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ABSTRACT 

Distributed simulation promises a range of benefits and op-
portunities, especially for modeling large-scale complex sys-
tems, such as wafer fabs.  However, as with many promising 
technologies, the devil is in the details.  This paper describes 
some experiences in distributing a high-fidelity, full fab 
simulation model with federates implemented in Java repre-
senting manufacturing processes, automated material han-
dling systems, and control systems.  Some informal com-
parisons with AutoMod/ASAP are included. 

1 INTRODUCTION 

Distributed simulation is not a new idea.  In fact, the relevant 
archival literature goes back at least twenty five years.  One 
of the most often cited papers (Chandy and Misra, 1981) cites 
earlier work in 1979.  The Defense Modeling and Simulation 
Office, by distributing the High Level Architecture (see, e.g., 
(DMSO, 2004a)) has precipitated a large number of prospec-
tive applications, motivated by objectives as diverse as faster 
runtimes, integration of disparate legacy models, easier 
model maintenance, information sharing/hiding, and integra-
tion of simulation with real control systems. 

The notion of distributing a simulation model among a 
collection of independent programs, or federates, is espe-
cially appealing when the system being modeled is large in 
scale, complex, and subject to frequent change.  If only we 
could focus model revision and maintenance activities on a 
set of smaller, better defined models, we would be able to 
achieve much greater productivity in model development 
and maintenance.  And if the computational  overhead of 
distribution is not too high, it will be well worthwhile. 

Distributed simulation would seem to be an ideal 
technology for manufacturing and supply chains, at least 
judging by the number of related papers.  A search of the 
Inspec database using the search string “(((("distributed 
simulation") WN All fields) AND ((manufacturing) WN 
All fields)) OR (("supply chain") WN All fields))” and lim-
iting the search to conference articles returns 1136 “hits”. 

 

When the interested reader digs into this abundant lit-

erature, what he or she is likely to find are two predominant 
themes.  In the first, authors describe the use of specific 
software technologies to implement a federated simulation, 
e.g., the language(s) used to code the federates, the protocols 
used for messaging, and the architecture of the various am-
bassadors.  In the second, authors describe a class of applica-
tions at a high conceptual level, and often provides some 
screen shots of a small-scale, simple application. 

Much more difficult to find are papers that discuss in 
useful detail the tricky aspects of integrating the concepts 
and technologies of HLA with the structuring, modeling, 
and implementation of the federates.  This is not to say 
such papers do not exist, but they are difficult to find. 

The goal of this paper is to address one specific exam-
ple of the interaction between the use of HLA and the mod-
eling of a large scale complex system.  The story has four 
parts:  a brief tutorial on synchronization in HLA;  a brief 
description of the domain being modeled; a somewhat more 
involved discussion of the key elements of the resulting fed-
erated simulation;  and a summary of the lessons learned. 

2 SYNCHRONIZATION 

An HLA-based simulation has two kinds of components, 
the federates themselves, and the runtime infrastructure, or 
RTI.  (For a good introduction to HLA, see, e.g., (Kuhl, et 
al., 1999) or (DMSO, 2004b))  A federate is a stand-alone 
simulation model, with its own time advance mechanisms, 
and a message-passing protocol that serves two functions it 
instantiates the simulated interactions between federates, 
and it implements the method used for insuring that the 
federates are synchronized.   

Synchronization, as a fundamental process in distrib-
uted simulation, has attracted a vast array of research (see, 
e.g., (Fujimoto, 2000) or (Fujimoto, 2004) for a fully de-
tailed discussion of synchronization.)  There are various 
approaches to synchronization, but for our purposes, the 
discussion will be limited to those designated conservative.  
We also will restrict our attention to event-oriented time 
advance (versus time-increment oriented time advance). 

 



McGinnis 

 

Synchronization is the primary function of the RTI, at 
least in terms of the application to manufacturing and sup-
ply chains.  As explained in (Fujimoto, 2004), each feder-
ate is a logical process, and has its own current time.  If 
federate A at time tA sends a message  to federate B repre-
senting an interaction, it is important that the interaction 
message appear to federate B before its logical time has 
advanced beyond tA.  That way, the interaction can be han-
dled as an event in the pending event list and can be proc-
essed when federate B’s current time advances to tA.  Fail-
ure to enforce this requirement would mean that federate B 
has to process an interaction occurring in its past.  Since 
most of the systems we want to model don’t admit time 
travel, this would violate a fundamental requirement for 
model fidelity.   

