
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

DISTRIBUTING A LARGE-SCALE, COMPLEX FAB SIMULATION

USING HLA AND JAVA: ISSUES AND LESSONS

 Leon F. McGinnis

School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0205, U.S.A.

ABSTRACT

Distributed simulation promises a range of benefits and op-
portunities, especially for modeling large-scale complex sys-
tems, such as wafer fabs. However, as with many promising
technologies, the devil is in the details. This paper describes
some experiences in distributing a high-fidelity, full fab
simulation model with federates implemented in Java repre-
senting manufacturing processes, automated material han-
dling systems, and control systems. Some informal com-
parisons with AutoMod/ASAP are included.

1 INTRODUCTION

Distributed simulation is not a new idea. In fact, the relevant
archival literature goes back at least twenty five years. One
of the most often cited papers (Chandy and Misra, 1981) cites
earlier work in 1979. The Defense Modeling and Simulation
Office, by distributing the High Level Architecture (see, e.g.,
(DMSO, 2004a)) has precipitated a large number of prospec-
tive applications, motivated by objectives as diverse as faster
runtimes, integration of disparate legacy models, easier
model maintenance, information sharing/hiding, and integra-
tion of simulation with real control systems.

The notion of distributing a simulation model among a
collection of independent programs, or federates, is espe-
cially appealing when the system being modeled is large in
scale, complex, and subject to frequent change. If only we
could focus model revision and maintenance activities on a
set of smaller, better defined models, we would be able to
achieve much greater productivity in model development
and maintenance. And if the computational overhead of
distribution is not too high, it will be well worthwhile.

Distributed simulation would seem to be an ideal
technology for manufacturing and supply chains, at least
judging by the number of related papers. A search of the
Inspec database using the search string “(((("distributed
simulation") WN All fields) AND ((manufacturing) WN
All fields)) OR (("supply chain") WN All fields))” and lim-
iting the search to conference articles returns 1136 “hits”.

When the interested reader digs into this abundant lit-

erature, what he or she is likely to find are two predominant
themes. In the first, authors describe the use of specific
software technologies to implement a federated simulation,
e.g., the language(s) used to code the federates, the protocols
used for messaging, and the architecture of the various am-
bassadors. In the second, authors describe a class of applica-
tions at a high conceptual level, and often provides some
screen shots of a small-scale, simple application.

Much more difficult to find are papers that discuss in
useful detail the tricky aspects of integrating the concepts
and technologies of HLA with the structuring, modeling,
and implementation of the federates. This is not to say
such papers do not exist, but they are difficult to find.

The goal of this paper is to address one specific exam-
ple of the interaction between the use of HLA and the mod-
eling of a large scale complex system. The story has four
parts: a brief tutorial on synchronization in HLA; a brief
description of the domain being modeled; a somewhat more
involved discussion of the key elements of the resulting fed-
erated simulation; and a summary of the lessons learned.

2 SYNCHRONIZATION

An HLA-based simulation has two kinds of components,
the federates themselves, and the runtime infrastructure, or
RTI. (For a good introduction to HLA, see, e.g., (Kuhl, et
al., 1999) or (DMSO, 2004b)) A federate is a stand-alone
simulation model, with its own time advance mechanisms,
and a message-passing protocol that serves two functions it
instantiates the simulated interactions between federates,
and it implements the method used for insuring that the
federates are synchronized.

Synchronization, as a fundamental process in distrib-
uted simulation, has attracted a vast array of research (see,
e.g., (Fujimoto, 2000) or (Fujimoto, 2004) for a fully de-
tailed discussion of synchronization.) There are various
approaches to synchronization, but for our purposes, the
discussion will be limited to those designated conservative.
We also will restrict our attention to event-oriented time
advance (versus time-increment oriented time advance).

McGinnis

Synchronization is the primary function of the RTI, at
least in terms of the application to manufacturing and sup-
ply chains. As explained in (Fujimoto, 2004), each feder-
ate is a logical process, and has its own current time. If
federate A at time tA sends a message to federate B repre-
senting an interaction, it is important that the interaction
message appear to federate B before its logical time has
advanced beyond tA. That way, the interaction can be han-
dled as an event in the pending event list and can be proc-
essed when federate B’s current time advances to tA. Fail-
ure to enforce this requirement would mean that federate B
has to process an interaction occurring in its past. Since
most of the systems we want to model don’t admit time
travel, this would violate a fundamental requirement for
model fidelity.

The challenge of synchronization is to devise a method
for implementing this rather straightforward requirement in
such a way that computational efficiency is not overly
compromised.

