
Proceedings of the 2004 Winter Simulation Conference
R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

A NEAR OPTIMAL APPROACH TO QUALITY OF
SERVICE DATA REPLICATION SCHEDULING

Kevin Adams

Naval Surface Warfare Center Dahlgren Division
17320 Dahlgren Road

Dahlgren, VA 22448, U.S.A.

 Denis Gračanin

Department of Computer Science
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061, U.S.A.

Dušan Teodorović

Department of Civil and Environmental Engineering
Virginia Polytechnic Institute and State University

Falls Church, VA 22043, U.S.A.

ABSTRACT

This paper describes an approach to real-time decision-
making for quality of service based scheduling of
distributed asynchronous data replication. The proposed
approach addresses uncertainty and variability in the
quantity of data to replicate over low bandwidth fixed
communication links. A dynamic stochastic knapsack is
used to model the acceptance policy with dynamic
programming optimization employed to perform offline
optimization. The obtained optimal values of the input
variables are used to build and train a multi-layer neural
network. The obtained neural network weights and
configuration can be used to perform near optimal
accept/reject decisions in real-time. Off-line processing is
used to establish the initial acceptance policy and to verify
that the system continues to perform near-optimally. The
proposed approach is implemented via simulation enabling
the evaluation of a variety of scenarios and refinement of
the scheduling portion of the model. The preliminary
results are very promising.

1 INTRODUCTION

Data replication is the act of creating and maintaining
multiple copies of data. Data are replicated to enhance the
dependability of the system, enhance performance or both.
Performance is enhanced via locality. Dependability can be
enhanced by creating redundant copies of the data.

 Replication can be deployed at the application level,
the common services level (e.g. a distributed database) or
as a distributed system (a hypermedia system or a file sys-
tem). Data replication models must determine the replicas
placement, updates propagation between replicas and how

to keep the replicas consistent. How the model accom-
plishes these tasks greatly influences the performance and
scalability of the solution.

The support for network file systems on slow net-
works can be provided in several different ways but the
general solution is to push the data as close as possible to
the site where the data is used and to require only remote
communications for updates.

 There are two primary update strategies for files in a
remote file system: logical and physical. The logical up-
date strategy is based on the file abstraction. The strategy
interprets the file system meta-data and writes the file to
the remote file system. The current solutions reduce band-
width usage by relaxing file consistency constraints when
used over low bandwidth connections. The physical update
strategy duplicates the physical medium on which the files
are stored without interpretation. Block level updates are
then made when updating a file. Physical update strategies
are common on high-end data storage products for server-
to-server operations, but have also been implemented for
increased disk performance over high-speed links such as
fiber channel.

The research described in the paper looks to develop a
solution for one-way data replication to a read-only replica
when the bandwidth available for replication is low when
compared to the bandwidth of the storage systems. The
proposed solution looks to maximize bandwidth utilization
by exploiting commonality between replicas as in depend-
ent replicas and provide a method where Quality of Service
(QoS) guarantees can be defined and enforced. The solu-
tion is comprised of three main components: replication
request, scheduling, and replication. A simulation enables
refinements of the scheduling solution along with the
evaluation of a variety of usage scenarios.

Adams, Gračanin, and Teodorović

The remainder of the paper is organized as follows.
Section 2 provides an overview of related work and exist-
ing replication algorithms. Section 3 describes the pro-
posed QoS data replication model. Section 4 describes two
case studies. Section 5 concludes the paper.

2 REPLICATION ALGORITHMS

A number of file systems have properties that help them
tolerate high network latency. The Andrew File System
(AFS) (Howard et al. 1988) uses server callbacks to inform
clients when other clients have modified cached files.
Thus, users can often access cached AFS files without
requiring any network traffic. Leases (Gray and Cheriton
1989) are a modification to callbacks in which the server’s
obligation to inform a client of changes expires after a
certain period of time. Leases’ relaxing of traditional
consistency guarantees reduces the state stored by a server,
frees the server from contacting clients who have not
touched a file in a while, and avoids problems when a
client to which the server has promised a callback has
crashed or gone off the network. The NFS4 protocol
(Shepler et al. 2000), the most common distributed file
system, supports traditional consistency guarantees. It
reduces network round trips by batching operations.

The CODA file system (Kistler and Satyanarayanan
1992) evolved from AFS and supports slow networks and
even disconnected operation. Changes to the file system
are logged on the client and written back to the server in
the background when there is network connectivity. CODA
requires the client have a copy of the files to be updated
before remote or disconnected operations are performed.
CODA provides weaker-than-traditional consistency guar-
antees, allowing update conflicts, which users may need to
resolve manually. CODA saves bandwidth because it
avoids transferring files to the server when they are deleted
or overwritten quickly on the client.