The challenge of synchronization is to devise a method 
for implementing this rather straightforward requirement in 
such a way that computational efficiency is not overly 
compromised. 

In HLA, interactions between federates are mediated 
by the RTI, using messages.  When a federate, say federate 
A, interacts with another federate, say federate B, a time 
stamp ordered (or TSO) event, or message, is sent to the 
RTI.  The RTI holds this message until it is eligible to be 
delivered to federate B.  The conditions for eligibility for 
sending a message (interaction) to federate B with a time-
stamp of, say, τ, are that: 

 
1. no other messages are waiting for delivery to fed-

erate B with a timestamp smaller than τ , and 
2. the RTI can guarantee that no new messages will 

be sent to federate B by any other federate with a 
timestamp smaller than τ  

 
The fundamental question is, “How does the RTI know 
when these two conditions are satisfied?”   

In effect, the RTI tells a federate when it can advance 
its logical time.  For the purposes of this discussion, sup-
pose federate A requests permission to advance its logical 
time to its next scheduled event (a next event request, or 
NER) at time τ.  The RTI determines the minimum time at 
which it is still possible for the federate to receive an inter-
action from some other federate, say τ’ and grants time ad-
vance to the minimum of these two times.   

The RTI has all the TSO messages sent by other feder-
ates, but it needs to determine the earliest time at which it 
might still receive TSO messages.  It does this using a loo-
kahead value for each federate.  According to (DMSO, 
2004b) “Lookahead is a non-negative value that establishes 
a lower value on the time stamps that can be sent in TSO 
messages by a time-regulating joined federate.” Suppose 
federate B has been granted time advance to time τ∗, and 
has a lookahead value of λ.  The earliest time at which fed-
erate B can generate a TSO message is τ∗+λ.  By consider-
ing this earliest new message time for each other federate, 
the RTI can determine a “safe” time advance for federate A. 

In summary (and somewhat oversimplified) synchro-
nization is achieved in HLA by using a lookahead value for 
each federate to determine the earliest time at which it may 
have a new interaction with other federates, and limiting 
the time advance granted to each federate by insuring that 
it does not advance beyond the time at which it may be 
guaranteed that no new interactions will be originated by 
other federates. 

How is the value of the lookahead determined?  Logi-
cally, it is the minimum simulated time between processing 
an event from the federate’s pending event list and sending 
a TSO message.  From a naïve perspective, the lookahead 
for a federate is the minimum processing time for any fed-
erate task which results in a TSO message. 

3 WAFER FABS AND MODELS 

A wafer fab is a large-scale, complex system, with dy-
namic behavior that is not amenable to analytic description 
at the single tool-job level.  We are focusing on latest-
technology fabs, based on 300mm wafers, and fully auto-
mated material handling.  The most common configuration 
of such a wafer fab has a number of processing departments 
(bays, farms, cells) with dedicated internal material han-
dling, linked via a stocker to a fab-level material handling 
system for moving product between bays.  In state of the art 
300 mm wafer fabs, product moves in environmentally-
controlled pods or FOUPs (for Front Opening Unified Pod). 

The typical pattern of processing for a FOUP in a tra-
ditional through-stocker system is as follows: 

 
• Delivery to a bay stocker 
• Retrieval from bay stocker and delivery to a proc-

ess tool 
• Processing on the process tool 
• Retrieval from the process tool and delivery to the 

bay stocker 
• Retrieval from the bay stocker and delivery to the 

next bay stocker in the process route 
 

There may be a tool-to-tool move within the bay, if more 
than one process occurs in the same bay. 

A major concern is to provide the right amounts of ca-
pacity, for both processing and material handling, and to 
coordinate the assignment of capacity to FOUPs to insure a 
proper balance between throughput and cycle time. 

Simulation has been the preferred tool for evaluating 
fab performance, and today the most popular simulation 
tool for studying wafer fabs appears to be Auto-
Mod/ASAP.  In this combination, the material handling 
portions of the model are implemented in AutoMod, while 
the routing, scheduling, and processing portions of the 
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model are implemented in ASAP.  A proprietary synchro-
nization method is used to couple the two models. 

