]8
Decision S0]2 %[0 [5]=%]0]8
logic Sol O[O [1 |3 | % | % | % | *
fSTACT - S|S3| x| « | x| 00| 1]|3] %
Si|—1{=1|0|=1{=1| 0 |—-1|-1

AS S 0 |=1|+1|{+3] 0|0] 0|0
S5(0(0|0|0|—-1|+1|-3]0

State update (S;| 2 | O | I |50 |T1|8]0
mapping ST 113101 |1 |T1]|TI
gACT ->S|S| T |1 | T[T |1 |3]|]0]I

Correctly defining the state variables is an important
step in the above creation of the simulation model. We
can simply verify the correctness of the state variables val-
ues by following the regular process cycle. For example,
the state values for a process module follow a cycle of

Ding and Yi

0,—1,1,2,3, —1, and back to 0, which represents the ac-
tivity sequence: empty, place, start processing, processing,
finish processing, pick, and empty again, respectively.
With the simplified event graph model, we can simulate
the cluster tools given any scheduling rule. For example,
for the priority based scheduling rule (Jevtic 1999), we can
simulate the multi-cluster tools in following sequences:

Step 1.
Step 2.

Initialize state variable Sg.

Match and check the current state variable with
the decision logic mapping f(ACT).

If no action is executable, go to Step 4. If there is
a set of actions that can be executed, say actions
{ACT;},i =1, --- ,m,m € N, we then implement
ACTg, 1 <k < m, which has the highest priority
number, and update system variable S by state
change mapping AS(ACTy) (Table 4). After the
status change, we record the finish time of action
ACTy and save it into a stack. Go to Step 2.
Check the activities in stack that has started but
not finished yet, and move to the nearest finishing
time, finish the activity, and update the states S
according to mapping g(ACT) (Table 4).

If simulation time reaches, stop simulation; other-
wise, go to Step 2.

Step 3.

Step 4.

Step 5.

Table 5: State Variable Values for Multi-Cluster Tools

Modules Values Module status

-1 Busy

0 Ready to place a wafer
Process 1 | With wafers ready to process

In processing
3 |Process done; ready to pickup

—1 Busy
One-blade robot| 0 No wafer on, free for pick
i Ready for ACT =i
—1 Busy
Buffers between| 0 | No wafer on, ready to place
clusters 1 Wafer ready for cluster i
iand i+ 1 2 | Wafer ready for cluster i + 1

The merit of the event graph based simulation model is
twofold. First, all activities are abstracted and represented by
the same motion cycle: decision, moving, and done. Thus
the amount of events is significantly reduced and we can
simulate and handle many clusters in a systematic fashion.
Second, the whole simulation sequence is accomplished by
state checks and state changes on actions. These actions are
different only by labels. We can easily transmute the action
sequences and check the feasibility of the transmutation.
This feature will be further used to search optimal sequences.

1919

3 CLUSTER TOOL SCHEDULING

Scheduling of a cluster tool with identical wafer flows can
be decomposed into two phases: in the first phase, a se-
quence of all robot movings has to be determined; and the
second phase is to determine the time for each sequence
move. In this section, we follow this two-phase approach.
First, we search for all feasible sequences of multi-cluster
tool activities. The search algorithm utilizes the event
graph based simulation model discussed in previous sec-
tion. Once we find a set of feasible activity sequences, we
determine the optimal sequence and the timing for each
move in this sequence, which give a minimal cyclic pe-
riod (fundamental period). This can be accomplished by
either derivative calculation or linear programming (LP)
formulation (Rostami and Hamidzadeh 2004). The deriva-
tive calculation is employed here for its simplicity. One of
advantages of using the event graph based simulation model
to determine the optimal scheduling is that the model and
sequence searching algorithm are very simple and generic.
Thus the algorithm is able to handle some specific require-
ments such as the process and transfer module residency
constraints (Rostami and Hamidzadeh 2004).

For a cluster tool with deterministic processing times,
all steady-state activities are done exactly once in a fixed
cyclic period, or so-called fundamental period (FP). FP is
a relative time period that a wafer enters and leaves visits
in a route and those relative times will be repeated for the
subsequent wafers in the following periods. Denote F'P (in
sec.) as the fundamental period for a process on a cluster
tool and we can then calculate the cluster tool throughput
as 3600/ F P wafers per hour. It is easy to observe that in
order to maximum the throughput performance we need to
minimize the FP.

3.1 Searching Feasible Sequences

By applying logic check, state update and change procedures
discussed in the previous section, we can easily check all
possible activity combinations. The searching algorithm is
illustrated by Algorithm 1.