Rsync (Tridgell 2000) is a more efficient replacement
for the rcp utility. The rsync utility copies a file or direc-
tory tree over the network onto another directory tree con-
taining similar file(s). Rsync has proven useful for updat-
ing things like Internet mirror sites. Rsync saves bandwidth
by exploiting commonality between files by considering
only two files at a time. The recipient breaks its file into
non-overlapping, contiguous, fixed-sized blocks and
transmits hashes of those blocks to the sender. The sender
in turn begins computing the hashes of all (overlapping)
blocks. If any of sender’s hashes match one of the recipi-
ent’s hashes, the sender avoids sending the corresponding
block, instead the sender tells the recipient were to find the
block. An alternative algorithm was proposed in the im-
plementation of a low-bandwidth network file system
(LBFS) (Muthitacharoen, Chen, and Mazières 2001).
LBFS considers only non-overlapping chunks of files and
avoids sensitivity to shifting file offsets by setting chunk
boundaries based on file contents, rather than on position
within a file. Insertions and deletions therefore only affect
the surrounding chunks.

DRDB (Reisner 2001) is an open source device driver,
which allows the construction of mirrors over TCP. The
connection is dedicated as to provide adequate bandwidth
for the mirror synchronization. Mirror synchronization can
be 1-safe, 2-safe or asynchronous.

A different approach is the synchronization of mobile
devices. SyncML <www.syncml.org> is an industry
initiative to develop a single synchronization protocol that
works over wireless and wired networks supporting high
latency, high cost, limited bandwidth and low reliability. It
supports arbitrary networked data and makes use of exist-
ing Internet and Web Technologies, i.e., the Extensible
Markup Language (XML), and Multimedia Internet Mail
Exchange (MIME).

The algorithms for distributed replication require con-
currency control protocols to ensure the serialization
(Bernstein, Hadzilacos, and Goodman 1987) of updates.
One-copy serialization (Bernstein and Goodman 1983) is
the correctness criterion for replicated data, a requirement
that ensures the performance of logical data operations are
reflected on the physical copies of the data even in the
event of failures. Distributed data replication algorithms
can be generally categorized into two families of protocols,
Read One Write All (ROWA) and Quorum Consensus
(QC). In ROWA, each replica is updated and the updates
occur in the same order as on the primary. Examples of
ROWA algorithms are Read One Write All Available
(Bernstein and Goodman 1984), Primary Copy Read One
Write All (Alsberg and Day 1976) and True Copy Token
Read One Write All (Minoura and Wiederhold 1982). The
family of ROWA protocols favor read operations by allow-
ing them to proceed with only one copy, while requiring
write operations to be out in up to all the replicas.

Voting or QC algorithms allow writes to be recorded
only at a subset of the available sites. The subset of sites to
be written is known as a write quorum. QC algorithms also
require that a read query a subset of the sites, which is guar-
anteed to overlap the write quorum. This subset is known as
the read quorum. Examples of QC algorithms are Uniform
Majority QC (Thomas 1979), Weighted Majority QC (Gif-
ford 1979) and Random Weights (Kumar 1991). A more
comprehensive coverage of data replication algorithms can
be found in Helal, Heddaya, and Bhargava (1996).

The distributed replication algorithms discussed pro-
vide a system-wide consistent view of data in the presence
of concurrency. If concurrency is not required for a spe-
cific application, the consistency constraints can be re-
laxed. An example of such a special case is where there is
a single read-only replica with one-way synchronization.
This type of replication is common for Disaster Recovery.

The one-way synchronization is from the primary data
source to the replica. Implementations for this case of rep-
lication have occurred over data protocols, such as Fiber

Adams, Gračanin, and Teodorović

Channel or SCSI or over LAN protocols such as TCP/IP
and can replicate the entire disk or logical unit number
(LUN), without regard to the structure of the data or repli-
cate file or record oriented data. A software or hardware
based solution can be used to perform the replication with
the basic replication schemes being server or controller
based. Replication solutions include server-based, applica-
tion-level, filesystem, driver-based, and controller-based.

When performing a replication, the replica can be ei-
ther dependent or independent. An independent replica is
stand-alone image or copy of the data at a single point in
time. Independent replicas are also known as mirrors. An
independent replica will require the identical storage as the
primary image. A dependent replica tracks only data that
has been over-written and are typically point-in-time im-
ages. Dependent replicas require additional storage that is
roughly equivalent to the amount of data being written.
Hitz, Lau, and Malcolm (1994) provides further discussion
of dependent replicas called snapshots in his discussion of
Network Appliance’s Write Anywhere File Layout
(WAFL) design. Figure 1 shows creation and update of a
dependant replica.