Kim, et al. (2001) describe a high fidelity, Java-based 
approach for simulating a wafer fab.  Their approach is in-
herently object-oriented, with objects representing process 
tools and stockers, intra-bay material handling, bay con-
trollers, inter-bay material handling, and a fab controller.  
Because the implementation was based on Java, it was 
relatively easy to incorporate graphical tools for represent-
ing the fab layout and for animating the simulation results. 

A key feature of the HiFiVE implementation was the 
level of fidelity.  Machines were represented using “virtual 
machines” having a well defined state graph, and a set of 
controller interactions that would mimic the “real” interac-
tions between a controller and process tool. 

The computational burden of the original implementa-
tion led us to develop a distributed version of the HiFiVE 
simulation, using HLA as the distribution platform.  In the 
course of converting to HLA, the HiFiVE simulation was 
reconfigured into six federates: 

 
1. fab model:  includes all process tools and stockers 
2. fab controller:  manages lot release 
3. bay controller:  manages all lot flow  
4. intrabay material handling:  overhead hoist trans-

portation system in all the bays 
5. interbay material handling:  overhead hoist trans-

portation system between bays 
6. simulation manager:  initialization, termination 
 

Note that there is one bay controller federate, but it models 
all the bays in the fab.  Likewise, there is one intrabay ma-
terial handling federate, but it models all the bay-specific 
material handling. 

In the transition to HLA, it was necessary to formally 
define the TSO messages representing interactions between 
the federates.  Table 1 summarizes the messages that were 
defined in a straightforward way from the earlier HiFiVE 
model.  Note the “command/acknowledge” structure of the 
messages, which follows directly from the earlier virtual 
machine architecture.  “Delay lot move” is a command that 
allows a lot to wait in its originating bay to see if a tool be-
comes available in that bay, potentially avoiding an intra-
bay move for the next operation. 

4 PROGRESS AND LESSONS LEARNED 

As of this writing, we are in the process of benchmarking 
the distributed version of HiFiVE against Automod/ASAP, 
using the Sematech 300mm fab model (Campbell and 
Ammenhauser, 2000).  This model has 24 bays, with 53 
tool groups and 310 process tools.  There are 14 product 
types, but only two different processes.  Each process in-
volves 316 process steps.   
For the computing platforms we are using, Auto-
Mod/ASAP full fab (processing and material handling, but 
no animation) simulation speed for this model is about 
100x “real time”, i.e., 100 hours of simulated time requires 
approximately 1 hour of compute time.  The corresponding 
speed factor for the distributed version of HiFiVE, in its 
initial incarnation was between 3x and 4x. 

 
Table1: TSO Messages, Version 1 

PUB SUB Note 
FC FM Release lot 
FM BC Lot released 
BC IT 

 
Request interbay lot move  

IT FM IT vehicle available to 
load/unload 

FM IT 
 

IT Lot loaded/unloaded 

IT BC Interbay lot move complete 
BC ET 

 
Request intrabay lot move  

ET FM ET vehicle available to 
load/unload 

FM ET 
 

ET Lot loaded/unloaded  

ET BC Intrabay lot move complete 
BC FM Move lot into stocker from IT 

port 
FM BC Lot moved into stocker from 

IT port 
BC FM Move lot from stocker to ET 

port 
FM BC Lot moved from stocker to ET 

port 
FM BC ET vehicle loaded at stocker 
FM BC Lot moved from ET port to 

stocker 
BC FM Move lot from stocker to IT 

port 
FM BC Lot moved from stocker to IT 

port 
FM BC IT vehicle loaded at stocker 
FM BC Start process operation 
FM BC Finish process operation 
BC FM Delay lot move  
FM BC Delay ended 

FC: Fab controller;  BC: Bay controller 
FM: Factory model; IT: interbay transport 
ET:  Intrabay transport 

 
Needless to say, the team was perplexed by the poor 

performance of the distributed version of HiFiVE, and be-
gan to look for opportunities to improve it.  The search re-
vealed a number of factors, not the least of which was our 
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naiveté regarding the intelligent development of a feder-
ated simulation. 

The time regulating function of the RTI interacts with 
the structure of the federation (the events and the TSO 
messages) to determine how large a time advance is 
granted to each federate .  In version 1 of the distributed 
HiFiVE implementation, the acknowledgement TSOs, rep-
resent not physical processes but simply information up-
dates, and have a devastating effect on simulation effi-
ciency, because they become events representing very 
short duration processes—in our case, approximately 6 
seconds of simulated time.   