In this algorithm, we try to search all possible activity
combinations and calculate the FP at the same time for
each feasible activity combination. Since we only want to
find activity orders, we can assume zero handling times for
all activities. If the tree is fully visited, it is a NP hard
problem with computation complexity O (M!), where M is
the number of actions. However, since the simulation is
implemented inside the search rules, most of the infeasible
routes fail the screening of the simulation. As a result, the
total amount of searches is significantly decreased. More-
over, a multi-cluster system can be separated into several
smaller size sub-systems if some inter-connection configu-
rations apply. Then a large searching problem of the whole

Ding and Yi

system can be divided into several small problems. Feasibil-
ity and complexity of this method will be further discussed
in section 3.3.

It is noted that in the event graph model the process
actions normally start right after their previous transfer
actions finish. Therefore for searching sequences we can
always combine the process action events with the robot
transfer action events together and reduce the searching
action numbers and computing complexity. In section 4,
we will show such an example and we can see significantly
reduced computations.

Algorithm 1: Search Sequences

input : State information (S, ACT, decision logics,
and causality conditions)

output: All feasible sequence Seq

Initialization state So

Seqy < ¥; V < {ACTs}

k < 0; N < dim(V)

Search (0,Seq,V,Sp)

function Search (k,Seq,V,S)
if Kk = N then
Use Algorithm 2 to calculate FP
Record Seq and FP
end
for x € V do
if x is feasible then
X<«<V—x
Y < {Seq, x}
Z. < S with action x move and done

Search(k+ 1,XY,Z)
end
end

One important fact is the choice of the initial state
values Sp in the above searching algorithm. The optimal
sequence by Algorithm 1 depends on the choice of Sgp. In
general, we start the search with following initial state So:
processes have finished in all process modules and wafers
are ready to pickup, and transfer and buffer modules are
empty and ready to transfer wafers. If a module is both
a buffer and process module (for example, P;; of CMP
polisher in section 4), then it should be considered as a
process module. The proper choice of initial state Sp can
also guarantee the deadlock-free simulation and sequence
searching.

3.2 Calculating Scheduling Time for A Sequences

Given a certain robot moving scheduling sequence, we can
calculate the FP using Algorithm 2. The algorithm here is
to run the same sequence twice with exactly the same order.
Then every action x in the given sequence has been running
twice and we can calculate the time difference between two

1920

xs. The maximum time difference for all actions is the
system FP.

The FP calculating algorithm is similar to the simulation
procedure discussed in section 2.3. The main difference is
that in simulation we must prioritize actions to facilitate
the decision when two or more activities conflict. The
algorithm instead utilizes a determined feasible sequence
and calculates the FP.

Algorithm 2: FP Calculation for a Feasible Sequence

input : A feasible sequence Seq € Seq
output: Fundamental period FP for the sequence
Seq
Initialization state Sy
RepReq < {Seq + Seq}; Sy < ¢
for x € RepSeq do
while x not allowed to move with state S; do
Find the first finishing process x in S,
POP x ¢
Update state S; as xy Done (mapping g)
t < max(t(xys), 1)
end
Update state S; as x Move (by AS)
tp < t+1(xy)
PUSH {x, 7} into stack S,
end
FP = max,creq (Time diff. between two x actions
in RepSeq)

Special process requirements affect the scheduling of
cluster tool. In general, these requirements could be consid-
ered and implemented in the algorithm to find an optimal
schedule. For example, residency constraints are found
in processes such as chemical vapor deposition (CVD)
and rapid thermal processing, where leaving a wafer in
a process module longer than its processing time (i.e.,
over-processing) can be detrimental to wafer desired qual-
ities (Rostami et al. 2001). To incorporate such require-
ments into algorithms, we can modify the above algorithm
and enforce a set of maximum delay time constraints for
each action. By doing so, we still obtain the same set of
feasible sequences without considering these constraints by
Algorithm 1 but we only search optimal scheduling with
residency constraints through Algorithm 2.

3.3 Partition of Multi-Cluster Tools

The throughput of multi-cluster tools represents the through-
put of each individual sub-systems. Otherwise some mod-
ules will be blocked or starved by wafer flows. Therefore,
if we could decompose a multi-cluster tool into several
smaller size single-cluster tools that operate as “indepen-
dently”, then the maximum of FPs of these single clusters

Ding and Yi

is the FP that the whole integrated system can bear. Based
on this observation, the partition of the multi-cluster tools
could be effective way to reduce the complexity of the
scheduling search.