Figure 1: Dependent Replica Creation and Update

Dependent replicas have the advantages of requiring

less storage and faster replication but they have two prob-
lems. First, if the primary image develops a problem, such
as a device going off-line, all of the images become un-
available. Secondly, if the amount of data being written
exceeds the capacity of the replica data repository the de-
pendant copy is no longer valid.

Patterson et al. (2002) demonstrated two key concepts
for one-way read-only replications. The first one, the re-
duction in bandwidth, is provided by asynchronous verses
synchronous updates. The reduction range of his demon-
stration was 52% to 98% with an average of 78%. The sec-
ond, block level updates require substantially less band-
width than file level updates. His experiments found
reductions of 48% and 39% in two different replicas. The
time required for the replication was 3.5 and 9 times longer
for the file replication. The study used Network Appliance
filers with the Snapmirror replication utility.

When bandwidth is restricted, the time delays for syn-
chronous replication quickly become prohibitive. Asyn-
chronous replication allows queuing and scheduling of up-
dates thus defining the recovery point objective (RPO) of
the data in the replica. One of the key issues to resolve is
the appropriate RPO for each data item as replication re-
quirements will differ throughout an organization and the
limited bandwidth makes it infeasible to replicate all data
to the shortest RPO. While common, it is undesirable to
define the RPO based on the available bandwidth. A better
solution is to fine-tune the replication to better reflect and
adapt to the current and changing requirements.

3 QOS DATA REPLICATION MODEL

The proposed QoS based data replication model is
comprised of three main components: replication request,
scheduling of replications and the actual replication
(Figure 2). A primary server hosts the data to be replicated.
The replication objects on the primary server are identified.
Request for replication are made to the replication service.
The replication service schedules and controls the
replication process. The replication process is controlled
via messages between the replication service and the
replica server. A replication protocol performs the
replication between the primary server and replica server.

Figure 2: QoS Based Data Replication

The granularity of the replication is at the file level

and is defined by the replication object. Replication objects
are created based on the services provided within a system
and are user defined. Replication objects contain one or
more files. Data files associated with the services are what
is to be replicated. The attributes associated with a replica-
tion object include timing requirements and a priority. The
timing requirements define the interval of replication. The
priority is a QoS parameter, a relative assessment of how
important it is to have the data replicated during a given
interval. The scheduler uses the priorities of the replication
request as the scheduling criteria, maximizing the priority
while fully utilizing the link capacity.

Evaluation of application level replication algorithms
(simulation and real-world results) allows general solutions
on heterogeneous disk subsystem with a single protocol
where hardware dependencies and optimizations do not
bias the research. The replication algorithm operates as a
peer-to-peer remote copy (PPRC) similar to the remote
synchronization algorithm, rsync (Tridgell 2000). The rep-
lication algorithm exploits file commonality in an effort to
gain the efficiencies of block level updates.

Adams, Gračanin, and Teodorović

In evaluating scheduling for QoS based data replica-
tion three characteristics tend to dominate. The first is the
variability and uncertainty of the quantity of data to repli-
cate. Bandwidth reduction techniques, such as exploiting
the commonality between replications, are greatly affected
by the time intervals between asynchronous replications.
While the deltas between a file being modified at different
points in time from a single base will tend to grow, this is
not a certainty. The remaining two characteristics, the ca-
pacity limitations of the communication links and the ex-
pense of long haul communication verses the cost of com-
puting are related.

The scheduler is looking to maximize the use of the
limiting component, the fixed low bandwidth communica-
tions link. The admittance policy of the scheduler can be
viewed as an optimization problem with file size and prior-
ity as parameters of the replication while the link capacity
and the length of time to complete the replication as the
limiting factors.

The Knapsack model and its variants provide a rich
model for the exploration of alternative scheduling options.
An instance of the knapsack problem (KP) can be defined
by the capacity c and a set of n items where an item i is de-
scribed by its profit pi and weight si. A subset of items is
selected such that the total profit of the selected items is
maximized and the total weight does not exceed c. The KP
can be formulated as a solution for the following linear in-
teger program:

 Maximize O =
1

n

i i
i

p x
=
∑

 Subject to
1

n

i i
i

s x c
=

≤∑ (1)

 { }0,1 , 1,...ix i n∈ =

 { }1,..., , 1,...i mp P P i n∈ = .

The profit pi belongs to the set of priorities P1,…,Pm.
Higher priority values represent higher priority items. The
decision vector x identifies which items are to be inserted
into the knapsack. A value of one identifies insertion. All
of the coefficients are positive integers and O is the
objective function. The weight of each item is less than the
capacity so that it is possible to be scheduled,

, 1,...is c i n≤ = .

Finally, the weight of all items submitted to the scheduler
must be greater than the capacity,

n

is c>∑ .

1i=
In the event that the weight of all items submitted to the
scheduler is smaller or equal to the capacity, all items are
scheduled. This model is also known as the 0-1 KP. A
binary decision is made by the optimization to insert the
item into the knapsack are not.

