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ABSTRACT 

In recent years, the credit derivatives market has grown 
explosively and credit derivatives have become popular 
tools for hedging credit risk of financial institutions. 
Among the more sophisticated credit derivatives are the 
ones where the contingent payoffs depend on the depend-
ence relationship among several firms in a basket, such as 
First-to-Default Credit Default Swap. In this paper, we pre-
sent a simulation-based First-to-Default Credit Derivative 
Swap pricing approach under jump-diffusion and compare 
it with the popular default-time approach via Copula. 

1 INTRODUCTION 

A Credit Default Swap (CDS) is a contract in which one 
party buys protection for possible losses of reference asset 
(for example, a bond or a loan) due to a credit event such 
as default by the issuer. The protection buyer makes peri-
odic payments to the protection seller until either the ma-
turity of the contract or a credit event occurs. Upon the 
credit event, the seller pays the loss incurred by the credit 
event to the buyer and the buyer usually makes a final ac-
crual fee payment to the seller. A single-name contract is a 
CDS that depends on the credit event of one bond or loan 
(referred to as a “name”). 

Multiname contracts are ones where contingent pay-
offs depend on the credit risk of several names in a basket. 
For example, in a First-to-Default (FtD) contract, the con-
tingent payment is made by the protection seller to the pro-
tection buyer as soon as a default occurs among the names 
in the basket, and after that the contract expires.  

The purpose of this paper is to introduce a jump-
diffusion based approach with correlation for pricing FtD 
and compare it with the popular Copula approach. In Sec-
tion 2, we discuss the reasoning behind using jump-
diffusion. Section 3 looks into the pricing of FtDs and into 
the role of correlation, whereas Section 4 describes the al-
gorithm. The Copula approach is discussed in Section 5, 
and Section 6 concludes the paper. 

 

2 MODELING DEFAULT PROBABILITIES 

A CDS protects the protection buyer in case of a default of 
the reference asset. Thus, it is obvious that accurate estima-
tion of default probabilities is crucial to pricing of CDSs. In 
deriving default probabilities, there are two broad modeling 
approaches: structural approach (see e.g. Merton (1974); 
Merton (1976); Black and Cox (1976); Longstaff and 
Schwartz (1995)), and reduced form approach (see e.g. Duf-
fie and Singleton (1995); Jarrow, Lando and Turnbull (1994); 
Jarrow and Turnbull (1995); Madan and Unal (1994)). Zhou 
(1997) characterizes the two approaches as follows:  

 
1. Structural approach proposes that the evolution of 

the firm's asset value follows a diffusion process, 
as proposed by Merton (1974). Defaults occur 
when the value of the asset becomes lower than 
the debt. According to the structural approach, 
firms never default by surprise due to the diffu-
sion process, which is continuous. 

2. Reduced-form approach assumes that there is no 
relation between the firm value and default. De-
fault is seen as an unpredictable Poisson event in-
volving a sudden loss in market value. Thus, ac-
cording to reduced-form approach, firms never 
default gradually. 

 
As Zhou (1997) argues, in reality default can occur in 

both ways: firms can default either gradually or by surprise 
due to unforeseen external shocks. The philosophies behind 
the structural and reduced form approaches can be combined 
by using a jump diffusion model that allows both gradual 
and sudden defaults (see e.g. Merton (1976), Ahn and 
Thompson (1988), Kou (2001) and Zhou (1997, 2001)).  

The jump-diffusion approach overcomes some diffi-
culties encountered in a traditional diffusion-based pricing 
approach. In particular, a CDS pricing approach based on a 
diffusion-process produces zero credit spreads for very 
short maturities. This happens because, if there is a finite 
distance to the default point (barrier), a continuous process 
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cannot reach it in a very short time period. This is prob-
lematic because in reality the credit spreads would not go 
to zero even for contracts with very short maturities. (See 
Joro and Na, 2003 for further discussion on pricing CDS 
with jump-diffusion models). 

