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ABSTRACT

This paper investigates the adequacy of various principal
components (p.c.) approaches as data reduction schemes
for processing contingent claim valuations on baskets of
equities. As a general proposition we are interested in
discovering possible features and rules-of-thumb for the ap-
plicability of p.c. techniques. In particular, what accuracy
does one lose in valuation-hedging schemes as the dimen-
sionality of the p.c. space is reduced? We also have an
interest in validating the posted “stylized” facts of implied
volatility as they apply to our data sets.

1 INTRODUCTION

Early observation in organized options markets of the Black
and Scholes (1973) and Merton (1971) valuation formula
dedicated to claims with the same underlying, but with dif-
fering strike and expiry dates, indicated that the key constant
volatility assumption of the standard valuation formula is
incorrect — volatility is itself varying! A practical fix to
this dilemma is to ignore it and quote an option’s value in
terms of implied sigma. In fact, once one gets used to it,
quoting value in “sigma” units is more intuitive. Quoting
relative value in terms of implied sigma works reasonably
well when there is a single underlying factor driving the
price of the contingent claim, or if there exists a claim-
dependent reduction converting several underlying driving
forces to one, e.g., a Margrabe (1978) exchange-type op-
tion. The reason is that time until expiry and strike price
are related to option premium nonlinearly. Consequently,
it is difficult to discern if a particular premium, associated
with some expiry date and strike price, is out of sync with
the rest of the premia in the option chain. On the other
hand, if a particular implied volatility is an outlier, it is
more likely to be evident vis-a-vis the volatility values in
the remaining links of the chain. In turn, this may indicate
an exploitable profit opportunity.
We study the implications of varying volatility on vanilla
and exotic option valuations. Since closed-form valuation
formulas are scarce for anything but standard European
option types, simulation will be the method of choice for
implementing pricing. In order to calibrate our simulations,
we use daily option chain data, e.g., entries for best bid
and best ask quotes, the spectrum of “Greeks”, volume,
open interest, etc., for the time period 07/01/02 – 08/29/03,
collected by Ivy DB OptionMetrics (Wharton Research
Data Services). Since the use of all average and forward
volatility data series for each of the underlying equity option
chains can be onerous, we utilize the so-called common p.c.
approach as a data reduction method. The hypothesis is
that there exist common features of volatility among, at
least, some of the considered equity groups. In a recent
paper of Cont, Da Fonesca, and Durrleman (2002), some
representative features as applied to individual — not joint
— equity indices are catalogued. Also, Fengler, Härdle, and
Villa (2001) apply a common p.c. approach to DAX index
options. Related study of stochastic volatility is pursued by
Fouque, Papanicolaou, and Sircar (2000), but with regard
to high frequency data.

In the following section dealing with background we
introduce in a general way the data-driven problem. Section
3 motivates an example where the variability of volatility
can matter. The last section provides some useful places
where the type of analysis we pursue could be implemented.

2 BACKGROUND

Example data on a major index and five component equities
are presented in Tables 1 and 2. In the language of the
statistical packages R/S/S+ (R Development Core Team
2004, Ihaka and Gentleman 1996), the tables represent one
frame (trading day) of a multiple frame data set. Table 1
documents the closing price on the date in question along
with the immediate bounding strike values. In the table, S

denotes unit equity value, XL = the nearest quoted strike
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Table 1: Price, Lower and Upper Strike Value Data: August 26, 2003
Company NASDAQ 100 ≡ Q Intel ≡ I Dell ≡ D Microsoft ≡ M Amgen ≡ A Home Depot ≡ H

XL 32.00 27.50 30.00 25.00 65.00 30.00
S 32.54 27.71 31.93 26.57 65.53 32.24

XU 33.00 30.00 35.00 27.50 70.00 35.00
Table 2: Implied Volatility Data: August 26, 2003 (See Text for Key)
Expiry σQ σQ[·,·] σI σI[·,·] σD σD[·,·] σM σM[·,·] σA σA[·,·] σH σH[·,·]

20-Sep-03 25.48 25.48 30.25 30.25 30.40 30.40 26.93 26.93 24.66 24.66 25.04 25.04
18-Oct-03 28.94 31.28 33.98 37.07 28.53 27.75 26.79 26.93 28.07 30.84 26.40 28.58
22-Nov-03 27.76 27.03 30.09 32.07 26.69 27.24
20-Dec-03 27.96 27.88
17-Jan-04 27.56 26.89 33.18 33.12 30.06 30.45 27.17 27.41 27.96 27.94 27.85 28.26
21-Feb-04 30.47 30.73 27.08 27.26
20-Mar-04 27.50 26.08
17-Apr-04 33.84 35.22 28.06 29.00 28.89 28.33
22-Jan-05 26.70 26.33 33.97 34.09 31.18 31.28 29.51 30.35 28.66 29.00 28.94 28.96
21-Jan-06 26.41 25.59 34.22 34.70 31.23 30.22 27.85 25.81 27.63 26.46 29.46 29.34
value bounding S from below, and XU = the nearest quoted
strike value bounding S from above.