It is natural to consider a single-cluster (robot) partition
in which each single-cluster is considered as a sub-system.
However, due to the complex configurations of the buffer
modules and transfer modules between two inter-connected
clusters, we cannot simply decouple two clusters as they were
separated and independent. Here we only consider a special
case when two inter-connected clusters are both equipped
with double-blade robots and the capacity of the buffer
modules between them is equal or more than two wafers (for
more detail discussion of a general decomposition approach
for multi-cluster tools readers can refer to Yi et al. (2004).)
Clusters #1 and #2 in Figure 6 are such an example. Using
this example, we explain some decomposition ideas briefly.
The buffer modules, By and B13, are also serving as process
modules Pj; and Pjp. Figure 5 shows the Gannt chart of
a scheduled buffer processing modules By (P11) and Bya
(P12) that can be used to decompose these two clusters. T}
is the time for R; placing a wafer into By1, 7> is the time
for By1(Py1) processing, T3 is the time for R, picking up
a wafer from By, Ty is the time for Ry picking up a wafer
from By, Ts is the time for Ry placing a wafer into By,
and Tg is the time for Bi2(P2) processing. In order to
decouple these two clusters, we can arrange the following
timing and scheduling requirements:

1. For each buffer, no-overlap (time conflicts) between
processing and wafer transferring.

Timings for “pick” from one buffer and “place” to
another buffer are considered in the FP calculations
of both clusters.

2.

Once the two clusters’ schedules satisfy requirement 2, the
relative time between 77 and T4, and between 73 and T5
are fixed. By changing the time difference between T
and T3 (T4 and Ts5 synchronously) by requirement 1, the
scheduling will work for both clusters. Such a partition
approach can be easily taken within the decision-moving-
done simulation context. Thus a problem of scheduling of
a 4-cluster system can be separated into two scheduling
problems of a 3-cluster and a single-cluster sub-systems
respectively. Computational results for this example will
be discussed in the next section. In general, if a problem
of size M can be decomposed into L sub-problems, and
each of them has smaller size M;, where ZIL M; = M,
then computation complexity becomes ZZL O (M;") (instead
of O(M!) before.) This partition technique significantly
reduces searching time.

1921

4 EXPERIMENT EXAMPLES

Figure 6 shows a schematic of a CMP polisher used in semi-
conductor manufacturing industry. Chemical-mechanical
planarization process is widely used in industry to planarize
the wafer surface and therefore enhance the photolithograph
process performance. The CMP polisher can be modeled as
a four-cluster tool. There are two double-blade robots R;
and Rj, an single-blade robot R3 and an indexer R4. The
indexer R4 moves wafers simultaneously from processing
modules P41 to P, Pip to Py3, Ps3 to Pys and Pyy to
P41, respectively. The wafers go through the cluster tool as
following flow chart (we use the notation R;; for the blade
J of the robot i):

R Ry R3 R4 R4
Ci —> Pii(B11) — By —> P4y — Py — Py3

Ry R4 R3 R Ry

—> Py — Pyy —> By — Py —> Py
Ry Ri2

— Ppp(Bp) — (&

Bp

+
K

Figure 5: Gannt Chart of Buffer Modules Bj; and Bi;

Cluster #3

Cluster #2

Cluster #1
\P|

Cluster #4

O

C G

Figure 6: A Simplified CMP Multi-Cluster Polisher

Cassette
modules

Ding and Yi

Simulation modeling of the CMP tool can be handled
as follows. First, we define the state variables and action
index variable. A decision-move-done event graph can be
constructed for the whole cluster tool. There are total 15
states (total number of process and transfer modules) and 20
actions (as shown in Table 6) for the event graph simulation
model. The actions are selected such that (1) each process
has one identity, (2) each single-blade robot action has one
identity (pick and place tied together), and (3) each double-
blade robot has two identities (pick and place separated)
because they may be taken in different sequences. The
states are selected in the way that each possible buffer unit
is represented. Robot R3 and indexer R4 cannot hold wafers
independently, and thus are not considered as independent
decision states. The decision logic, state update and change
mappings can be built accordingly. The initial states are
set such that every processing module has a finished wafer
ready for pickup and other modules are idle. We create
such a event graph modeling and simulation using simulation
package SIGMA (Schruben 2000).

We utilize the simulation model and algorithms in sec-
tion 3 to find the optimal schedules. The experiments are
carried out on a computer with Centrino 1.3GHz CPU and
256M RAM and the computation results are listed in Ta-
ble 7. We first search all actions for any possible visits
and it takes about 3 hours computing time. After binding
process actions with robot movements as we mentioned
in section 3.1, the new model finds only 1508 possible
schedules within 4.1 secs. From this example, it is clear
that combining process actions with their previous trans-
fer actions significantly reduces the computation load (by
more than 1000 times.) The resulting FP is 136 secs./wafer,
namely the steady-state throughput for the cluster tool is
26.5 wafers per hour. The real throughput of such a CMP
polisher is 26 wafers per hour using a priority rule based
scheduler.