3 PRICING FTD 

Suppose that we have credit exposure to three names: 
AT&T (T), Ford (F), and Time Warner (TWX) and want to 
hedge the credit risk (Figure 1). On July 12, 2004, market 
quotes in basis points (bp, 1% = 100 bp) for 5-year CDS of 
T, F, and TWX were 330, 180 and 84, respectively.  Since it 
is not possible to know which names will default in advance, 
full protection requires the purchase of a CDS for all names. 
However, this can be expensive. In this kind of scenario, 
FtD is very useful: it offers protection against the first de-
fault among the names, and is cheaper than buying three 
separate CDSs. In fact, the sum of the premiums (quotes) of 
the three individual CDSs is the theoretical upper bound for 
FtD price. In addition, FtD provides good investment incen-
tive to the protection seller since by selling FtD, the seller’s 
credit exposure is limited to just one name and FtD typically 
earns significantly more income than a single CDS. 

In our example, intuitively, the quote for FtD should be 
somewhere between 330 (the worst one: T) and 594 (the sum 
of all three). It turns out that the dependence relationship 
plays a big role in determining the quote. Let us examine two 
correlation scenarios: 5% and 95% (Figures 2a and 2b). 
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Figure 2a: 5% Correlation for All Pairs 
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Figure 2b: 95% Correlation for All Pairs 

 
The premium of FtD depends on the area 

( TWXFT PPP ∪∪ ), i.e. the probability of having at least 
one default. Clearly, the premium in Figure 2a will be 
greater than the one in Figure 2b. 

When the correlation for all pairs of names in the bas-
ket is 1, the FtD premium ( FtDS ) should be equal to the 
largest individual premium maxS . This essentially means 
that all names in the basket are identical, and effectively 
there is exposure to one name only. When the correlation is 
0 for all pairs, the premium for FtD contract of n names 

equals the sum of n individual premiums: ∑ =
=

n

i iFtD SS
1

. 

Thus, upper and lower limits for the price of a FtD can be 

expressed as ∑ =
≤≤

n

i iFtDmax SSS
1

. 
Thus, unlike in the traditional Markowitz portfolio 

theory, diversity (low correlation) is bad for FtD because 
FtD get riskier as the correlation goes down. 

Clearly, modeling correlation is crucial in accurately 
pricing multiname products including FtD. However, cor-
relation (default correlation) is rather difficult to model, 
particularly due to the lack of available market data.  

Similar to a single name CDS, a FtD can be priced by 
equating the sum of present values of the fee leg to the sum 
of present values of the contingent payment leg. 

Suppose that the CDS rate S as a fraction of notional in 
bp per year is paid at dates t1 < t2 <…< tn = T with ∆( ti-1, ti) 
representing the interval between payments dates (i.e., 0.5
Protection Buyer
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Figure 1: First-to-Default (FtD) Credit Default Swap (CDS) 
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for semi-annually payments).  The sum of present values of 
fee leg, F, can be written as 
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where ( )3211 ,,min ττττ = is the 1st default time.  

The sum of present values of fee accruals, A, can be 
defined as 
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where it is assumed that the default between the regular 
fee payments always occurs exactly in the middle. The 
error from this approximation gets smaller as the time 
step gets smaller.  

The contingent leg payoff, C, can be described as  
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Then, 
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Therefore, 
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4 JUMP-DIFFUSION STRUCTURAL  
APPROACH WITH CORRELATION 

Following Merton (1976), for all three names, let V follow 
a jump-diffusion process 

 
 ( ) ( ) iiiiiiiiiii dpVJdWVdtVdV 1−++−= σκλµ   
where κ = E(J – 1), ln(J) ~ N(ν,γ2), dp is a Poisson process 
generating the jumps with the intensity of λ and idW  
represents the standard Brownian motion with correlation 
structure from equity prices. 

Although several models use multivariate normal as-
sumptions, this is problematic in credit risk modeling. In 
practice, more joint extreme events occur than under nor-
mality assumption. 

Suppose there exist two random variables X and Y 
with marginal distributions FX and FY. Then, lower tail de-
pendence is defined as  

 

 ( ) ( )( )uFXuFYP XYu

11

0
|lim −−

→
<<=λ .  
Under multivariate normal distribution, as Nyfeler (2000) 
shows, λ is 0. In reality, λ should be non-zero, which can 
be achieved under t-distribution. Thus, we employ t-
distribution as follows: 
 

1.  Cholesky decomposition A of R (correlation ma-
trix) such that TAAR ⋅=  

2.  Draw 3-dimentional independent normal random 
variables z = ( )321 ,, zzz   

3.  Draw an independent 2
νχ  random variable s 

4. y = z’A 

5.  x= y 
s
ν . 

