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ABSTRACT

We review the basic properties of American options and
the difficulties of applying Monte Carlo valuation to Amer-
ican options. Recent progress on the Least Squares Monte
Carlo (LSM) method is described, including the use of
quasi-random sequences in LSM. A particle approach to
evaluation of American options is formulated. Conclusions
and prospects for future research are discussed.

1 INTRODUCTION

American options are derivative securities for which the
holder of the security can choose the time of exercise. In
an American put, for example, the option holder has the
right to sell an underlying security for a specified price K

(the strike price) at any time between the initiation of the
agreement (t = 0) and the expiration date (t = T ). The
exercise time τ can be represented as a stopping time; so
that American options are an example of optimal stopping
time problems.

Valuation of American options presents at least two
difficulties. First, there is a singularity in the option charac-
teristics at the expiration time. For American puts and calls
on equities with dividends, a thorough analysis of this singu-
larity was performed by Evans, Kuske, and Keller (2002).
These results are briefly described in Section 3.

A second difficulty occurs for Monte Carlo valuation
of American options, the main subject of this paper. Monte
Carlo methods are required for options that depend on
multiple underlying securities or that involve path dependent
features. Since determination of the optimal exercise time
depends on an average over future events, Monte Carlo
simulation for an American option has a “Monte Carlo on
Monte Carlo" feature that makes it computationally complex.

In this paper, we review several methods for overcoming
this difficulty withAmerican options. The first, developed by
Broadie and Glasserman (1997) and presented in Section 4
involves two branching processes, the first of which provides
an upper bound and the second a lower bound on option price.
The second method, presented in Section 5, is a Martin-
gale optimization formula developed in Rogers (2002) that
provides a dual formulation of the Monte Carlo valuation
formula and leads naturally to an upper bound on the option
price. The third (Section 6) is the Least Squares Monte Carlo
(LSM) derived by Longstaff and Schwartz (2001). Finally
we described work by the authors on use of quasi-random
sequences in LSM (Chaudhary 2003a) in Section 7.

A brief introduction to the salient features of American
options is given in Section 2 and a discussion of conclusions
and prospects for future research is described in Section 8.

2 AMERICAN OPTIONS

In this section we describe some of the basic features of
American options. These include the Black-Scholes PDE
and the risk-neutral valuation formula for option price, the
optimal exercise boundary, and the “Monte Carlo on Monte
Carlo" difficulty.

Consider an equity price process S(t) that follows an
exponential Brownian motion process according to the fol-
lowing stochastic differential equation

dS = µSdt + σSdω (1)

in which µ and σ are the average growth rate and volatility
(both assumed to be constant) and ω = ω(t) is standard
Brownian motion.

The option payout function is u(S, t). A path dependent
option is one for which u(S, t) depends on the entire path
{S(t ′) : 0 < t ′ < t}; whereas a simple (non-path dependent)
option has u(S, t) = u(S(t), t). For a simple European
option the payout may only be collected at the final time
so that it is f (T ) = u(S(T ), T ). For a simple American
option, exercise may be at any time before T so that the
payout is f (τ) = u(S(τ), τ ) in which τ is an optimally
chosen stopping time. The reason τ is a stopping time is
that the decision of whether to exercise at time t can only
depend on the values of S up to and including t .
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Examples of simple payout function are a call, for which
u = max(S−K, 0), and a put, for which u = max(K−S, 0).
Examples of path dependent payouts are the Asian option
uA and the lookback uL given by

uA = U((t − t0)
−1

∫ t

t0

S(t ′)dt ′)

uL = U( max
t0<t ′<t

S(t ′))

in which U is some function such as the call or put payout.
In uA and uL, the lower time limit t0 could be 0 or it could
be t − �.

The early exercise boundary is the set in time and state
space on which exercise of the American option is optimal.
For a simple option, this is just a curve S = S∗(t) in the
space (S, t). For a path dependent security, the exercise
decision depends on more that S(t) and t , so that the early
exercise boundary is more complicated.

In their classic papers, Black and Scholes (1973) and
Merton (1973) described two methods for valuation of
derivative securities. The first is the Black-Scholes PDE.
For an American option with value F , the Black-Scholes
PDE is

Ft + rSFS + σ 2S2FSS = rF

in which r is the risk-free rate of return. The “final condition"
is

F(S, T ) = u(S, T )

and the boundary conditions on the free boundary S = S∗(t)
are

F = u

FS = uS.

