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ABSTRACT

We consider the problem of estimating the small probabil-
ity that a function of a finite number of random variables
exceeds a large threshold. Each input random variable may
be light-tailed or heavy-tailed. Such problems arise in fi-
nancial engineering and other areas of operations research.
Specific problems in this class have been considered ear-
lier in the literature, using different methods that depend
on the special properties of the particular problem. Us-
ing the Laplace principle (in a restricted finite-dimensional
setting), this paper presents a unified approach for deriv-
ing the log-asymptotics, and developing provably efficient
fast simulation techniques using the importance sampling
framework of hazard rate twisting.

1 INTRODUCTION

We consider the problem of estimating the small probability
that a general function of a fixed number of random variables
exceeds a large threshold. The input random variables to the
function may be light-tailed or heavy-tailed and are assumed
independent; the latter may not necessarily be a limitation
due to the existence of copula methods that transform de-
pendent random variables into independent ones. Recently,
several specific cases of such problems have been considered
in the literature, mainly in the area of financial engineer-
ing (e.g., Glasserman, Heidelgerger and Shahabuddin 2002;
Huang and Shahabuddin 2003), but also in other areas (e.g.,
stochastic PERT networks have been considered in Juneja,
Karandikar and Shahabuddin 2004 and stochastic shortest
path problem in Kroese and Rubinstein 2004). In most of
these problems, either the function is very complex or the
number of input variables is very large making the analytical
and/or numerical computation of this probability very dif-
ficult. This coupled with the fact that the event of interest
is rare, makes naive simulation also very time consum-
ing. While some papers use adaptive importance sampling
changes of measure with no formal log-asymptotics and
simulation efficiency results (e.g., Kroese and Rubinstein
2004; however, the adaptive approach uses less system spe-
cific properties), others derive log-asymptotics and develop
provably efficient (in a certain sense), importance sampling
based fast simulation methods using the special properties
of the problem at hand.

In this paper we present a unified approach for deriving
the log-asymptotics for such probabilities as the threshold
goes to infinity (the probability of interest becomes smaller).
We then develop a provably efficient importance sampling
change of measure under the general framework of hazard
rate twisting (Juneja and Shahabuddin 2002). Unlike ex-
ponential twisting, hazard rate twisting can be applied to
both light-tailed and heavy-tailed random variables. As an
illustration, we apply the approach to value-at-risk prob-
lems that arise in financial engineering. With this new
approach, one can now attempt to develop asymptotics and
provably efficient fast simulation techniques directly for
the loss probability, rather than its quadratic approximation
(only the latter seems to have been done in the literature
so far). Hazard rate twisting of input random variables has
also been suggested as one of the approaches in Kroese and
Rubinstein 2004; however the parameters of the twisting
are obtained in an adaptive manner and no formal efficiency
results are proved.

Rare event asymptotics and importance sampling based
fast simulation have been extensively studied in the light-
tailed setting in areas like queueing, reliability, insurance
(see, e.g., Bucklew 1990, Heidelberger 1995, Juneja and
Shahabuddin 2004 for expositions and surveys). Most of
these works deal with estimating probabilities concerning
infinite sums and stopped sums of sequences of random
variables. Hence these problems are “infinite-dimensional”,
which in general are much more difficult than the finite-
dimensional problems that we consider. However, we con-
sider general functions of random variables rather than
simple sums, and this introduces a complexity that is not
present in much of the light-tailed, rare-event simulation
literature.
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In the heavy-tailed setting, even though rare event
asymptotics has been studied extensively (see, e.g., Em-
brechts, Kluppelberg and Mikosch 1997), the techniques
used are very different from those used for light-tailed
asymptotics. This is because the manner in which rare
events occur in the two settings are very different. Prov-
ably efficient fast simulation techniques in this area have
remained elusive, since unlike the light-tailed setting, it is
not easy to transfer the information from asymptotics into
importance sampling changes of measure. Till date, in the
“infinite-dimensional” setting, provably efficient simulation
techniques exist only for estimating the probability that a
sum of a geometric number of i.i.d heavy-tailed random
variable exceeds a large threshold (Asmussen and Bin-
swanger 1997, Asmussen, Binswanger and Hojgaard 2000,
and Juneja and Shahabuddin 2002). This has applications
only in some very simple models in queueing and insur-
ance. Some partial success has been obtained for the case of
random walks, for some specific heavy-tailed distributions
(Boots and Shahabuddin 2000). Some work has also been
done regarding heavy-tailed simulation for specific prob-
lems in the domain of this paper (see references mentioned
in the first paragraph) using innovative approaches that are
targeted to the problem at hand. Each such case seems to
require a new approach.

This work suggests that at least for the “finite-
dimensional” problems that we consider, it is possible to
develop a unified theory for both light-tailed and heavy-
tailed asymptotics (and fast simulation). It also shows how
classical results (like the Laplace principle), that have so far
been mainly been used in the domain of light-tailed asymp-
totic theory, can also be used in the heavy-tailed setting (even
though in this restricted finite dimensional setting). Fur-
thermore, it shows that just as exponential twisting played
a central role in light-tailed importance sampling, hazard
rate twisting seems to play a central role when we consider
light-tailed and heavy-tailed simulations under a unified
framework.