Due to the similarity among clusters R; and R, we
can apply the partition approach discussed in section 3.3 to
decouple the whole systems into two sub-systems: one only
including Cluster #1 and the other sub-system consisting of
Clusters #2-4. From the computing results given by Table 7,
the partition method significantly reduces the complexity
(around 20 times faster.)

In practice, the number of actions taken by any single
cluster is limited and thus the computation is not heavy. The
proposed algorithms can solve most practical multi-cluster
tool simulation and scheduling problems efficiently. For
the example of CMP polisher, cluster R; is the bottleneck
component in the whole cluster tool. After denoting the
bottleneck of the tool, it is easy to find the effect of system
change on the throughput. When one process takes longer
time as expected, it won’t change the system throughput
if it is not within the bottleneck cluster and the change is
not large enough to become the new bottleneck. In fact,

1922

we find that the optimal schedules of CMP polisher are not
unique (Table 7.) This observation implies that the schedule
of the whole multi-cluster tool might not be unique since
the schedules of non-bottleneck clusters can be varying if
the resulting FP is smaller than the FP of the bottleneck
cluster. This characteristic of multi-cluster tools could result
in the fact that a priority based schedule rule could produce a
maximum throughput if we set the bottleneck cluster actions
as the highest priorities.

Table 6: Activities of the CMP Polisher

ACT Action Time ¢; (s)
0 ¢ B pr(By) 15
1 P11 processing 10
2 | PuB) 25 By first half 10
3| Py(B1y) 225 By, second half 17
4 By ﬁ) Py 18

R R
5 Py —> Py, Py =5 Py, 55
Py LN Pyy, Pyy Ry Py
6 P4y processing 60
7 P43 processing 60
8 P44 processing 60
9 Py ﬁ> By 26
10 By ﬁ> P, first half 18
11 B> ﬂ P> second half 20
12 P> processing 30
13 Pay 22 Py, first half 15
14 | Py 2% Py second half 20
15 P>y processing 30
16 | Pp 2 Piy(Byy) first half 16
17 | Py &2 Piy(B1a) second half 20
18 P1> processing 20
19 Pi12(B12) ﬂ) Cy 20

5 CONCLUSIONS

In this paper, we presented an event graph based simulation
and scheduling analysis of a multi-cluster tool for semi-
conductor manufacturing processes. A decision-moving-
done event graph model is utilized to study the scheduling
problem of multi-cluster tools. The proposed event graph
method facilitates the optimal scheduling search algorithm
and throughput calculations. By emulating the simulation
into the search algorithm and combining some process ac-
tions with transfer actions, the simulation modeling signif-
icantly cut the search tree branches. Thus the computation
time and complexity is manageable. Partition of a com-

Ding and Yi

Table 7: Testing Results of the CMP Polisher with a Real Throughput 26 Wafers per hour by a Priority Based Scheduler

Clusters Actions Total acts.| Search routes| Comput. time (s)| Feasible scheds.| FP (s)| Optimal scheds.
All All actions 20 75489480 10428 1770120 136 300960
All Proc. combined 13 50022 8.7 4428 136 296
R1,R> partition|Proc. combined 11 3313 0.4 175 136 19

plex multi-cluster tool into several smaller size sub-systems
can be employed to reduce the complexity further under a
certain buffer module configurations. An application exam-
ple of chemical-mechanical planarization (CMP) polisher
illustrates the efficiency and complexity of the proposed
simulation and scheduling method.

REFERENCES

Diimmler, M. A. 1999. Using Simulation and Genetic Al-
gorithems to Improve Cluster Tool Performance. In
Proceedings of the 1999 Winter Simulation Confer-
ence, ed. D. T. Sturrock, G. W. Evans, P. A. Farrington,
and H. B. Nemhard, 875-879. Piscataway, NJ: Institute
of Electrical and Electronics Engineers.

Jevtic, D. Method and aparatus for priority based scheduling
of wafer processing within a multiple chamber semi-
conductor wafer processing tool. U.S. Patent 5,928,389,
July, 1999.