The second method, which is applicable to path-
dependent options and other derivatives for which the PDE is
either unavailable or intractable, is the risk-neutral valuation
formula

F(S, t) = max
τ

E′[e−r(τ−t)u(S(τ ), τ )|S(t) = S] (2)

in which E′ is the risk-neutral expectation, for which the
growth rate µ in (1) is replaced by r . The maximum is
taken over all stopping times τ with t < τ < T . This is the
formula to which Monte Carlo quadrature can be applied.

This risk-neutral valuation approach provides a stochas-
tic characterization of the early exercise boundary. Consider
the exercise decision at a point (S, t). The value of early
exercise
is just the payoff u(S, t). The expected value of deferred
exercise is F̃ given by

F̃ = max
τ

E′[e−r(τ−t)u(S(τ ), τ )|S(t) = S]. (3)

The holder of the option will choose to exercise if u > F̃ ,
so that

F = max(u(S, t), F̃ ) (4)

and u(S∗(t), t) = F̃ on early exercise boundary.
A lower bound on the American option price follows

from the formula (4). Let τ ′ be any stopping time and let
F ′ be the price using this stopping time; i.e.

F ′ = E′[e−r(τ ′−t)u(S(τ ′), τ ′)|S(t) = S]

then

F ≥ F ′.

3 ASYMPTOTICS FOR AMERICAN PUTS
AND CALLS WITH DIVIDENDS

When the early exercise boundary S = S∗(t) hits the final
boundary t = T , there is a singularity in the exercise
boundary shape, which is characteristic of many free
boundary problems. In addition, S∗(T ) (the intersection of
the early exercise boundary and the final boundary) may
differ from K (the exercise boundary on the final boundary).

While these properties have long been recognized,
the detailed asymptotics of the singularity in the early
exercise boundary were not analyzed until recently.
Evans, Kuske, and Keller (2002) derived the shape of the
early exercise boundary for American put and call with
dividends by two alternative methods: asymptotics for an
integral equation formulation and matched asymptotics for
the Black-Scholes PDE. The dividends are assumed to pay-
out at a continuous rate D. The early exercise boundary
S∗

P (t) for the American put and S∗
C(t) for the American call

satisfy the following:

S∗
P (t) =




K + c1
√

(T − t) log[1/(T − t)] if 0 ≤ D < r

K + c2
√

(T − t) log[1/(T − t)] if D = r

(r/D)(K + c3
√

T − t) if D > r

S∗
C(t) =




K + c1
√

(T − t) log[1/(T − t)] if D > r

K + c2
√

(T − t) log[1/(T − t)] if D = r

(r/D)(K + c3
√

T − t) if 0 ≤ D < r

in which c1, c2, c3 are constants that depend on σ , D and
r . Note that for D > r , S∗

P (T ) = (r/D)K < K and
for D < r , S∗

C(T ) = (r/D)K > K which shows that the
exercise boundary on the final boundary is not on the early
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exercise curve. Also as D → 0, the early exercise boundary
for the American call goes away to infinity.

4 BRANCHING PROCESSES

The “Monte Carlo on Monte Carlo" property can be seen
in the decision formula (4). Consider a simulated path and
a point (S(t), t) on that path. In order to decide whether
to exercise at that point, one must evaluate the expectation
in (3). This in turns requires continuation from (S(t), t) on
many paths. Therefore this direct Monte Carlo simulation of
the American option requires a set of continuously branching
paths, which is computationally intractable.

Broadie and Glasserman (1997) consider a Bermudan
option; i.e., an option in which exercise can occur at any
one of a discrete number d + 1 times t0, . . . , td . They
constructed two branching processes, each with b branches
at each exercise time. The first process provides an upper
estimate Fu and the second a lower estimate F�, on average;
i.e.

E[F�] ≤ F ≤ E[Fu]. (5)

In addition, both processes converge to the correct price
as the branching number b and the number of paths N

increase; i.e.

lim
b→∞, N→∞ F� = lim

b→∞, N→∞ Fu = F.

On the other hand, this construction is computationally
complex with CPU time that scales like O(Nbd).

In both processes the price is determined by “rolling-
back" on the branched paths. At the final time, exercise
is determined by whether the payout is positive or not.
Consider a time tk before the final time and suppose that
the price has been found for all times tm with m > k. The
price Fk at a point (Sk, tk) is determined as in (4). Set

F̃ ′
k = E′

Sk,tk
[e−r(tk+1−tk)u(Sk+1, tk+1)] (6)

and then

Fk = max(u(Sk, tk), F̃k). (7)

In (6), the expectation is the empirical average over a chosen
set of branches that continue from (Sk, tk).

The difference between the upper and lower processes
is which paths are used in the expectation of (6). In the
upper process all of the branches are used. Since the early
exercise decision uses knowledge of the future for the finite
set of branching paths, then the price estimate Fu is biased
high. This gives the upper estimate in (5).