A formal statement of the problem is given in Section 2.
In Section 3 we give specific examples of this problem from
the literature. In Section 4 we first develop a large-deviation
principle (in the restricted finite-dimensional setting) for a
non-negative random vector that may include both light
and heavy-tailed random variables. We then introduce a
normalization that transforms the problem of estimating the
tail probability into a form where one can make use of this
large deviation principle, thus arriving at a log-asymptotics
for the tail probability. In Section 5 we use a version of the
Laplace principle to show that hazard rate twisting, with
an appropriate selection of twisting parameter, is asymp-
totically logarithmically efficient, i.e., the simulation using
this change of measure remains efficient as the probability
tends to zero. The hazard rate twisting in this case turns
out to be equivalent to twisting with the rate function of
the large-deviations principle for the random vector. An
alternate equivalent formulation of the asymptotics and im-
portance sampling is presented in Section 6. In Section 7
we show how to extend the methodology to the case of input
random variables taking values on the real line. Finally, in
Section 8 we apply the methodology to one of the examples
of Section 3. We should caution the reader that due to
space limitations, this paper makes many simplifications
and states some key results without proof (the algorithms
are explained fully in this paper). For a detailed exposition
the reader is referred to Huang and Shahabuddin (2004).

2 THE PROBLEM

Let X = (X1, . . . , Xm) be a vector of independent random
variables. For simplicity in presentation we will assume
that each Xi is a continuous random variable with support
S i = (0, ∞) or Si = [0, ∞) (e.g., gamma or exponential or
Pareto). Xi’s with support (−∞, 0) or (−∞, 0] can easily
be accomodated by defining a random variable that is the
negative of Xi . Similarly, random variables with support
(c, ∞), for some non-zero constant c, can be accomodated
by defining another random variable that subtracts c from
Xi . Later in Section 8, we show how to extend this study
to the case where some or all of the Xi’s have support
(−∞, ∞) (e.g., normal). Also, the Xi’s may be light-
tailed or heavy-tailed to the right (see later for definitions);
similarly for left tails, if any.

We consider the problem of estimating α(y) = P(Y >

y), where Y = h(X), h is a continuous function taking
values in the set of real numbers (thus Y inherits the same
regularity properties as those of the Xi’s), and y is a large.
Let x to denote the vector (x1, . . . , xm). The continuity
condition also implies that the only way h(x) → ∞ is
by ||x|| → ∞. Hence the only way the event {Y ≥ y}
can happen for large y, is by one or more of the Xi’s
either becoming either very large or very small. We will
first derive log-asymptotics for this quantity as y → ∞,
and then give a fast simulation method for estimating this
quantity that is asymptotically logarithmically efficient (see,
e.g., Heidelberger 1995; also defined later).

Let the cumulative distribution function (cdf) of Xi be
Fi , and let F̄i = 1 − Fi . Define the hazard function as
�Xi

(xi) := − ln(F̄i(xi)). Note that given our assumptions,
�Xi

(xi) is strictly increasing in xi over the range where
the pdf of Xi is positive. For any generic random variable
W we will let �W(w) denote its hazard function, and let
MW(θ) denote its moment generating function. A generic
random variable W is defined to be light-tailed to the right
if MW(θ) < ∞ for some θ > 0; otherwise it is defined to
be heavy-tailed to the right (similar definitions apply for
the left tails). For any two functions, say g1(w) and g2(w),
g1 ∼ g2 denotes that limw→∞ g1(w)/g2(w) = 1.
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3 EXAMPLES

We now present several examples from the literature where
specific cases of this problem have been considered.

Example 1 (Heavy-tailed simulation): This is the prob-
lem of estimating P(Y > y) where Y = ∑m

i=1 Xi and Xi’s
belong to a large class of heavy-tailed distributions called
subexponential distributions (see, e.g., Embrechts, Kluppel-
berg, Mikosch 1997, for a rigorous definition). This is the
first heavy-tailed simulation problem to be considered in
the rare event simulation literature. Different, provably effi-
cient methods for the fast simulation have been suggested in
Asmussen and Binswanger (1997), Asmussen, Binswanger
and Hojgaard (2000), Juneja and Shahabuddin (2002).

Example 2 (Light and Heavy-tailed Porfolio Value-at-
Risk): Consider a portfolio that consists of stocks, options
and other instruments. Let S(t) = (S1(t), . . . , Sm(t)) be the
vector of risk factors (e.g., stock prices, prices of commodi-
ties, exchange rates) on which the instruments are based.
Let V (S(s), s) be the the value of the portfolio at time
s. Note that in addition to the risk factors, the value of
the portfolio also depends on the time s, since the value
of some instruments may be time-sensitive (e.g., options
with a expiration date). Let t be the current time and let
L = V (S(t), t) − V (S(t + �), t + �) be the loss over the
future interval (t, t + �). Usually � is small (e.g., 1 day
or 2 weeks) and hence it is assumed that the constitution of
the portfolio is unchanged over this interval. The problem
is to estimate P(L > x) for large x. Importance sampling
changes of measure for estimating this quantity may also
be used for estimating the value-at-risk, i.e., estimating x

such the P(L > x) = p for some given p, where p is small
(e.g., 0.01 or 0.005); see, e.g., Glasserman, Heidelberger
and Shahabuddin 2000.

Since L is usually a complicated function of the Si(t)
′s,

it is customary to investigate a “quadratic approximation” to
L. If �S = S(t +�)−S(t), then a quadratic approximation
is of the form

L ≈ a0 + aT �S + �ST A�S ≡ a0 + Y,

where a0 is a constant, a is a vector, and A is a matrix. There
are various ways of arriving at a quadratic approximation
including doing a Taylor series expansion of L in terms of
�S, or doing a regression on historical data.