 
For the example given in Section 3, the parameters and 

correlation matrix for structural approach are given in Tables 
1 and 2. 
 

Table 1: Parameters for Asset Value Simulation 
 AT&T 

(T) 
Ford 
(F) 

Time War-
ner (TWX) 

Asset in Billions 38 311 118 
Default Point 18 201 29 
Asset Volatility 14% 6% 25% 
Risk free rate 1.90% 
Recovery 50% 
Ln(J) N(0, 0.0054) 

 
Table 2: Correlation Matrix 

 T F TWX 
T 1 0.825 0.846 
F 0.825 1 0.911 

TWX 0.846 0.911 1 
 

As discussed in Section 3, low correlation produces 
higher premiums. As Table 3 shows, under ν = 2 the fact 
that there are more extreme events increases default corre-
lations and thus reduces the premium. 

 
 

Table 3: Results from Jump-Diffusion Approach 
ν        (De-

grees of 
Freedom) 

Historical 
Correlation 

(as in Table 2) 

5% 
Correla-

tion 

95% 
Corre-
lation 

2 393 552 349 
30 416 572 365 

5 U DEFAULT TIME APPROACH VIA COPULA 

A Copula ( ) [ ] [ ]1,01,0:,,1 →n
nuuC …  is a multivariate dis-

tribution function such that its marginal distributions are 
uniform. Copulas can be used to link marginal distributions 
with a particular dependence structure. 
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For given univariate marginal distribution functions 
( ) ( )nn xFxF ,,11 … , ( ) ( )( ) ( )nnn xxFxFxFC ,,,, 111 …… =   

produces a multivariate distribution function through a 
Copula C. 

Sklar’s Theorem (see Nelsen (1999)) proves that for any 
multivariate distribution function F with marginals 

nFF ,,1 … , there exists a Copula C such that 
( ) ( ) ( )( )nnn xFxFCxxF ,,,, 111 …… = . 

In other words, Sklar’s theorem provides that for any 
multivariate distribution, the univariate marginal distributions 
and the dependence structure can be separated. This is par-
ticularly convenient for pricing multiname products by bor-
rowing dependence structure from equity data and marginal 
cumulative default probability distribution from single 
name CDS quotes. 

To implement the Copula approach, the following 
steps are taken (Figure 3): 

 
1. Draw ( )∑,0~,, 321 νtrrr with equity correlations. 
2. Get uniform random variables through univariate 

cumulative t-distribution 
3. Get the default times ( )( )iii rTF ντ 1−=  with the 

credit curve (interpolated term structure of cumu-
lative default probability in bp) in Table 4. 

 
As Figure 3 illustrates, most of time the algorithm returns 
11 (no default). Since we are pricing 5-year contracts, any-
thing greater than 5 would result in no default.  
 The same interpretation as given in Section 4 applies 
to Table 5. 
 

Table 4: Credit Curves as of 7/12/2004 
Year T F TWX 

0 0 0 0 
1 180 110 48 
2 325 181 73 
3 470 252 98 
4 565 306 133 
5 660 360 168 
6 686 375 178 
7 712 390 188 
8 728 399 197 
9 744 407 205 

10 760 416 214 
11 10000 10000 10000 

 
Table 5: Results from Copula Approach 
ν Historical 

Correlation
5% 

Correlation 
95%  

Correlation
2 441 510 397 
30 487 580 410 

6 CONCLUSION 

In structural approach, the jump-diffusion nature of default 
process can be explicitly incorporated into the model. 
However, the approach is very time consuming and com-
putationally expensive. 

The Copula approach is very simple and computation-
ally fast. In Copula approach, the underlying assumption is 
that all relevant information is already included through the 
market views in single-name CDS curves. 
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Figure 3: Generating Correlated Default Times from Credit Curve through Copula 
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