Next, Table 2 exhibits succinctly the challenge of cali-
brating a valuation engine. In this table, σx denotes the (av-
erage) implied volatility of equity x and σx[·,·] = (marginal)
forward implied volatility of equity x on time interval [·, ·],
x = Q, I, D, M, A, H , where the equities are given in Table
1. The volatility entries are volume weighted — upper and
lower strike bracket — of at-the-money implied postings.
(Due to this averaging process, the two volatility series for
each equity may violate slightly the relationship between
the average and marginal functions, i.e., the when average is
increasing [decreasing], the marginal value is above [below]
the average value.)

In Table 2, there are ten expiry dates and six sets of
implied volatility series. One may place this frame in the
context of a ten by six factor model — a driving factor for
each equity option and each future expiry date. Looking at
the table one sees gaps in the data. This is a consequence of
options existing on different expiry cycles. Also, for some
thinly traded positions in an option chain, postings may not
be available, or what is even worse, posted values may be
inaccurate.

A typical method of calibration “to the market” is to
minimize the sum of squares between observed values and
theoretical valuations. Such methods prove to be inter-
temporally unstable. They fit the model parameters to
the data of the day only to see parameter estimates grossly
change when re-estimation takes place tomorrow (cf. Pelsser
2000 on interest rate derivatives). Furthermore, they fail
to provide an intermediate to long term view on what a
portfolio’s value may experience if it is hedged daily —
transaction costs do impact portfolio wealth.

Principal components analysis is a method suited for
dimensionality reduction (see the texts of Flury 1988 or
Härdle and Simar 2003; also, the paper of Hsieh 2004).
By appropriate rotation, i.e., by choosing advantageous
linear combinations of expiry indexed implied volatility
time series, it is possible to reduce the influence of the
totality of the number of underlying driving factors to that
of a few important ones. It is often the case that one to
three principal components will explain 95% – 99% of the
variability in the joint time series of volatility.

Flury and Gautschi (1986) provide an algorithm for the
construction of an orthogonal matrix � such that for positive
definite symmetric (p.d.s.) covariance matrices {�k}Kk=1, we
have that �T �k� = �k is diagonal or nearly so for each
k. For any p.d.s. matrix �, the construction of � uses as a
measure of deviation from diagonal the value of the function
ϕ(�) = |diag(�)|/|�|, where |�| is the determinant of the
p.d.s. matrix �. Clearly, the lower bound of 1 is achieved if,
to start with, � is diagonal. As they point out, this measure
is suited for the analysis of the maximum likelihood problem
associated with common p.c.

3 SIMPLE EXOTICS

Shortly we will provide an example valuation formula, in
closed form, that illustrates the usefulness of pursuing data
reduction techniques such as p.c. The following decompo-
sition of an equity price modeled as geometric Brownian
motion proves to be useful as motivation for the study
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of models where volatility varies. For any ω ∈ �, let
(Wω(t), t ∈ [0, T ]) be a standard Brownian motion path,
let {Zω

i }ni=1, for some finite n = 1, 2, . . ., be a sequence
of i.i.d. standard Gaussian random variables each identi-
fied by the c.d.f. �(·), and consider points in time such
that 0 ≡ T0 < T1 < · · · < TN−1 < TN ≡ T . Setting
	T[i−1,i] = Ti − Ti−1, we know from elementary properties
of Brownian integrals that for time-dependent deterministic
functions t → σ(t),

∫ Ti

Ti−1

σ(s) dW(s) ∼ N
(

0,

∫ Ti

Ti−1

σ 2(s) ds

)

≡ N
(

0, σ 2
[i−1,i]	T[i−1,i]

)
,

where σ[i−1,i] is interpreted as average volatility over the time
interval [Ti−1, Ti] and is usually quoted on an annualized
basis. It naturally follows that for any n
 > n,

N
(

0,

∫ Tn


Tn

σ 2(s) ds

)
∼

∫ Tn


Tn

σ (s) dW(s)