Glasserman, Heidelberger and Shahabuddin (2000) sug-
gested the approach of first developing a provably efficient
importance sampling change of measure (on the risk factors)
for estimating P(Y > x−a0), for large x, and then using the
same change of measure for estimating P(L > x). Since
L ≈ Y + a0, the importance sampling change of measure
is likely to be also efficient for the latter. The problem
then is to develop provably efficient changes of measure
for estimating P(Y > y) where y = x − a0 is large.
Note that the components of �S may be correlated and
this makes Y a function of dependent random variables.
However �S is usually chosen from the family of “elliptic
distributions” where one can use Cholesky factorization to
express �S as a function of independent random variables.
Various distributions for �S have been considered in the
literature in order to model varying degrees of tail heaviness
of financial data. For example, the case when �S is poly-
nomial tailed is modelled by �S =d t (0, �), where t (0, �)

is a particular multivariate t distribution. This multivariate t

has the same distribution as
√

V N(0, �) where V = ν/χ2
ν

( χ2
ν is the chisquare random variable with ν degrees of

freedeom). Using this fact one may show that

Y =d V

m∑
i=1

λiZ
2
i + √

V

m∑
i=1

biZi ≡ h(Z, V ),

where λi and bi are constants. Asymptotics and provably
efficient fast simulation techniques for the estimation of
P(Y +a0 > x) were developed in Glasserman, Heidelberer
and Shahabuddin (2002).

However, there is no guarantee that a change of measure
that is proved to be efficient for the quadratic approximation
will also be efficient for case of the actual loss. As we
will see later, using the approach in this paper one can
attempt to investigate asymptotics and provably efficient
fast simulation directly for P(L > x).

Example 3 (PERT Networks with Light-tailed and
Heavy-tailed Acivity Durations): Let the directed graph
G = (V , A) be the network representation of a project
where A is the set of directed edges representing activities
and V is the set of nodes. The directed graph represents
the fact that any activity originating from a node cannot
be started until all the activities that feed into the node (if
any) have been completed. There is one node called the
“project starting node” and another node called the “project
completion node”.

Let the set of edges (activities) be denoted by
{1, 2, . . . , m}. Let the duration of activity i ∈ A be given
by a non-negative random variable Xi . The Xi’s are as-
sumed independent and may be heavy-tailed or light-tailed.
If we let Xi correspond to the length of the directed edge i,
then the project completion time T is simply the maximum
path length from the project starting node to the project
completion node (see, e.g, Adalakha and Kulkarni 1989).
Hence T is a function of (X1, . . . , Xm). The problem is to
estimate P(T > y) for large y. Log-asymptotics and fast
simulation for this problem has been considered in Juneja,
Karandikar and Shahabuddin (2004).
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4 LOG ASYMPTOTICS OF THE PROBABILITY

4.1 Large Deviation Principle for Random Vectors

We first specialize the definition of a family of measures
satisfying a large deviations principle (LDP) (see, e.g.,
Dembo and Zeitouni 1998, Pg 5) to the specific type of
random variables that we have.

Definition 4.1 Consider a family of continuous ran-
dom variables Xi,ε (indexed by ε) that have support Si that
is independent of ε. Then Xi,ε satisfies a LDP with rate
function Ii(x) iff for any 
i ⊂ Si

lim
ε→0

ε ln P(Xi,ε ∈ 
i) = − inf
xi∈
i

Ii(xi).

There are certain standard constructions of families of
such random variables, starting with “seed” random variables
that are light-tailed. For example, if Xi is an exponential
random variable with mean 1/λ, then Xi,ε := εXi satisfies
LDP with rate function Ii(xi) = λxi , for xi ≥ 0. Similarly
if Xi is a normal random variable with mean 0 and variance
σ 2, then Xi,ε = √

εXi satisfies a LDP with rate function
Ii(xi) = x2

i σ 2/2. The lemma below gives a general method
for constructing a family of random variables that satisfies
the LDP, starting from a “seed” random variable that may
be light-tailed or heavy-tailed.

Lemma 4.2 Let Xi be a continuous random vari-
able with support [0, ∞) (or (0, ∞)) and hazard function
�Xi

(xi). Let �i(xi) be any strictly increasing function of xi

such that �i ∼ �Xi
. Then Xi,ε = �−1

i (ε�i(Xi)) satisfies
the LDP with rate function Ii(xi) = �i(xi). Also, Ii(xi)

is a “good” rate function in the sense that the level sets
{xi : Ii(xi) ≤ a} are compact for each a.

For example, if Xi is Pareto with scale parameter 1 and
shape parameter α (i.e., F̄Xi

(xi) = 1/(1 + xi)
α for xi ≥ 0)

and �Xi
(xi) = α ln(1 + xi)), then λ−1

Xi
(ε�Xi

(xi)) = (1 +
xε
i )−1. Hence the family of random variables (1+Xε

i )−1
satisfies a LDP with I (xi) = �Xi

(xi).
We now adapt an existing result (see, e.g., Dembo and

Zeitouni 1998, Pg 129) to come up with a LDP for random
vectors of a finite number of independent random variables,
given LDPs for the individual random variables.

Lemma 4.3 Let Xi,ε’s be independent for each ε,
and assume that for each i, the family of of probablity
measures corresponding to Xi,ε is “exponentially tight”. If
Xi,ε satisfies LDP with rate function Ii(xi), then Xε =
(X1,ε, . . . , Xm,ε) satisfies a LDP with rate function I (x) =∑m

i=1 Ii(xi), where I (x) is a good rate function.