Lesson #1:  whenever possible, model the interac-
tions between federates so that no acknowledgement TSO 
is required. 

For example, when a vehicle arrives to be unloaded, 
and announces that it is ready to be unloaded, have both 
the transporter federate and the factory federate schedule 
the unloading event in their respective pending event lists, 
but do not generate a TSO announcing the completion of 
unloading.  This avoids the overhead of a TSO message, 
which would also have the effect of scheduling an event. 

This models federate interactions as “open loop’ con-
trol processes. As a result, there is a potentially significant 
implication of lesson #1.  If one hopes to use HLA to sup-
port a federation including both a simulation and actual 
control software, then the role of acknowledgment mes-
sages will need to be considered carefully.  It may be pos-
sible to “spoof” the acknowledgements coming from the 
simulated factory without making them part of the time 
regulating function of the RTI.   

Another opportunity to apply Lesson #1 is in the de-
sign of the stocker simulation.  In the first incarnation of 
HiFiVE, stockers were essentially “dumb” automation, and 
had to be managed by the bay controller.  However, the 
behavior of stockers is pretty simple, and it would be rela-
tively straightforward to give their models enough intelli-
gence to manage the movement of FOUPs between load 
ports and internal storage locations.  Doing so would 
eliminate a significant number of TSO events between the 
factory federate and the bay control federate. 

Lesson #2:  Structure the simulation so that TSO 
events are minimized. 

The modeler always has a great deal of freedom in de-
signing the structure of a simulation, whether it is federated 
or not.  In the case of the distributed fab model, for exam-
ple, two original design decisions turn out to have negative 
impacts on computational efficiency.   

First, the loading and unloading of transport vehicles 
is “done” by the factory federate.  This means that when 
vehicle arrives to a load port, the transport federate must 
send an arrival TSO to the factory federate, and then the 
factory federate must send a load/unload completion TSO 
to the transport federate.  In retrospect, a better design 
would have been to have the arriving vehicle perform the 
load/unload operation, and then have the transport federate 
send a load/unload completion TSO to the factory federate.  
This design is feasible, provided the destination port for a 
FOUP is reserved at the time the transport request is issued. 

Another example of poorly structuring the federation 
was the decision to include the stockers in the factory 
model, along with other “machines” such as process and 
metrology tools.  Superficially, this seems to be a reason-
able design, because both stockers and process tools have 
load ports and interface with the transport system.   

A case could be made, however, that a better design 
would be to include the stockers in the bay controller fed-
erate.  The bay controller must maintain a “data image” of 
the stocker, in order to track lot queues for machines, so 
from a modeling point of view, there is duplication of data 
if the stockers are in the factory federate.  From a prag-
matic perspective, stockers exist primarily as a mechanism 
to improve the control of lot flow, by allowing lots to ac-
cumulate away from the process tools, and providing a 
buffer between transport systems.  Functionally, they serve 
a control purpose rather than a processing purpose.  Incor-
porating stockers into the bay control federate would, 
again, eliminate some TSO events.  On the other hand, 
treating the stockers in this fashion conflicts with the goal 
of integrating simulated physical resources with real fab 
control or management software, because it eliminates the 
explicit representation of stockers and control/ac-
knowledgement messages. 

5 CONCLUSIONS 

Successful implementation of HLA for distributed factory 
simulation is much more than simply federating a set of 
models.  The interplay between modeling decisions and the 
methodology instantiated in HLA must be understood and 
exploited to achieve acceptable computational results. 

We are currently using lessons 1 and 2 to revise the im-
plementation of the distributed version of HiFiVE, and ex-
pect to see significant improvements in simulation speed. 

Looking to the next steps, a fundamental issue is the 
structure of the next event request in HLA, and the use of 
lookahead values.  We are investigating whether the feder-
ated simulation can be defined in such a way as to maxi-
mize the lookahead value seen by the federate which most 
frequently submits a next event request.  A related issue is 
the difference between “internal” and “external” events in 
the pending event list for a given federate.  Those events 
that do not result in an interaction with other federates are, 
in effect, transparent to those other federates, so perhaps 
they can be excluded from the RTI-based time advance 
considerations. 
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