In HLA, interactions between federates are mediated
by the RTI, using messages. When a federate, say federate
A, interacts with another federate, say federate B, a time
stamp ordered (or TSO) event, or message, is sent to the
RTI. The RTI holds this message until it is eligible to be
delivered to federate B. The conditions for eligibility for
sending a message (interaction) to federate B with a time-
stamp of, say, τ, are that:

1. no other messages are waiting for delivery to fed-

erate B with a timestamp smaller than τ , and
2. the RTI can guarantee that no new messages will

be sent to federate B by any other federate with a
timestamp smaller than τ

The fundamental question is, “How does the RTI know
when these two conditions are satisfied?”

In effect, the RTI tells a federate when it can advance
its logical time. For the purposes of this discussion, sup-
pose federate A requests permission to advance its logical
time to its next scheduled event (a next event request, or
NER) at time τ. The RTI determines the minimum time at
which it is still possible for the federate to receive an inter-
action from some other federate, say τ’ and grants time ad-
vance to the minimum of these two times.

The RTI has all the TSO messages sent by other feder-
ates, but it needs to determine the earliest time at which it
might still receive TSO messages. It does this using a loo-
kahead value for each federate. According to (DMSO,
2004b) “Lookahead is a non-negative value that establishes
a lower value on the time stamps that can be sent in TSO
messages by a time-regulating joined federate.” Suppose
federate B has been granted time advance to time τ∗, and
has a lookahead value of λ. The earliest time at which fed-
erate B can generate a TSO message is τ∗+λ. By consider-
ing this earliest new message time for each other federate,
the RTI can determine a “safe” time advance for federate A.

In summary (and somewhat oversimplified) synchro-
nization is achieved in HLA by using a lookahead value for
each federate to determine the earliest time at which it may
have a new interaction with other federates, and limiting
the time advance granted to each federate by insuring that
it does not advance beyond the time at which it may be
guaranteed that no new interactions will be originated by
other federates.

How is the value of the lookahead determined? Logi-
cally, it is the minimum simulated time between processing
an event from the federate’s pending event list and sending
a TSO message. From a naïve perspective, the lookahead
for a federate is the minimum processing time for any fed-
erate task which results in a TSO message.

3 WAFER FABS AND MODELS

A wafer fab is a large-scale, complex system, with dy-
namic behavior that is not amenable to analytic description
at the single tool-job level. We are focusing on latest-
technology fabs, based on 300mm wafers, and fully auto-
mated material handling. The most common configuration
of such a wafer fab has a number of processing departments
(bays, farms, cells) with dedicated internal material han-
dling, linked via a stocker to a fab-level material handling
system for moving product between bays. In state of the art
300 mm wafer fabs, product moves in environmentally-
controlled pods or FOUPs (for Front Opening Unified Pod).

The typical pattern of processing for a FOUP in a tra-
ditional through-stocker system is as follows:

• Delivery to a bay stocker
• Retrieval from bay stocker and delivery to a proc-

ess tool
• Processing on the process tool
• Retrieval from the process tool and delivery to the

bay stocker
• Retrieval from the bay stocker and delivery to the

next bay stocker in the process route

There may be a tool-to-tool move within the bay, if more
than one process occurs in the same bay.

A major concern is to provide the right amounts of ca-
pacity, for both processing and material handling, and to
coordinate the assignment of capacity to FOUPs to insure a
proper balance between throughput and cycle time.

Simulation has been the preferred tool for evaluating
fab performance, and today the most popular simulation
tool for studying wafer fabs appears to be Auto-
Mod/ASAP. In this combination, the material handling
portions of the model are implemented in AutoMod, while
the routing, scheduling, and processing portions of the

McGinnis

model are implemented in ASAP. A proprietary synchro-
nization method is used to couple the two models.

Kim, et al. (2001) describe a high fidelity, Java-based
approach for simulating a wafer fab. Their approach is in-
herently object-oriented, with objects representing process
tools and stockers, intra-bay material handling, bay con-
trollers, inter-bay material handling, and a fab controller.
Because the implementation was based on Java, it was
relatively easy to incorporate graphical tools for represent-
ing the fab layout and for animating the simulation results.

A key feature of the HiFiVE implementation was the
level of fidelity. Machines were represented using “virtual
machines” having a well defined state graph, and a set of
controller interactions that would mimic the “real” interac-
tions between a controller and process tool.

The computational burden of the original implementa-
tion led us to develop a distributed version of the HiFiVE
simulation, using HLA as the distribution platform. In the
course of converting to HLA, the HiFiVE simulation was
reconfigured into six federates:

1. fab model: includes all process tools and stockers
2. fab controller: manages lot release
3. bay controller: manages all lot flow
4. intrabay material handling: overhead hoist trans-

portation system in all the bays
5. interbay material handling: overhead hoist trans-

portation system between bays
6. simulation manager: initialization, termination

Note that there is one bay controller federate, but it models
all the bays in the fab. Likewise, there is one intrabay ma-
terial handling federate, but it models all the bay-specific
material handling.