For the lower process, at each decision points, one of the
branches is designated to be the continuation branch. The
average in (6) is determined using the other b−1 branches.
The value of this empirical average is independent of the
continuation branch, but since the average is approximate,
the resulting exercise decision is suboptimal. Therefore the
resulting price estimate F� is biased low. This gives the
lower estimate in (5).

5 MARTINGALE OPTIMIZATION

Rogers (2002) derived a formula for the American option
price that is dual to the formula in (2):

F(0) = min
M

E′[ max
0<t ′<T

(e−rt ′u(t ′) − M(t ′))] (8)

in which the min is taken over all martingales for which
M(0) = 0. Similar formulas were derived by Anderson and
Broadie (2001) and Kogan and Haugh (2001).

By insertion of a (non-optimal) martingale M into (8),
one gets a upper bound on F . This has been carried out
for various choices of M in Andersen and Broadie (2001),
Kogan and Haugh (2001), Lamper and Howison (2002),
Rogers (2002). Chaudhary (2003b) has used this to form
an approximate method for hedging the American option.

6 LEAST SQUARES MONTE CARLO (LSM)

Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy
(1999) introduced a new approach to Monte Carlo evaluation
of American options by replacing the future expectation by a
least squares interpolation. The method starts with N random
paths (Sk

n, tn) for 1 ≤ k ≤ N and tn = ndt . Valuation is
performed by rolling-back on these paths.

Suppose that Fk
n+1 = F(Sk

n+1, tn+1) is known. For
points (Sk

n, tn) set X = Sk
n the current equity value and Y =

e−rdtF (Sk
n+1, tn+1) the value of deferred exercise. Then

perform regression of Y as a function of the polynomials
X, X2, . . . , Xm for some small value of m; i.e. approximate
Y k by a least squares fit of these polynomials in X. Use
this regressed value as an approximation to F̃ in (3) and
use this value in deciding whether to exercise early.

Longstaff and Schwartz have applied this method to
puts, Asian options, swaps, swaptions and other options
with excellent results for small m.

7 QUASI-MONTE CARLO FOR LSM

In their LSM paper, Longstaff and Schwartz (2001) sug-
gested that their method might be improved by the use of
quasi-random points. There are two potential difficulties
with this extension of the method: the problem is high di-
mensional and the prices along different paths in the LSM
method are correlated, both of which can be problematic
for quasi-Monte Carlo.
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Quasi-random sequences are a deterministic alternative
to random or pseudo-random points. The distribution of
quasi-random points is much more uniform that than of
random points, because of correlations between the points
that are designed to keep them from clumping. As a result,
Monte Carlo quadrature in d dimensions using N quasi-
random points can converge at a rate N−1(log N)d , as
opposed to convergence at rate N−1/2 for random points
(Caflisch 1998). The exponent d for the log indicates that
the advantages of the method can breakdown for large
dimension.

Chaudhary (2003a) implemented a Brownian bridge
(BB) construction for the paths in the LSM method. As seen
in earlier examples (Caflisch, Morokoff, and Owen 1997,
Caflisch 1998), this can reduce or remove the high dimen-
sionality difficulty for quasi-Monte Carlo quadrature of path
dependent securities. In addition, the BB method shows
that the memory requirements of the LSM method can be
significantly reduced. The potential difficulty with correla-
tions between the paths did not turn out to be much of a
problem, perhaps because the true correlations are via the
early exercise boundary which is deterministic.

8 CONCLUSIONS

Our intention in writing this paper is to describe the dif-
ficulties involved in applying Monte Carlo evaluation to
American options, as well as several recent methods that
are quite promising for overcoming these difficulties. Here
are some directions that we believe to be promising for
future research.

The singularity in the early exercise boundary
at the final time has been well characterized by
Evans, Kuske, and Keller (2002), at least for call and put
options. The information in these asymptotic results could
be valuable in improving Monte Carlo simulations. In par-
ticular, Caflisch and Goldenfeld (2004) have formulated a
particle method for solution of American options, in which
the main determination of the solution comes from this
singularity.

For Martingale optimization, there is not yet a good
method for choosing the Martingale in order to get a good
approximation. In particular, one might hope to find an iter-
ative method, in which an approximate Martingale would be
modified at each step in order to improve the approximation
over that of the previous step.

The LSM method with random or quasi-random se-
quences has been shown to work well on a good selection
of examples, but it still needs to be validated for more com-
plicated examples, such as American Asian options with a
moving window over which the average is taken. Partial
results for this problem are found in Bilger (2003).
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