4.2 Log-asymptotics of the Tail Probability

For the random vector X in our problem, define Xi,ε as in
Lemma 4.2, and let Xε = (X1,ε, . . . , Xm,ε). Exponential
tightness (see, e.g., Dembo and Zeitouni (1998), Pg 8, for
a definition) corresponding to Xi,ε can easily be verified.
Then Lemma 4.3 implies that for any 
 ⊂ S, where S :=
S1 × S2 × . . . × Sm,

lim
ε→0

ε ln P(Xε ∈ 
) = − inf
x∈


m∑
i=1

�i(xi) (1)

Recall that we are interested in investigating the log-
asymptotics of P(h(X)/y > 1) as y → ∞. Note that
{x : h(x)/y > 1} defines a region in S, and thus one
hopes to use the formulation given by (1). However, the
difficulty in using this formulation is that the quantity, ε,
with respect to which we are taking the limit forms part of
the probablity measure of the random variables. In contrast,
in our problem the limit is with respect to a quantity, y,
that is exterior to the probability measure. We now give a
method for reconciling this.

First, we make use of the fact that under fairly general
conditions, if the family of sets 
ε ⊂ S is such that 
ε → 


for 
 ∈ S (in a sense that will be made precise later), then
a principle similar to the LDP holds for P(Xε ∈ 
ε), i.e.,

lim
ε→0

ε ln P(Xε ∈ 
ε) = − inf
x∈


m∑
i=1

�i(xi). (2)

Second, we express h(X) as a function of a random-
vector Xε that satisfies the LDP, and then link the ε

in the LDP to the y in our problem. Note that one
may express Xi = g−1

i,ε (gi,ε(Xi)) = g−1
i,ε (Xi,ε), where

gi,ε(x) := �−1
i (ε�i(x)). Substituting Xi = g−1

i,ε (Xi,ε)

in h(X1, . . . , Xm) we get that

h(X1, . . . , Xm) = hε(X1,ε, . . . , Xm,ε),

where hε(x1, . . . , xm) = h(g−1
1,ε(x1), . . . , g

−1
m,ε(xm)).

In order to link the y and the ε that appear in
P(hε(Xε)/y ≥ 1)) (that is the same as P(h(X)/y ≥ 1)),
we express ε = 1/q(y) (or equivalently, y = 1/r(ε) where
r(ε) = 1/q−1(1/ε)) for some appropriately chosen function
q(y) that satisfies the following condition.

Condition 4.4 1. q(y) is increasing in y and
q(y) → ∞ as y → ∞.

2. h0(x) := limy→∞ h1/q(y)(x)/y is such that {x :
h0(x) > 1} is non-empty and its closure does not
include 0 (the h0(x) may have values ∞ and −∞).

Define 
ε := {x : r(ε)hε(x) > 1} (that is the equivalent
to the set {x : h1/q(y)(x)/y > 1}) and 
 := {x : h0(x) > 1}.
We use the notation 
ε → 
 (as ε → 0) in the sense
suggested by the second part of Condition 4.4. Using (2)
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we have

lim
y→∞

1

q(y)
ln P(h(X) > y)

= lim
ε→0

ε ln P(r(ε)hε(Xε) > 1) = − inf
x∈


m∑
i=1

�i(xi).

4.3 Algorithm for Log-Asymptotics

To summarize the above discussion we present the algorithm
for determining the log asymptotics.

1. Find a function q(y) that satisfies Condition 4.4.
2. Solve the optimization problem Iopt =

infx∈


∑m
i=1 �i(xi), where 
 := {x : h0(x) > 1}

Then limy→∞ ln P(h(X) > y)/q(y) = −Iopt .

This asymptotic gives useful information in the sense
that P(h(X) > y) = e−Iopt q(y)(1+o(1)). Also, as we will
see later, the solution to the optimization problem gives
useful information about the manner in which the rare-
event occurs in the system. Note that the crucial part in the
above procedure is identifying a q(y) that satisfies Condition
4.4.

5 FAST SIMULATION

5.1 Preliminaries: Importance Sampling and Hazard
Rate Twisting

For y large, the event {Y > y} may be rare, and we
use importance sampling to simulate for P(Y > y) more
efficiently. In particular, if f̃i (x) is a new probability density
function for Xi , with the same support as Xi , then we may
express

P(Y > y) = E(I (Y > y)) = Ẽ(I (Y > y)l(X)) (3)

where l(x) = ∏m
i=1(fi(xi)/f̃i(xi)), and the Ẽ(·) indicates

that Xi’s have the (new) pdfs f̃i’s. The quantity within the
expectation on the RHS (right-hand side) of (3) forms an
unbiased, “importance sampling” estimator of P(Y > y).

The attempt is to find f̃i’s so that the variance of this
new estimator is as low as possible. More specifically, we
want to Ẽ(I (Y > y)l2(X)) to be the least possible. The
change of measure (f̃1, . . . , f̃n) is called “asymptotically
logarithmically efficient” or “ALE” iff

lim inf
y→∞

ln Ẽ(I (Y > y)l2(X))

2 ln P(Y > y)
≥ 1. (4)

This means that the exponential rate of decrease of the
second moment is twice the exponential rate of decrease of
the probability one is trying to estimate. Non-negativity of
the variance implies that this is the fastest possible rate for
any unbiased estimator. This is the reason why ALE is also
referred to as “asymptotic optimality”. Note that for standard
simulation, ln Ẽ(I (Y > y)l(X)))/(2 ln P(Y > y)) ∼ 1/2.