=
n
∑

i=n+1

∫ Ti

Ti−1

σ(s) dW(s)

∼ N


0,

n
∑
i=n+1

σ 2
[i−1,i]	T[i−1,i]


 . (1)

Equation (1) shows that for purposes of simulation at the
time points T0, T1, . . . , TN , we have equality in distribution
between the idealized Brownian process and the process
constructed from the i.i.d. sequence of random variables
{Zω

i , i = 1, 2, . . . }:
∫ Tn


Tn

σ (s) dW(s)
d=

n
∑
i=n+1

σ[i−1,i]
√

	T[i−1,i] Zω
i−1. (2)

Whence, if r is the annualized constant interest rate, and
n = 1, 2, . . . , N , the money market standardized stock price
process (S∗(t) ≡ S(t) exp(−rt), t ∈ [0, T ]), under the risk
neutral measure is modeled as geometric Brownian motion:

S∗
ω(Tn) = S0 e− 1

2

∫ Tn
0 σ 2(s)ds+∫ Tn

0 σ(s)dW(s)

d= S0 exp
{

− 1

2

n∑
i=1

σ 2
[i−1,i]	T[i−1,i]

}

× exp
{ n∑

i=1

σ[i−1,i]
√

	T[i−1,i] Zω
i

}

d= S∗
ω(Tn−1) exp

{
− 1

2
σ 2

[n−1,n]	T[n−1,n]
}

× exp
{
σ[n−1,n]

√
	T[n−1,n] Zω

n

}
, (3)
where ω ∈ � and S0 ≡ S(0) is the known initial unit stock
price. As required by arbitrage-free arguments (Harrison and
Kreps 1979, Harrison and Pliska 1981), the above formula
is of the form of an exponential martingale (e.g., Øksendal
2003).

With (3) in hand, we introduce a simple yet compelling
illustration of a closed-form contingent claim pricing formula
where forward volatility structure matters. We value a
component of the ratchet call. This instrument, though
simple in structure, indicates the importance of estimating
volatility as precisely as possible. The forward start call
option (e.g., Cvitanić and Zapatero 2004) is, for each n =
1, 2, . . . , N , and for some n
 such that n
 > n, defined by its
value at time instant t = Tn
 to be V (Tn
) ≡ max{S(Tn
)−
X(S(Tn)), 0}, where X(·) is the strike value, a known
function at time t = 0 of the unknown equity value at
time t = Tn. This particular contingent claim depends on a
subset of the joint distribution of stock path price outcomes.
Namely, it depends on both the random strike price X(S(Tn))

eventually observed at t = Tn > T0 and the value the equity
price achieves at option expiry time t = Tn
 > Tn. The
forward start option is a variant of the ratchet contingent
claim often used in fixed income valuation. A ratchet call
can be thought of as sequence of forward start options. Each
successive forward start in the sequence commences on a
date in the future when the preceding adjacent forward start
expires. In the most basic setup, the strike price satisfies
X(S(Tn)) ≡ x S(Tn), x ∈ R

+. The closed-form solution
is a variation on the Black–Scholes pricing formula:

V (0) = S0 �(z+) − xS0 e
−r	T[n,n
] �(z−), (4)

where

z+ ≡
ln

( 1
x

) + (r + 1
2 σ 2

[n,n
])	T[n,n
]
σ[n,n
]

√
	T[n,n
]

and

z− ≡
ln

( 1
x

) + (r − 1
2 σ 2

[n,n
])	T[n,n
]
σ[n,n
]

√
	T[n,n
]

.

Evidently, volatility enters in a forward way through the
term σ[n,n
]

√
	T[n,n
] . The more “missing" data that we can

fill in with the aid of p.c. and common p.c. the better will
be our approximation to the true volatility process, i.e., as
n
 → n we better approach instantaneous volatility.

We briefly sketch the derivation of (4) now. Given the
time t = 0 information set �0 and applying the martingale
property under the so-called usual risk-neutral measure to
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the process (V (t)e−rt , t ∈ [0, T ]), we obtain

V (0) = E

[
V (Tn
)

erTn


∣∣∣ �0

]
(5)

= E
[
max{S∗(Tn
) − x S∗(Tn) e

−r	T[n,n
] , 0}| �0

]
.