In the transition to HLA, it was necessary to formally
define the TSO messages representing interactions between
the federates. Table 1 summarizes the messages that were
defined in a straightforward way from the earlier HiFiVE
model. Note the “command/acknowledge” structure of the
messages, which follows directly from the earlier virtual
machine architecture. “Delay lot move” is a command that
allows a lot to wait in its originating bay to see if a tool be-
comes available in that bay, potentially avoiding an intra-
bay move for the next operation.

4 PROGRESS AND LESSONS LEARNED

As of this writing, we are in the process of benchmarking
the distributed version of HiFiVE against Automod/ASAP,
using the Sematech 300mm fab model (Campbell and
Ammenhauser, 2000). This model has 24 bays, with 53
tool groups and 310 process tools. There are 14 product
types, but only two different processes. Each process in-
volves 316 process steps.
For the computing platforms we are using, Auto-
Mod/ASAP full fab (processing and material handling, but
no animation) simulation speed for this model is about
100x “real time”, i.e., 100 hours of simulated time requires
approximately 1 hour of compute time. The corresponding
speed factor for the distributed version of HiFiVE, in its
initial incarnation was between 3x and 4x.

Table1: TSO Messages, Version 1

PUB SUB Note
FC FM Release lot
FM BC Lot released
BC IT

Request interbay lot move

IT FM IT vehicle available to
load/unload

FM IT

IT Lot loaded/unloaded

IT BC Interbay lot move complete
BC ET

Request intrabay lot move

ET FM ET vehicle available to
load/unload

FM ET

ET Lot loaded/unloaded

ET BC Intrabay lot move complete
BC FM Move lot into stocker from IT

port
FM BC Lot moved into stocker from

IT port
BC FM Move lot from stocker to ET

port
FM BC Lot moved from stocker to ET

port
FM BC ET vehicle loaded at stocker
FM BC Lot moved from ET port to

stocker
BC FM Move lot from stocker to IT

port
FM BC Lot moved from stocker to IT

port
FM BC IT vehicle loaded at stocker
FM BC Start process operation
FM BC Finish process operation
BC FM Delay lot move
FM BC Delay ended

FC: Fab controller; BC: Bay controller
FM: Factory model; IT: interbay transport
ET: Intrabay transport

Needless to say, the team was perplexed by the poor

performance of the distributed version of HiFiVE, and be-
gan to look for opportunities to improve it. The search re-
vealed a number of factors, not the least of which was our

McGinnis

naiveté regarding the intelligent development of a feder-
ated simulation.

The time regulating function of the RTI interacts with
the structure of the federation (the events and the TSO
messages) to determine how large a time advance is
granted to each federate . In version 1 of the distributed
HiFiVE implementation, the acknowledgement TSOs, rep-
resent not physical processes but simply information up-
dates, and have a devastating effect on simulation effi-
ciency, because they become events representing very
short duration processes—in our case, approximately 6
seconds of simulated time.

Lesson #1: whenever possible, model the interac-
tions between federates so that no acknowledgement TSO
is required.

For example, when a vehicle arrives to be unloaded,
and announces that it is ready to be unloaded, have both
the transporter federate and the factory federate schedule
the unloading event in their respective pending event lists,
but do not generate a TSO announcing the completion of
unloading. This avoids the overhead of a TSO message,
which would also have the effect of scheduling an event.

This models federate interactions as “open loop’ con-
trol processes. As a result, there is a potentially significant
implication of lesson #1. If one hopes to use HLA to sup-
port a federation including both a simulation and actual
control software, then the role of acknowledgment mes-
sages will need to be considered carefully. It may be pos-
sible to “spoof” the acknowledgements coming from the
simulated factory without making them part of the time
regulating function of the RTI.

Another opportunity to apply Lesson #1 is in the de-
sign of the stocker simulation. In the first incarnation of
HiFiVE, stockers were essentially “dumb” automation, and
had to be managed by the bay controller. However, the
behavior of stockers is pretty simple, and it would be rela-
tively straightforward to give their models enough intelli-
gence to manage the movement of FOUPs between load
ports and internal storage locations. Doing so would
eliminate a significant number of TSO events between the
factory federate and the bay control federate.

Lesson #2: Structure the simulation so that TSO
events are minimized.

The modeler always has a great deal of freedom in de-
signing the structure of a simulation, whether it is federated
or not. In the case of the distributed fab model, for exam-
ple, two original design decisions turn out to have negative
impacts on computational efficiency.

First, the loading and unloading of transport vehicles
is “done” by the factory federate. This means that when
vehicle arrives to a load port, the transport federate must
send an arrival TSO to the factory federate, and then the
factory federate must send a load/unload completion TSO
to the transport federate. In retrospect, a better design
would have been to have the arriving vehicle perform the
load/unload operation, and then have the transport federate
send a load/unload completion TSO to the factory federate.
This design is feasible, provided the destination port for a
FOUP is reserved at the time the transport request is issued.