We will use the change of measure called hazard rate
twisting that was introduced in Juneja and Shahabuddin
(2002). Again let �i(x) ∼ �Xi

(x). Then the hazard rate
twisted density with amount θ , 0 < θ < 1, is given by

fXi,θ (x) = fXi
(x)eθ�i(x)

M�i(Xi)(θ)
. (5)

Here M�i(Xi)(θ) ≡ ∫ ∞
0 fXi

(x)eθ�i(x)dx is the normaliza-
tion constant that is needed to make fXi,θ (x) a pdf. Note
that unlike exponential twisting that may not be defined for
heavy-tailed random variables (since the moment generating
function may be infinite for all θ > 0), hazard rate twisting
is defined for all 0 < θ < 1. This is because �i(Xi) is
random variable that has an exponential tail with rate 1 (see
Huang and Shahabuddin 2003) and hence the normalization
constant M�i(Xi)(θ) is defined for all 0 < θ < 1.

Note that if we use �i(x) = �Xi
(x) in (5) then

M�i(Xi)(θ) = 1/(1 − θ). This is because �Xi
(Xi) is an

exponential random variable with rate 1 (see Huang and
Shahabuddin 2003). Originally, this was called hazard rate
twisting in Juneja and Shahabuddin (2002), and using a
general �i ∼ �Xi

was called “asymptotic” hazard rate
twisting. In the interest of brevity we have used “hazard
rate twisting” to denote both of them.

When we apply hazard rate twisting to each Xi , the
likelihood ratio is

l(X) =
m∏

i=1

fXi
(x)

fXi,θ (x)
= (

m∏
i=1

M�i(Xi)(θ))e−θ
∑m

i=1 �i(Xi).

Hence the second moment of the (single sample) importance
sampling estimator is

Ẽ(I (h(X) > y)l2(X)) = E(I (h(X) > y)l(X))

= (

m∏
i=1

M�i(Xi)(θ))E
(
I (h(X) > y)e−θ

∑m
i=1 �i(Xi)

)
.

(6)

To investigate ALE properties, we now develop a log-
asymptotics for this second moment as y → ∞.

5.2 Log-asymptotics for the Second Moment

To enable the above we use a modified version of Varad-
han’s Integral Lemma (see, e.g., Dembo and Zeitouni 1998,
Pg 137) that was proved in Glasserman, Heidelberger and
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Shahabuddin (1999). We first adapt this lemma to our
simplified setting.

Lemma 5.1 Let Xε be a family of continuous ran-
dom vectors with support S for all ε. Let φ(x) be a
continuous, negative-valued function with domain S and let
Xε satisfy the LDP with good rate function I (x). Then for
all 
 ⊂ S,

lim
ε→0

ε ln E
(
e

φ(Xε )
ε I (Xε ∈ 
)

)
= sup

x∈


(φ(x) − I (x)). (7)

Similar to (2), under some fairly general conditions,
this Lemma extends to the case where we replace 
 by 
ε

in the left hand side of (7), where 
ε is such that 
ε → 


in the sense described previously.
To apply this lemma we first need to express the last

term of (6) in a suitable form. In particular, defining the
sets 
 and 
ε as before, and using the transformations
defined earlier we have that Ẽ(I (h(X) > y)l2(X)) may be
expressed as

[
m∏

i=1

M�i(Xi)(θ)]E(I (Xε ∈ 
ε)e
− θ

ε

∑m
i=1 �i(Xi,ε )).

Note that we made use of the convenient fact that

m∑
i=1

�i(Xi) =
m∑

i=1

�i(g
−1
i,ε (gi,ε(Xi)))

=
m∑

i=1

�i(g
−1
i,ε (Xi,ε))) =

m∑
i=1

�i(Xi,ε)/ε,

since g−1
i,ε (x) = �−1

i (�i(x)/ε).
In our case, we have already shown that Xε , where

Xi,ε = gi,ε(Xi), satisfies the LDP with good rate function
I (x) = ∑m

i=1 �i(xi). First, lets try using a θ , 0 < θ < 1,
that is independent of ε (or equivalently, independent of y).
Applying the modification of Lemma 5.1 mentioned before
(i.e., with 
 replaced by 
ε on the LHS of (7)), we have
that

ε ln

(
[

m∏
i=1

M�i(Xi)(θ)]E(I (Xε ∈ 
ε)e
− θ

ε

∑m
i=1 �i(Xi,ε ))

)

→ −(1 + θ) inf
x∈


m∑
i=1

�i(xi),

as ε → 0. Or equivalently,

lim
y→∞

1

q(y)
ln

(
Ẽ(I (h(X) > y)l2(X))

)

= −(1 + θ) inf
x∈


m∑
i=1

�i(xi).
Using (3) and (8), we see that the limit in (4) is (1 + θ)/2
which is slightly less than desired since 0 < θ < 1.

To achieveALE one may choose θ = θε = 1−bε, where
b is some positive constant, so that θε → 1 as ε → 0. Now
that θ varies with ε, we will need the following assumption:

Assumption 5.2 limε→0 ε ln[M�i(Xi)(θε)] = 0.

This assumption is true quite generally; sufficient con-
ditions for this to hold may be found in Juneja, Karandikar
and Shahabuddin (2004). It can be checked that it holds for
the case �i(·) = �Xi

(·) for which (as mentioned before)
M�i(Xi)(θε) = 1/(1 − θε) = 1/(bε).