Without loss of generality, the 0-1 KP can be used to
model the scheduling of single files or groups of files that
must be replicated together. An example would be a data-
base where its indices are stored in one file and the data in
a second. In this case, file priorities are the same and the
file sizes are treated in the aggregate. The group of files is
modeled as a single replication object.

KP is NP-hard and can be solved a number of ways
with one such approach being dynamic programming (DP).
DP is a common approach as it provides solutions to KP in
pseudo-polynomial time. Keller, Pferschy, and Pisinger
(2004) provides a further discussion of techniques for solv-
ing the KP. The complexities in finding exact solutions to
KP problems impact the scale to which the solutions are
practical. Furthermore, in order to use the knapsack model
in real-time scheduling, knowledge of future scheduling
requirements would have to be known.

An alternative approach would be to use the relation-
ship between the expenses of long haul communication
verses the cost of computing to our advantage. Gray (2003)
equates cost parity between: one database access, ten bytes
of network traffic, 100,000 instructions, 10 bytes of disk
storage, and one megabyte of disk bandwidth. This parity
implies a gigabyte of data transmitted over the Internet
would require a CPU day of computation to be in balance.
Gray’s conclusion is this parity forces the structure of
Internet-scale distributed computing to place the data as
close as possible to the computation in order to minimize
the expensive network traffic. The premise of this work is
that the data must be replicated, thus transmitted, but a
trade-off of disk bandwidth, disk storage, database access
and computation for reduced network traffic is a beneficial
trade-off. The benefit is based on the fact, also brought out
by Gray, that over the last 40 years telecom prices have
fallen much more slowly than any other information tech-
nology. The greater is the disparity between price defla-
tions, the stronger is the argument for long-haul bandwidth
optimization at the expense of computing resources.

The proposed approach is to divide the scheduler into
two parts, an off-line optimization and an on-line imple-
mentation of the acceptance policy. The off-line optimiza-
tion is based on solving the KP as described by the linear
integer program (1). The off-line optimization results are
used to train a neural network of the appropriate accep-
tance policy. The neural network makes real-time binary
decisions on acceptance of replication requests. The repli-
cation requests are also processed by the off-line optimiza-
tion in order to verify the performance of the network. The
offline processing continues to train a new network on the
data and when necessary replace the in-line network.

Adams, Gračanin, and Teodorović

In the next section two case studies are presented
which look to simulate this proposed scheduling approach
to QoS data replication in the area of disaster recovery.

4 CASE STUDIES

The management of a data replication system includes an
assessment of potential risks. This risk assessment includes
an evaluation of acceptable loss on a service basis. This
evaluation provides a foundation to build business
continuity were the cost of recovery can be weighed
against the risk of a disaster and the impact on the survival
and prosperity of the business. Acceptable losses are
identified in terms of lost availability, how old the
information supplied to and from the services can be, and
the amount of lost data when a service is restored.

The cost of the recovery solution will be directly re-
lated to how quickly the business must be restored and how
much data needs to be protected. It is a business decision
based on cost verses effectiveness and efficiency whether
the business should avoid, mitigate or absorb the risk of a
disaster condition on each service. The restoration of value
to a service is dependent on the restoration of the service’s
data. The importance of data, the availability requirements
and currency requirements of the data for the different ser-
vices will vary between services and over time.

Disaster recovery (DR) planning requires a separation
of resources, assumes data is the single most important
component of any DR solution and that the prioritization of
critical functions for restoration is a fundamental part of
Continuity of Operations Planning. The decision as to what
to replicate and how often is dynamic. The observation is
made that to support varying levels of data value, availabil-
ity and currency requirements, a QoS replication mecha-
nism is needed to ensure minimum guarantees of data cur-
rency, maximizing the currency and availability of highly
valued data and fully use the available network capacity
allocated to DR data replication.

4.1 Simple Replication Scheduling Simulation

The case study presented here establishes a simulation to
evaluate the approach of a real-time optimization using a
Multi-Layer Perceptron Network as a viable scheduler for
a QoS based data replication. The purpose of the data
replication is to create a remote data vault over a fixed low
bandwidth connection. Bandwidth is defined as low when
compared to the data bandwidth. The data synchronization
between the primary and replica is asynchronous.

4.1.1 Simulation Overview

The simulation consists of a three components: submission
of replication request, scheduling the replications, and
finally, the replication. This case study is an evaluation of
the scheduling portion of the simulation.
When replication request are made they have a timing
requirements and a priority. The timing requirement is the
periodicity of the replications, which provides the interval
for the completion of the replication. The priority is a rela-
tive assessment of how important it is to have the data repli-
cated during a given interval. The scheduler uses the priori-
ties of the replication request as the scheduling criteria,
maximizing the priority while maximizing the use of the link
capacity. For example, a set of files associated with a given
service can all be assigned a replication interval of 60 min-
utes and a priority of 100 (low). Every 60 minutes the files
are scheduled for replication. The acceptance policy of the
scheduler decides if the replication can complete within the
60-minute interval. If the replication cannot complete within
the interval, it is rejected. These replication intervals create a
repeating pattern of replication request.