From the definition of a ratchet call, and using the equity
dynamics (3), we see that the constraint set over which
averaging takes place — aside from sets of zero measure
— satisfies:

θ = {ω ∈ � : Sω(Tn
) > x Sω(Tn)}
= {S∗

ω(Tn
) > x S∗
ω(Tn) e

−r	T[n,n
] }

=
{

Z

ω >

ln(x) − (r − 1
2σ 2

[n,n
])	T[n,n
]
σ[n,n
]

√
	T[n,n
]

}
. (6)

Substituting (3) into the second line of (5), letting d�(t)
dt

≡
φ(t), setting 1θ as the indicator function of event θ ∈ �0,
and applying the properties of exponential martingales, we
evaluate the two components of the expectation. During
the exercise repeated use is made of the independent incre-
ments property of Brownian motion. Evidently from the
constraint (6), even though there are two apparent sources of
randomness — from the stock price at two different points
in time, Sω(Tn
) and from Sω(Tn) — a reduction ensues so
that there is only one effective source of randomness. The
first component of the expectation evaluates as:

E
[
S∗(Tn
)1θ | �0

]

=
∫ ∫

1θ S∗
ω(Tn) e

− 1
2 σ 2

T[n,n
]
	T[n,n
]

× e
σ[n,n
]

√
	T[n,n
] z


φ(z, z
) dz dz


= S0 e
− 1

2 σ 2
[0,n
]Tn


[∫
R

eσ[0,n]
√

Tn z
φ(z) dz

]

×
∫

1θ e
σ[n,n
]

√
	T[n,n
] z


φ(z
) dz


= S0 �(z+). (7)
This is the first term in the forward start value (4). Similarly
the second component evaluates to:

E
[
S∗(Tn) e−r	T[n,n
 ]1θ | �0

]

=
∫ ∫

1θ e
−r	T[n,n
] S0 e

− 1
2 σ 2

[0,n]Tn

× eσ[0,n]
√

Tn z
φ(z, z
) dz dz


= S0 e
−r	T[n,n
] e

− 1
2 σ 2

[0,n]Tn

×
[∫

R

eσ[0,n]
√

Tn z
φ(z) dz

] ∫
1θ φ(z
) dz


= S0 e
−r	T[n,n
]

∫
1θ φ(z
) dz


= S0 e
−r	T[n,n
] �(z+), (8)

which after multiplication by x produces the last term in
(4).

Unfortunately, no closed-form expression is applicable
for a strike value that depends on more than one realization
of equity price on the equity price path (S(t), 0 < t < T ).
For instance, even the relatively simple “strike weighted
stock average", X(S(Tn), S(Tn−1)) ≡ wS(Tn−1) + (1 −
w)S(Tn), w > 0, already results in unmanageable bounds of
integration when it comes to analytically evaluating the risk-
neutral expectation. Consequently, a claim that depends on
several forward segments of volatility, such as max{S(Tn
)−
X(S(Tn), S(Tn−1)), 0}, n < n
, can only be evaluated by
two methods: (i) via simulation of equity paths or (ii)
through numerical methods applied to the Black–Scholes
partial differential equation. As the former choice is typically
preferred, a fortiori, when running a simulation for pricing
complex path dependent claims — be they American or
European type — it is imperative to specify forward volatility
correctly.

This is the simplest problem where components of
the joint distribution of an equity price process are used,
yet it still indicates the potential complexity of a “real
world” valuation. The independent increments property of
Brownian motion is repeatedly utilized in the derivation.
It is not surprising, therefore, when the Brownan motion
process is converted to geometric Brownian motion that
the forward start valuation formula (4) does not depend on
the immediate future. Using the simple formula, one can
compare a sequence of forward start options, under varying
volatility regimes, terminating at some time t = TNk

to the
Black-Scholes value under the constant implied volatility
assumption also expiring at t = TNk

.
If more-complex contingent claims are to be evaluated,

either European or American, where the valuation depends
on properties of the joint distribution of prices, at several
points in time, or across equities, an appeal can be made to
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simulation methods, e.g., projection methods of Longstaff
and Schwartz (2001).

4 FINISHING UP

Even with the foreseeable available power of state-of-the
art computing, dimension reduction is an important topic of
research. The methods we are pursuing can be advantageous
in at least two additional related areas. The first of these
is with regard to Markov chain Monte-Carlo techniques.
The fact that p.c. reduction consists of a set of orthogonal
series permits the mixing of chains to proceed in a timely
manner. The second relates to placing valuation in a context
of portfolio optimization. Stochastic programming methods
are powerful, but still suffer from the requirement that tens
of millions of path generations are required (Ruszczynski
and Shapiro 2003). Once again, the orthogonal nature of
p.c. may permit the decomposition of a stochastic program
into many constituent parts, each capable of being “solved”
in a reasonable time period.
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