Note that E(I (Xε ∈ 
ε)e
− θ

ε

∑m
i=1 �i(Xi,ε )) is bounded

below by E(I (Xε ∈ 
ε)e
− 1

ε

∑m
i=1 �i(Xi,ε )), whose logarith-

mic limit is − infx∈
 2
∑m

i=1 �i(xi). Also for any δ > 0,
there exists ε0, such that for all ε ≥ ε0, E(I (Xε ∈

ε)e

− θ
ε

∑m
i=1 �i(Xi,ε )) is bounded above by E(I (Xε ∈


ε)e
− (1−δ)

ε

∑m
i=1 �i(Xi,ε )). Note that the logarithmic limit for

the latter quantity is −(2 − δ) infx∈


∑m
i=1 �i(xi). Since

this is true for all δ > 0, using Assumption 5.2 we obtain

1

q(y)
ln

(
Ẽ(I (h(X) > y)l2(X))

)
→ −2 inf

x∈


m∑
i=1

�i(xi),

as y → ∞. This gives ALE.

5.3 Importance Sampling Algorithm

Preprocessing: Determine the function q(·) satisfying Con-
dition 4.4. Set θ = 1 − b/q(y) where b is some positive
constant.
Sampling:

• For i = 1, . . . , m, generate Xi from fXi,θ , as
defined by (5).

• Compute the output sample

(
m∏

i=1

M�i(Xi)(θ)

)
I (h(X) > y)e−θ

∑m
i=1 �i(Xi).

(8)

The complete algorithm will involve generating n output
samples and computing the sample mean.

6 AN ALTERNATE FORMULATION

As mentioned in Huang and Shahabuddin (2003) (see also
Kroese and Rubinstein 2004), hazard rate twisting on Xi

by amount θ , as given by (5), is equivalent to “exponen-
tially twisting” Vi := �i(Xi) by amount θ , 0 < θ < 1.
Exponentially twisting Vi by amount θ means that the new
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pdf of Vi is given by

fVi,θ (vi) = fVi
(vi)e

θvi

MVi
(θ)

.

Note that �i(Xi) is exponentially tailed with rate 1 (see
Huang and Shahabuddin 2003), and hence exponential twist-
ing by amount θ , 0 < θ < 1, is permissible.

Hence another equivalent approach for es-
timating P(h(X1, . . . , Xm) > y) would be
to first express P(h(X1, . . . , Xm) > y) as
P(h(�−1

1 (V1), . . . , �
−1
m (Vm)) > y) and then use ex-

ponential twisting on the Vi’s by amount θ . Indeed, the
output sample obtained using this method has exactly the
same distribution as the quantity in (8). This approach has
also been suggested as one of the approaches in Kroese
and Rubinstein (2004). However, as mentioned before,
they used an adaptive approach for the determination of the
best θ and no log-asymptotics and simulation efficiency
results were provided.

One could also use this alternate formulation
(i.e, of expresssing the probability of interest as
P(h(�−1

1 (V1), . . . , �
−1
m (Vm)) > y) ) to derive the log-

asymptotics, making use of the fact that εVi satis-
fies a LDP with rate function I (vi) = vi . First
one will need to derive the analogue of the function
q(y) (above), that turns out to be the same as q(y).
Next, one would need to solve the optimization problem
Iopt = inf{v:h0(�

−1
1 (v1),...,�

−1
m (vm))>1}

∑m
i=1 vi . By making

the monotonic substitution vi = �i(xi), we see that this
problem is equivalent to the optimization problem in Sec-
tion 4.3. Hence the two approaches not only yield the
same asymptotics (as was to be expected) but are also
algorithmically equivalent.

7 RANDOM VARIABLES ON (−∞, ∞)

We now give a brief description of the case when some or
all of the Xi’s have support (−∞, ∞). We had omitted
this case earlier for the sake of simplicity.

7.1 LDP and Asymptotics

Consider a Xi for which the support is (−∞, ∞). In this
case it is easy to see that �−1

i (ε�i(Xi)) need not necessarily
satisfy a LDP (e.g., use the double exponential distribution
and use the set (−∞, a] for some constant a < 0).

Without loss of generality, we will assume that Fi(0) =
0.5 (otherwise we can simply translate the Xi’s by a constant
amount to make sure that this holds). In addition to �Xi

(xi),
define �̄Xi

(xi) = − ln F(xi). Note that �̄Xi
(xi) is always

positive, is strictly decreasing in xi , �̄Xi
(0) = �Xi

(0), and
�̄Xi

(xi) → ∞ as xi → −∞. Similar to before, let �i be
a continuous, strictly increasing function over [0, ∞), such
�i(xi) ∼ �Xi
(xi). Let �̄i be a continuous, strictly decreas-

ing function over (−∞, 0) such that �̄i(xi)/�̄Xi
(xi) → 1

as xi → −∞, and �̄i(0) = �i(0). Let

�̃i(xi) = �i(xi) for xi ≥ 0

�̄i(xi) for xi < 0.

Note that �̃i(xi) is a continuous function, and it tends to
infinity as |xi | → ∞.

As before, define gi,ε(xi) = �−1
i (ε�i(xi)) for xi ≥ 0,

and define ḡi,ε(xi) := �̄−1
i (ε�̄i(xi)) for xi < 0. Also,

define

g̃i,ε(xi) = gi,ε(xi) for xi ≥ 0

ḡi,ε(xi) for xi < 0.

Then Xi,ε := g̃i,ε(Xi) satisfies a LDP with rate function
�̃i(xi).