Files submitted for replication consist of a record con-
taining four fields: a system generated primary key, the full
pathname for a file, the priority of the file, and the size of
the file. The priority of each file is 100, 200, 300 or 400,
the higher the number the higher the priority,

{ }100,200,300,400 , 1,...ip i n∈ = .

A uniform distribution is used to generate the random

priorities for the simulation. All of the filenames and sizes
were obtained from four file systems on a single work-
station. Table 1 is an excerpt from the database used for
replication request for the simulation.

Table 1: Replication Request Database Excerpt

PK PRIORITY SIZE FILENAME
0 300 42546201 /…/2.6_Recommended.tar.Z
1 100 351363 /…/gcc-2.95.2/.brik
2 400 345 /…/.cvsignore
3 200 212246 /…/ChangeLog

To take into consideration the effects of file modifica-

tions requiring a variable size update over multiple replica-
tion intervals, the simulation uses a uniform random per-
centage of each file to be replicated when it is submitted to
the scheduler.

4.1.2 Off-Line Processing

In this simulation, the capacity of the knapsack is defined
as the capacity of the fixed bandwidth connection for the
replication between the primary data source and replica.
The value of the items used for optimization, p, is their as-
signed priority. The optimization function, O as described
by the linear integer program (1), is calculated after a pre-
determined timeframe or time slice. The resultant decision
vector, x, used to calculate O, provides the optimal accep-
tance policy for a time slice. Based on this policy, two
queues are created, one containing the items accepted for

Adams, Gračanin, and Teodorović

replication and the second for the rejected items rejected.
In the next time slice, new replication request are added to
the items in the rejected queue and the process repeats.
Items that cannot be scheduled during their replication in-
terval specified as an integer number of time slices are re-
jected. The MinKnap algorithm developed by Pisinger
(1997) is used to calculate O.

4.1.3 Real-Time Processing

The neural network works within the pattern in which it is
trained. The pattern is a replication interval, which repeats.
While the files to replicate repeat over time, whether the
file is modified and the size of the modification varies. The
neural network used in this study is a Multi-Layer Percep-
tron (MLP), which is built and trained using the NeuroSo-
lutions software tool. NeuroSolutions uses the back-
propagation of errors to train the MLP network (Figure 3).
The MLP used has a single hidden layer with three inputs
and a single output.

Figure 3: Multi-Layer Perceptron

As items are accepted or rejected for replication from

the off-line processing, a comma-separated record is writ-
ten to an output file. Each record contains seven fields: a
primary key (PK), time slice of replication request
(TIME), time spent in queue before admittance (TIQ),
admittance or rejection (A/R), priority of request
(PRIORITY), size of request (SIZE), the percentage of
the capacity used when the item is queued for transmis-
sion (CAPACITY_USED), and the full file pathname
(FILE). The input parameters of the MLP are:
PRIORITY, SIZE, and CAPACITY_USED. All of these
parameters are numeric.

The desired output is the A/R parameter. The A/R
parameter is our decision vector. The parameters PK,
TIME, TIQ and FILE are not used by the MLP. The pa-
rameters TIME and TIQ are used by the off-line process-
ing to determine when a replication interval has expired.
The replication algorithm uses the parameters PK and
FILE. This output file is used in training the MLP net-
work. Table 2 is an excerpt from the results of testing a
MLP network. As seen in Table 2, the MLP provides real
outputs for the accept/reject criteria. To use the MLP re-
sults as the acceptance policy for the scheduler, the re-
sults are rounded as follows to provide integer results:

0.5 0.5, 0i ix x− ≤ < = for i = 0, …, n,

0.5 1.5, 1i ix x≤ < = for i = 0, …, n,

otherwise 2ix = for i = 0,…, n, (an error condition).

Table 2: MLP Results
 Des A/R Out A/R
 0.000000 -0.002276
 0.000000 0.004267
 0.000000 0.004334
 1.000000 1.006103

Once the MLP network is trained and validated, pro-

duction data is submitted to the network. The results of the
MLP network are validated by submitting the same pro-
duction data to the off-line processing optimization and
comparing results. This validation determines a valid MLP
network and identifies when the input pattern is changing
and the network requires retraining.

4.1.4 Results

The first example presented uses 13,760 events over 10 time
slices. The 10 time slices represent one replication interval
for each of the replication request. The acceptance policy
was biased by varying the capacity of the link plus and mi-
nus one order of magnitude from a base value. The off-line
processing produced the results shown in Table 3.