LeBaron, H. T., and R. A. Hendrickson. 2000. Using Em-
ulation to Validate a Cluster Tool Simulation Model.
In Proceedings of the 2000 Winter Simulation Confer-
ence, ed. P. A. Fishwick, K. Kang, J. A. Joines, and
R. R. Barton, 1417-1422. Piscataway, NJ: Institute of
Electrical and Electronics Engineers.

LeBaron, H. T., and M. Pool. 1994. The Simulation of
Cluster Tools: A New Semiconductor Manufacturing
Technology. In Proceedings of the 1994 Winter Sim-
ulation Conference, ed. D. A. Sadowski, A. F. Seila,
J. D. Tew, and S. Manivannan, 907-912. Piscataway,
NJ: Institute of Electrical and Electronics Engineers.

Nehme, D. A., and N. G. Pierce. 1994. Evaluation the
Throughput of Cluster Tools Using Event-graph Simula-
tions. In Proceedings of the 1994 IEEE/SEMI Advanced
Semiconductor Manufacturing Conference, 189—192.
Cambridge, MA.

Pederson, D., and C. Trout. 2002. Demonstrated Benefits
of Cluster Tool Simulation. In Proceedings of the 2002
International Conference on Modeling and Analysis of
Semiconductor Manufacturing, 84—89. Tempe, AZ.

Perkinson, T., P. McLarty, R. Gyurcsik, and R. Cavin. 1994.
Single-Wafer Cluster Tool Performance: An Analysis
of Throughput. /IEEE Trans. on Semiconductor Manu-
facturing 7 (3): 369-373.

Rostami, S., and B. Hamidzadeh. 2002. Optimal Scheduling
Techniques for Cluster Tools With Process-Module and

1923

Transport-Module Residency Constraints. IEEE Trans.
on Semiconductor Manufacturing 15 (3): 341-349.

Rostami, S., and B. Hamidzadeh. 2004. An Optimal
Residency-Aware Scheduling Technique for Cluster
Tools With Buffer Module. IEEE Trans. on Semicon-
ductor Manufacturing 17 (1): 68-73.

Rostami, S., B. Hamidzadeh, and D. Camporese. 2001. An
Optimal Periodic Scheduler for Dual-Arm Robots in
Cluster Tools with Residency Constraints. IEEE Trans.
Robot. Automat. 17 (5): 609-618.

Schruben, L. W. 2000. SIGMA User’s Guide. Berkeley, CA:
Department of Industrial Engineering and Operations
Research, University of California at Berkeley.

Srinivasan, R. 1998. Modeling and Performance Analysis
of Cluster Tools Using Petri Nets. I[EEE Trans. on
Semiconductor Manufacturing 11 (3): 394-403.

Venkatesh, S., R. Davenport, P. Foxhoven, and J. Nulman.
1997. A Steady-State Throughput Analysis of Cluster
Tools: Dual-Blade Versus Single-Blade Robots. IEEE
Trans. on Semiconductor Manufacturing 10 (4): 418-
424.

Yi, J., D. Song, and S. Ding. 2004. Steady-State Throughput
and Scheduling Analysis of Multi-Cluster Tools for
Semiconductor Manufacturing Using Decomposition
Methods. Working Paper.

Zuberek, W. 2001. Timed Petri Nets in Modeling and Anal-
ysis of Cluster Tools. IEEE Trans. on Robotics and
Automation 17 (5): 562-575.

AUTHOR BIOGRAPHIES

SHENGWEI DING received his B.S. and M.S. in elec-
trical engineering from Zhejiang University, China, in
1996 and 1999, respectively. He received the M.S. and
Ph.D. degree in industrial engineering and operation re-
search from the University of California at Berkeley in
2000 and 2004, respectively. He is a member of IIE
and INFORMS. His research interests are simulation,
scheduling, queuing models and production management
in semiconductor manufacturing. His e-mail address is
<dingsw@ieor.berkeley.edu>.

JINGANG Yl is a systems engineer in Lam Research Cor-
poration. He received his B.S. in electrical engineering from
Zhejiang University, M.Eng. in precision instruments from
Tsinghua University, M.A. in applied mathematics and Ph.D.
in mechanical engineering from the University of California

mailto:dingsw@ieor.berkeley.edu

Ding and Yi

at Berkeley in 1993, 1996, 2001 and 2002, respectively. His
research interests include intelligent control and automation
and its applications to semiconductor manufacturing. Dr.
Yi is a member of IEEE and ASME. His e-mail address is
<jingang.yi@cal.berkeley.edu>.

1924

mailto:jingang.yi@cal.berkeley.edu

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1915
	02: 1916
	03: 1917
	04: 1918
	05: 1919
	06: 1920
	07: 1921
	08: 1922
	09: 1923
	10: 1924