For example, take the case of Xi =d N(0, 1). It
is well known the �Xi

(xi) ∼ x2
i /2, and hence we

may use �i(xi) = x2
i /2 for xi > 0. By symmetry,

limxi→−∞ �̄Xi
(xi)/(x

2
i /2) = 1 and hence we may use

�̄i(xi) = x2
i /2 for xi < 0. One can then work out that

Xi,ε = √
εXi .

In this case the transformation g̃i,ε(·) is no longer
monotonic, and hence g̃−1

i,ε (·) for use in the h function is
no longer defined. However, since Xi,ε > 0 if and only if
Xi > 0, we can express

Xi = g−1
i,ε (g̃i,ε(Xi))I (Xi ≥ 0) + ḡ−1

i,ε (g̃i,ε(Xi))I (Xi < 0)

= g−1
i,ε (Xi,ε)I (Xi,ε ≥ 0) + ḡ−1

i,ε (Xi,ε)I (Xi,ε < 0)

We then follow the same procedure as before.

7.2 Double-Tailed Hazard Rate Twisting

The simplest way to extend hazard rate twisting to (−∞, ∞)

would be to allow the x in (5) to lie in (−∞, ∞). However
this increases only the weight of the positive tail (or only
the weight of the negative tail if one transforms Xi to −Xi

before commencing). But in several cases, the way h(x)

becomes large is by a xi becoming very large or very small
(e.g., h(x1) = x2

1 ). To be sure that we are not missing out
any important region, we need to increase the weight of both
the tails of Xi , if Xi has support (−∞, ∞). The relevant
extension to hazard rate twisting is suggested directly from
the previous sub-section, i.e., use �̃i(x) instead of �i(x)

in (5). This simple modification again yields ALE.
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8 ILLUSTRATION OF ALGORITHMS

We now apply the algorithms we developed above to some
of the financial engineering problems described in Example
2 of Section 3.

Example 2 (Contd.): (a) Quadratic Approximation.
First we consider asymptotics and fast simulation for P(Y >

y) for the case when �S = t (0, �), and the portfolio is
delta-hedged (i.e., the bi’s are zero). Since V = ν

χ2
ν

, one

can easily check that F̄V (v) ∼ c/vν/2. Hence �V (v) ∼
− ln(c/vν/2) (note that g1(w) ∼ g2(w) does not imply
g(g1(w)) ∼ g(g2(w)) for any general functions g1, g2
and g; however the result holds in this case). Hence we
may use �m+1(v) = (ν/2) ln(1 + v) (we use the notation
�m+1(v), since V is the (m+1)st input to h). Also,

√
εZi

satisfies a LDP with rate function z2
i /2. Hence if we let

z := (z1, . . . zm), then

hε(z, v) = [(1 + v)1/ε − 1]
m∑

i=1

λiz
2
i

2ε
,

or equivalently

1

y
h1/q(y)(z, v) = [eq(y) ln(1+v) − 1]

y
q(y)

m∑
i=1

λiz
2
i

2
.

For any fixed (z, v), since [eq(y) ln(1+v)−1]q(y)/y is the term
that varies with y, we select q(y) so that this term converges
to different values when ln(1 + v) > 0 and ln(1 + v) < 0.
This suggests using q(y) = ln y. When one does this, one
finds that

h0(z, v) = ∞ if v > e − 1

0 if v ≤ e − 1

Hence 
 = {(z, v) : v > e−1}. Carrying out the optimiza-
tion, we get that Iopt = ν/2. In this case the unique optimal
solution is v∗ = e−1, and z∗

i = 0 for each i. This conveys
that the most likely way the event {h(Z1, . . . , Zm, V ) > y)}
happens for large y is by V becoming large and Zi’s being
in their usual range.

The asymptotic is consistent with results in Glasserman,
Heidelberger and Shahabuddin (2002). However, the change
of measure is different since the latter uses more system
specific information.

(b)Actual Loss Function. Next we consider asymp-
totics and fast simulation for P(L > y), for portfolios
consisting of stocks, and standard European calls and puts.
For simplicity, we only consider a two instruments, two
risk factors case, where the risk factors are dependent;
one can then see that the basic methodology could eas-
ily be extended to a general portfolio consisting of shares,
calls and puts. We assume the changes in risk factors,
�S = (�S1, �S2), to be normally distributed (as assumed,
for example, in Glasserman, Heidelberger and Shahabuddin
2000) with means 0, variances σ 2

1 and σ 2
2 , respectively, and

correlation ρ. In this case one can express �S1 = σ1Z1

and �S2 = σ2(ρZ1 + √
1 − ρ2Z2), where Z1 and Z2 are

independent N(0, 1)’s. Assume that the portfolio consists
of shorting one standard call on each of the risk factors.
Then one can easily derive the expression for L as some
function h(Z1, Z2) using the Black-Scholes formula (with
some rounding off to take care of the negative values of
the risk factors which may occur with small probability,
since we are using normal instead of lognormal distribu-
tion). Since

√
εZi satifies a LDP with rate function z2

i /2,
we have that hε(z1, z2) = h(z1/

√
ε, z2/

√
ε). One can then

easily see that limε→0
√

εhε(z1, z2) = h0(z1, z2), where

h0(z1, z2) = σ1z1I (z1 > 0)

+σ2(ρz1 +
√

1 − ρ2z2)I (ρz1 +
√

1 − ρ2z2 > 0).