Table 3: Off-Line Optimization Results

 Capacity DP Time Accept Reject
Biased
reject

18874 22.462s 2,881 10,879

Unbiased 188743 21.879s 6,808 6,952
Biased
accept

1887430 22.290s 12,207 1,553

A MLP network was created for each of the cases.

Each MLP network used 40% of the data for training (5504
rows), 20% (2752 rows) for cross validation during the
training and 40% (5504 rows) for testing previously unseen
data. The results of the testing are shown in Table 4.

Table 4: MLP Test Results

 Desired
accepted

Desired
rejected

Test
data

correct

Test
data

wrong
Biased reject 1008 4496 5504 0
Unbiased 2318 3186 5504 0
Biased accept 4768 736 5504 0

Adams, Gračanin, and Teodorović

A more advanced example is to enhance the simula-
tion to support multiple replication intervals. If a file can-
not be replicated during the replication interval, the event
is rejected for admission. The training in this example used
30,000 rows of data that represent three replication inter-
vals for 10,000 files. Replication requests were made at a
constant rate of 1000 per time unit for ten time units.
Three replication intervals were run. Each replication in-
terval consisted of 10,000 request of the same files, same
priorities, but with different modification sizes and a re-
sulting different capacity utilization. The format of the test
was the same as the previous example, 40% for training,
20% for cross validation and 40% for testing. Table 5 pro-
vides an interval breakdown of the results of the off-line
programming optimization. The off-line processing took
24.12s. The 30,000 entries were randomized before train-
ing, cross validation and testing. The training time was
13:33 with a MSE of 0.000193. The validation test proc-
essed 12,000 files; 6125 for acceptance and 5875 were re-
jected. All files were processed correctly as compared to
the optimal solution.

Table 5: Off-Line Processing Optimization Results

Interval Accepted Rejected
1 5402 4598
2 5440 4560
3 5448 4552

Once the MLP network was trained and validated, two

production runs of six 10,000-file replication intervals
were made. The first run consisted of the three intervals
used in training, validation and testing plus three additional
intervals. To validate the results of the MLP network, the
same replication request provided to the MLP network
were provide for offline processing optimization. The in-
terval breakdown of the off-line processing is provided in
Table 6. The offline processing took 50.138s.

Table 6: Production Run 1 Off-Line Processing Results
Interval Accept Rejected

1 5402 4598
2 5440 4560
3 5448 4552
4 5457 4543
5 5390 4610
6 5408 4592

The resultant acceptance policy from the offline proc-

essing and the MLP network were compared for the 60,000
files processed. All files were processed correctly based
on the optimal solution with 32,545 files accepted and
27,455 files rejected.

The second production run also consisted of 60,000
files, comprised by six 10,000-file replication intervals. All
six of the intervals were new data to the MLP. Again the
replication requests were provided both to the off-line proc-
essor and the MLP network (Table 7). The resultant accep-
tance policy from the offline processing and the MLP net-
work were compared for the 60,000 files processed. Again
all files were processed correctly based on the optimal solu-
tion with 32,426 files accepted and 27,574 files rejected.

Table 7: Production Run 2 DP Optimization Results

Interval Accept Reject
1 5405 4595
2 5378 4622
3 5396 4604
4 5425 4575
5 5412 4588
6 5410 4590

There were several lessons learned in training the neural

network. The most significant was that if the training data
was largely biased, not enough training data will be provided
for the policy against the bias. In this case, results have
shown the acceptance policy for the cases against the bias to,
basically, be a guess. For example, one result of the dy-
namic programming optimization was 1075 accepted and 8
rejected events. The MLP used 40% for training (434 rows),
20% for cross validation (215 rows) and 40% for testing
(434 rows). The training time took only 51 seconds and the
mean square error was 0.000086. The results of the test
showed 433 files processed with 430 accepted and 3 re-
jected. The MLP network processed 431 of the files cor-
rectly with 2 files processed incorrectly. Upon inspection of
the rejected events, one was correct and two were incorrect
as seen in the output below:

Desired: 0.000000 : Output: 0.117583
Desired: 0.000000 : Output: 0.730678
Desired: 0.000000 : Output: 0.940221.