Another example of poorly structuring the federation
was the decision to include the stockers in the factory
model, along with other “machines” such as process and
metrology tools. Superficially, this seems to be a reason-
able design, because both stockers and process tools have
load ports and interface with the transport system.

A case could be made, however, that a better design
would be to include the stockers in the bay controller fed-
erate. The bay controller must maintain a “data image” of
the stocker, in order to track lot queues for machines, so
from a modeling point of view, there is duplication of data
if the stockers are in the factory federate. From a prag-
matic perspective, stockers exist primarily as a mechanism
to improve the control of lot flow, by allowing lots to ac-
cumulate away from the process tools, and providing a
buffer between transport systems. Functionally, they serve
a control purpose rather than a processing purpose. Incor-
porating stockers into the bay control federate would,
again, eliminate some TSO events. On the other hand,
treating the stockers in this fashion conflicts with the goal
of integrating simulated physical resources with real fab
control or management software, because it eliminates the
explicit representation of stockers and control/ac-
knowledgement messages.

5 CONCLUSIONS

Successful implementation of HLA for distributed factory
simulation is much more than simply federating a set of
models. The interplay between modeling decisions and the
methodology instantiated in HLA must be understood and
exploited to achieve acceptable computational results.

We are currently using lessons 1 and 2 to revise the im-
plementation of the distributed version of HiFiVE, and ex-
pect to see significant improvements in simulation speed.

Looking to the next steps, a fundamental issue is the
structure of the next event request in HLA, and the use of
lookahead values. We are investigating whether the feder-
ated simulation can be defined in such a way as to maxi-
mize the lookahead value seen by the federate which most
frequently submits a next event request. A related issue is
the difference between “internal” and “external” events in
the pending event list for a given federate. Those events
that do not result in an interaction with other federates are,
in effect, transparent to those other federates, so perhaps
they can be excluded from the RTI-based time advance
considerations.

ACKNOWLEDGMENTS

A number of graduate students at Georgia Tech have
played key roles in the ongoing HiFiVE project. For the
federation work, Ke Wang, Ying Wang, and Sheng Xu

McGinnis

have taken the lead. For AutoMod/ASAP, Dima Nazzal
has been the lead.

REFERENCES

Campbell, Elizabeth and Jim Ammenheuser. 2002. 300
mm Factory Layout and Material Handling Modeling:
Phase II Report. Technology Transfer # 99113848B-
ENG. International SEMATECH.

Chandy, K. M., and J. Misra. 1981. Asynchronous distrib-
uted simulation via a sequence of parallel computations.
Communications of the ACM. 24(4), April: 198 – 206.

DMSO. 2004a. High Level Architecture. <https://
www.dmso.mil/public/transition/hla/>
[accessed July 23, 2004].

DMSO. 2004b. Introduction to the HLA: Glossary.
<http://www.aegistg.com/adl/adl_cours
es/intro/intro_glossary1.htm> [accessed
July 23, 2004].

Fujimoto, Richard M. 2000. Parallel and Distributed
Simulation Systems. John Wiley & Sons, Inc.

Fujimoto, Richard M. 2004. Time management in the high
level architecture. <http://www.cc.gatech.
edu/computing/pads/PAPERS/Time_mgmt_H
igh_Level_Arch.pdf> [accessed July
23, 2004].

Kim, H., J. Park, S. Sohn, Y. Wang, S. Reveliotis, C. Zhou,
D. A. Bodner and L. F. McGinnis. 2001. “A High-
Fidelity, Web-Based Simulator for 300mm Fabs,” in
Proceedings of the 2001 IEEE International Confer-
ence on Systems, Man, and Cybernetics, Piscataway,
NJ: IEEE, pp. 1288-1293,.

Kuhl, Frederick, Richard Weatherly, and Judith Dahmann.
1999. Creating Computer Simulation Systems. Pren-
tice Hall.

Lutz, R. 1998. High Level Architecture Object Model De-
velopment and Supporting Tools. Simulation. 71 (6):
401-409.

AUTHOR BIOGRAPHY

LEON McGINNIS is Eugene C. Gwaltney Professor of
Manufacturing Systems at Georgia Tech, where he also
serves as Associate Director of the Manufacturing Re-
search Center and founding Director of the Keck Virtual
Factory Lab. His research focuses on the application of
operations research and computer science to solve deci-
sion problems arising in the design and operation of in-
dustrial logistics systems. His email address is
<leon.mcginnis@isye.gatech.edu>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1891
	02: 1892
	03: 1893
	04: 1894
	05: 1895