Hence one may use y = 1/
√

ε or equivalently, ε = 1/y2.
Minimizing z2

1/2 + z2
2/2 over h0(z1, z2) ≥ 1 we get that

z∗
1 = (σ1 + σ2ρ)/A and z∗

2 = σ2
√

1 − ρ2/A, where A =
(σ1+σ2ρ)2+(σ2

√
1 − ρ2)2. The optimal value Iopt = 1/A.

Hence

lim
y→∞

1

y2 ln P(L > y) = 1/A.

For a general portfolio, even though one may easily be
able to formulate the optimization problem, it may be hard
to solve it. However, note that for the fast simulation we
need not solve the optimization problem, since all we need
is the q(y) for use in the θ . As long as we have identified
such a q(y) (in this case q(y) = y2), it should be enough
for the fast simulation.

ACKNOWLEDGMENTS

This work was partially supported by the National Science
Foundation (U.S.A.) Grant DMI 03-00044. The work of
the first author was performed while she was at Columbia
University.

REFERENCES

Adalakha, V. G., and V. G. Kulkarni. 1989. A classified
bibliography of research on stochastic PERT networks:
1966-1987. INFOR 27(3) 272-296.

Asmussen, S., and K. Binswanger. 1997. Simulation of
ruin probabilities for subexponential claims. ASTIN
Bulletin 27(2): 297-318.



Huang and Shahabuddin
Asmussen, S., K. Binswanger and B. Hojgaard. 2000.
Rare event simulation for heavy-tailed distributions.
Bernoulli 6(2): 303-322.

Boots, N.K., and P. Shahabuddin. 2000. Simulating GI/GI/1
queues and insurance risk processes with subexponen-
tial distributions. In Proceedings of the 2000 Winter
Simulation Conference, ed. J.A. Joines, R.R. Barton,
K. Kang, and P.A. Fishwick, 656-665, IEEE Press
(extended version available).

Bucklew, J.A. 1990. Large Deviations Techniques in Deci-
sion, Simulation, and Estimation. John Wiley & Sons,
Inc.

Dembo, A., and O. Zeitouni. 1998. Large Deviations
Techniques and Applications. Second Edition, Springer,
New York.

Embrechts, P., C. Klüppelberg and T. Mikosch. 1997. Mod-
elling Extremal Events. Springer-Verlag, Heidelberg.

Glasserman, P., P. Heidelberger, and P. Shahabuddin. 1999.
Asymptotically optimal importance sampling and strat-
ification for pricing path-dependent options. Mathe-
matical Finance 9(2): 117-152.

Glasserman, P., P. Heidelberger, and P. Shahabuddin. 2000.
Variance reduction techniques for estimating value-at-
risk. Management Science 46(10): 1349-1364.

Glasserman, P., P. Heidelberger, and P. Shahabuddin. 2002.
Portfolio value-at-risk with heavy-tailed risk factors.
Mathematical Finance 12(3): 239-269.

Heidelberger, P. 1995. Fast simulation of rare events in
queueing and reliability models. ACM Transactions on
Modeling and Computer Simulation 6: 43-85.

Huang, Z., and P. Shahabuddin. 2003. Rare-event, heavy-
tailed simulations using hazard function transforma-
tions, with applications to value-at-risk. In Proceed-
ings of the 2003 Winter Simulation Conference, ed.
S. Chick, P.J. Sanchez, D. Ferrin, and D.J. Morrice,
276-284, IEEE Press (extended version available).

Huang, Z., and P. Shahabuddin. 2004. A unified approach
for finite-dimensional, rare-event asymptotics and sim-
ulation. Technical Report, Dept. of IEOR, Columbia
University, NY 10027, U.S.A..

Juneja, S., and P. Shahabuddin. 2002. Simulating heavy-
tailed processes using delayed hazard rate twisting.
ACM Transactions on Modeling and Computer Simu-
lation 12: 94-118.

Juneja, S., and P. Shahabuddin. 2004. Rare-Event Simula-
tion Techniques: An Introduction and Recent Advances.
Technical Report, Dept. of IEOR, Columbia University,
NY 10027, U.S.A..

Juneja, S., Karandikar, R.L., and P. Shahabuddin. 2004 Tail
asymptotes and fast simulation of delay probabilities
in stochastic PERT networks. Technical Report, Dept.
of IEOR, Columbia University, NY 10027, U.S.A..
Kroese, D., and R.Y. Rubinstein. 2004. The transform
likelihood ratio method for rare-event simulation with
heavy-tails. Queueing Systems 46(3-4): 317-351.

AUTHOR BIOGRAPHIES

ZHI HUANG works at Lehman Brothers. She received
her B.S. in Computer Science (2000) from University
of Science and Technology in China, and a M.S (2001)
and Ph.D. (2004) in Operations Research from Columbia
University. Her research interests include financial
modeling using analytical techniques and simulation. Her
e-mail address is <zh52@columbia.edu>.

PERWEZ SHAHABUDDIN is a professor in the Indus-
trial Engineering and Operations Research Department at
Columbia University. From 1990 to 1995, he was a Re-
search Staff Member at IBM T.J. Watson Research Center.
He received a B.Tech. in Mechanical Eng. (1984) from
the Indian Institute of Technology, Delhi, India, and a
M.S. in Statistics (1987) and a Ph.D. in Operations Re-
search (1990) from Stanford University. He serves as
the Department Editor for Stochastic Models and Sim-
ulation at Management Science. His e-mail address is
<perwez@ieor.columbia.edu>.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 1616
	02: 1617
	03: 1618
	04: 1619
	05: 1620
	06: 1621
	07: 1622
	08: 1623
	09: 1624