4.2 Enhanced Scheduler for
DR Data Replication

The aforementioned model does not prevent starvation and
in some cases promotes it. As each file is submitted for
replication, it is placed in a queue. At predetermined times
the queue of request is evaluated and the calculation of
objective function is made. The files defined by the
objective function are replicated; those not identified for
replication remain in the queue. If the file is not replicated
in the number of time slices that make up the replication
interval for the file, the replication request is denied. The
file would again be scheduled for replicated for replication,
but this replication request would include all former
modifications and any modifications made during the
previous replication interval. Figure 4 provides an example
of replication request for a file, f0, every four time slices.
Unless modifications made during previous replication
intervals have been deleted, the file deltas will tend to

Adams, Gračanin, and Teodorović

increase in size. Since the priority of the file is generally
constant, the likelihood of replication tends to diminish
slightly with each replication interval, thus increasing the
likelihood of starvation from replication for a given file. In
order to diminish the impacts of starvation, the model
previously presented is enhanced. In the simulation, deltas
between replications are allowed to grow or shrink. The
delta is determined randomly as a zero to one hundred
percentage of file size.

Figure 4: Replication Intervals

The proposed model expands the objective function of

the 0-1 Knapsack model to include an exponential time
component. An instance of the enhanced knapsack problem
(EKP) can be defined as given a set N, consisting of n item
i with priority pi and size si, and the capacity value c. The
priority pi is a element of the set {2, 3, 4}. Select a
subset of N such that the total priority of the selected items
is maximized, while each item is selected at least once dur-
ing its replication requirement with high likelihood and the
total size does not exceed c.

Formally, an EKP can be formulated as a solution for
the following linear integer programming formulation:

Maximize O =
1

n
t
i i

i

p x
=
∑

Subject to
1

n

i i
i

s x c
=

≤∑ (2)

{ }0,1 , 1,...ix i n∈ =

{ }2,3,4 , 1,...ip i n∈ = .

The exponent t is defined as the replication interval,

1…m, until the first replication. After that, t is set to 1.
The decision vector x identifies which items are to be in-
serted into the knapsack. The value m is defined as the ra-
tion of RR/RI where RR is the required replication and RI
is the replication interval. The value t is incremented after
a replication interval in which the item was not replicated.
At the expiration of the RR, the value of t is reset to 1 and
the filename is logged as not having been replicated. The
object function escalates the values faster for the shorter
interval replications and slower for the items that have
longer replication intervals.
Replication request are made to the scheduler in four
flows. Each flow has its own flow rate per replication in-
terval, the items per replication, its own replication interval
definition, RI, and replication requirement definition, RR.
Table 8 provides simulation parameters. The MLP used in
this case study has two hidden layers with three inputs and
a single output as before.

Table 8: Simulation Flows

Input Items / replication Primary key RI RR
Flow1 298 0 – 297 4 96
Flow2 422 300 – 721 16 96
Flow3 200 750 – 949 32 672
Flow4 2038 950 – 2987 96 672

Validation consisted of a simulation run for 1,347 time

slices. The training took 4:15:02 and provided a MSE of
0.002338. Testing included 33,546 items, 100,643 items
used for training and 33,546 items used for cross valida-
tion. The average t value in the simulation is 1.035. The
results of comparing the acceptance policy from the off-
line processing and the MLP network for the 33,546 files
produced 33,545 correct decisions, 1 incorrect decision
with 27,423 files accepted and 6,123 files rejected. This
simulation is 99.997% of optimal. The incorrect decision
came from a desired value of 1.000000 with an output
value of 1.548140 which was treated as a error condition.

5 CONCLUSIONS

The simulations have shown the approach of a real-time
optimization using a Multi-Layer Perceptron Network to
work extremely well for determining acceptance given a
QoS policy for a replication scheduler. The main issue with
this approach is ensuring that the patterns in the data are
adequately represented in the training data and recognizing
when a pattern is changing or a new pattern is present. The
solution presented is to continue the offline processing of
the data, comparing scheduler and optimal results with
subsequent updating of network weights as required. In
situations were patterns are known and repeating, changing
to a predetermined MLP works well.

ACKNOWLEDGMENTS

This work has been supported in part by an Academic
Fellowship from the Dahlgren Division of the Naval
Surface Warfare Center (NSWCDD) and the Submarine
Launched Ballistic Missile (SLBM) program.

REFERENCES

Alsberg, P. A. and J. D. Day. 1976. A principle for resilient
sharing of distributed resources. In Proceedings of the

Adams, Gračanin, and Teodorović

2nd International Conference on Software Engineer-
ing, 627 – 644.

Bernstein, P. A. and N. Goodman. 1983. The failure and
recovery problem for replicated databases. In Pro-
ceedings of the 2nd ACM Symposium on Principles of
Distributed Computing, 114-122.

Bernstein, P. A. and N. Goodman. 1984. An algorithm for
concurrency control and recovery in replicated distrib-
uted databases. ACM Transactions on Database Sys-
tems, 9(4): 596-615.

Bernstein, P. A., V. Hadzilacos, and N. Goodman. 1987.
Concurrency Control and Recovery in Data base Sys-
tems. Addison-Wesley.

Gifford, D. K. 1979. Weighted voting for replicated data.
In Proceedings of the 7th Symposium on Operating
System Principles, 150-162.

Gray, C. G. and D. R. Cheriton. 1989. Leases: An efficient
fault-tolerate mechanism for distributed file cache
consistency. In Proceedings of the 12th ACM Sympo-
sium on Operating System Principles, 202-264.

Gray, J. 2003. Distributed Computing Economics, IEEE
Task Force on Cluster Computing. Available online
via <http://www.clustercomputing.org/
content/tfcc-5-1-gray.html>. [accessed
August 19, 2004].

Helal, A., A. Heddaya, and B. Bhargava. 1996. Replication
Techniques in Distributed Systems, 13-60, Kluwer
Academic Publishers.

Hitz, D., J. Lau, and M.A. Malcolm. 1994. File System
Design for an NFS File Server Appliance. In Proceed-
ings USENIX Winter 1994 Conference, 235-246.

Howard, J., M. Kazar, S. Menees, D. Nichols, M. Satyana-
rayanan, R. Sidebotham, and M. West. 1988. Scale
and performance in a distributed file system. ACM
Transactions on Computer Systems, 6(1): 51-81.

Keller, H., U. Pferschy, and D. Pisinger. 2004. Knapsack
Problems. Springer-Verlag.

Kistler, J. J. and M. Satyanarayanan. 1992. Disconnected
operation in the coda file system. ACM Transactions
on Computer Systems, 10 (1): 3-25.

Kumar, A. 1991. A randomized voting algorithm. In Pro-
ceedings of the IEEE 11th International Conference on
Distributed Computing Systems, 412-419.

Minoura, T. and G. Wiederhold. 1982. Resilient extended
true-copy token scheme for a distributed database sys-
tem. IEEE Transactions on Software Engineering,
9(5):172-189.

Muthitacharoen, A., B. Chen, and D. Mazières. 2001. A
low-bandwidth network file system, In Proceedings of
the eighteenth ACM symposium on Operating systems
principles, 174-187.

Patterson, H., S. Manley, M. Federwisch, D. Hitz, S.
Kleiman, and S. Owara. 2002. SnapMirror: File System
Based Asynchronous Mirroring for Disaster Recovery.
In Proceedings of the FAST 2002 Conference on File
and Storage Technologies,117-129.

Pisinger, D. 1997. A minimal algorithm for the 0-1 knap-
sack problem. Operations Research, 45:758-767.

Reisner, P. 2001. DRDB, In Proceedings of UNIX en High
Availability, 93 – 104.

Shepler, S., B. Callaghan, D. Robinson, R. Thurlow, C.
Beame, M. Eisler, and D. Noveck. 2000. NFS version
4 protocol. RFC 3010, Network Working Group.

Thomas, R. H. 1979. A majority consensus approach to con-
currency control for multiple copy databases. ACM
Transactions on Database Systems, 4(2):180-209.

Tridgell, A. 2000. Efficient Algorithms for Sorting and
Synchronization. PhD thesis, Australian National
University.

AUTHOR BIOGRAPHIES

KEVIN ADAMS is a senior Scientist for the SLBM pro-
gram at NSWCDD and a Ph.D. student in Computer Sci-
ence at Virginia Tech. He has a B.S in Computer Science
from James Madison University in 1986. He has a M.S. in
Computer Science and a M.S. in Electrical Engineering
from Virginia Tech in 1992 and 1998 respectively. He is a
member of the IEEE Computer Society and the ACM. His
email address is <keadams2@vt.edu>.

DENIS GRAČANIN is an Assistant Professor in the De-
partment of Computer Science at Virginia Tech. He has a
B.S. and M.S. degree in Electrical Engineering from the
University of Zagreb, Croatia in 1985 and 1988, respec-
tively. He has a M.S. and Ph.D. degree in Computer Sci-
ence from the University of Louisiana at Lafayette in 1992
and 1994, respectively, His research interests include vir-
tual reality and distributed simulation. He is a senior mem-
ber of IEEE and a member of AAAI, ACM, APS, SCS,
and SIAM. His email address is <gracanin@vt.edu>.

DUŠAN TEODOROVIĆ is a Professor of Civil and Envi-
ronmental Engineering at Virginia Polytechnic Institute
and State University in Falls Church, VA. He has a B.S.,
M.S., and Ph.D. degree in Engineering from the University
of Belgrade in 1973, 1976, and 1982, respectively. His re-
search interest include Transportation Networks, Air
Transportation, Public Transportation, Traffic Engineering,
Fuzzy Systems, Neural Networks, Metaheuristics, Swarm
Intelligence, Operations Research and Artificial Intelli-
gence Applications in Transportation. His email address is
<duteodor@vt.edu>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1847
	02: 1848
	03: 1849
	04: 1850
	05: 1851
	06: 1852
	07: 1853
	08: 1854
	09: 1855

