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ABSTRACT

In this paper, we consider the relationship between risk-
sensitivity and information. Product estimators are intro-
duced as a generalization of Maximum A Posteriori Prob-
ability (MAP) estimator for Hidden Markov Models. We
study the relationship between the inclusion of higher order
moments, the underlying dynamics and the availability of
information. Asymptotic periodicity of these estimators and
the relationship between risk and information is studied via
simulation.

1 INTRODUCTION

It is well known that the probability distribution of an ergodic
Markov chain is asymptotically stationary, independent of
the initial probability distribution, and that the stationary dis-
tribution is the solution to a fixed point problem (Shiryayev
1984). This probability distribution can be viewed as the
information state for an estimation problem arising from
the Maximum A Posterior Probability Estimator (MAP) es-
timation of the Markov chain for which no observation is
available.

Risk-sensitive filters ( Baras and James 1994; Boel,
James, and Petersen 1997; Dey and Moore 1995; James,
Baras, and Elliot 1994; Whittle 1990) take into account the
“higher order" moments of the estimation error. Roughly
speaking, this follows from the analytic property of the
exponential ex = ∑∞

k=0 xk/k! so that if � stands for the
sum of the error functions over some interval of time then

E[exp(γ�)] = E[1 + γ� + (γ )2(�)2/2 + ...].

Thus, at the expense of the mean error cost, the higher order
moments are included in the minimization of the expected
cost, reducing the “risk" of large deviations and increasing
our “confidence" in the estimator. The parameter γ > 0
controls the extent to which the higher order moments are in-
cluded. In particular, the first order approximation, γ → 0,
E[exp(γ�] ∼= 1 + γE�, indicates that the original mini-
mization of the sum criterion or the risk-neutral problem is
recovered as the small risk limit of the exponential criterion.

Another point of view is that the exponential function
has the unique algebraic property of converting the sum
into a product. A notion of probability for Markov chains
follows from this point of view which due to its connection
to risk-sensitive filters, will be termed “risk-sensitive proba-
bility (RS-probability)". We consider an estimation problem
of the states of a Markov chain in which the cost has a prod-
uct structure. The asymptotic behavior of RS-probability
appears to be periodic.

In Section 2, we view the probability distribution of a
Markov chain as the information state of an additive op-
timization problem. RS-probability for Markov chains are
introduced in section 3. We show that its evolution is gov-
erned by an operator (denoted by Fγ ) which can be viewed
as a generalization of the usual linear Markov operator.
The behavior of this operator is studied in section 4 via
simulation. It appears that RS-probability is asymptotically
periodic.

2 PROBABILITY AS AN INFORMATION STATE

In Ramezani and Marcus 2002, Ramezani 2001, we studied
the exponential (risk-sensitive) criterion for the estimation
of HMM’s and introduced risk-sensitive filter banks.

The probability distribution of a Markov chain, knowing
only initial distribution, determines the most “likely state"
in the sense of MAP. In the context of Hidden Markov
Models (HMM), the problem can be viewed as that of
“pure prediction"; i.e., an HMM whose states are entirely
hidden.

Define a Hidden Markov Model as a five tuple
< X, Y, X, A, Q >; here A is the transition matrix,
Y = {1, 2, ..., NY} is the set of observations and X =
{1, 2, ..., NX} is the finite set of (internal) states as well as
the set of estimates or decisions. We can associate with
each i ∈ X, a unit vector in RN

X whose ith component is
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1. In addition, we have that Q := [qx,y] is the NX × NY
state/observation matrix, i.e., qx,y is the probability of ob-
serving y when the state is x. We consider the following
information pattern. At decision epoch t, the system is
in the (unobservable) state Xt = i and the corresponding
observation Yt is gathered, such that

P(Yt = j |Xt = i) = qi,j . (1)

In Equation (1), qi,j can be considered as an element of
the “observation matrix". The estimators Vt are functions
of observations (Y0, .....Yt ) and are chosen according to
some specified criterion. Consider a sequence of finite
dimensional random variables Xt and the corresponding
observations Yt defined on the common probability space
(�, M, P). Let X̂t be a Borel measurable function of the
filtration generated by observations up to Yt denoted by Yt .
The Maximum A Posteriori Probability (MAP) estimator is
defined recursively; given X̂0, ..., X̂t−1, X̂t is chosen such
that the following sum is minimized:

E[
t∑

i=0

ρ(Xi, X̂i)], (2)

where

ρ(u, v) =
{

0 if u = v;
1 otherwise.

(3)

The usual definition of MAP as the argument with the
greatest probability given the observation follows from (2)
and (3). (H. V. Poor 1994). The solution is well known;
we need to define recursively an information state

σt+1 = NY · Q(Yt+1)AT · σt , (4)

where Q(y) := diag(qi,y), AT denotes the transpose of
the matrix A. σ0 is set equal to NY · Q(Y0)p0, where p0
is the initial distribution of the state and is assumed to be
known.

When no observation is available, it is easy to see that
NY · Q(Yt ) = I , where I is the identity matrix. Thus, the
information state for the prediction case evolves according
to σt+1 = AT · σt which when normalized is simply the
probability distribution of the chain.

This “prediction" optimization problem for a multi-
plicative cost will be considered next.

3 RS-PROBABILITY FOR MARKOV CHAINS

With the notation of the previous section, given X̂0, ..., X̂t−1,

define X̂t recursively as the estimator which minimizes the
exponential (risk-sensitive) cost

E[exp{γ
t∑

i=0

ρ(Xi, X̂i)}], (5)

where γ is a strictly positive (risk-sensitive) parameter.
As discussed in the introduction, the exponential cri-

terion allows for the inclusion of higher order moments of
the cost and the approximation E[exp(γ�)] ∼= 1 + γE�

shows that for small values of γ , the additive cost criterion
is recovered. The structure of ρ allows for the following
simplification of (4):

E[
t∏

i=0

ρ∗(Xi, X̂i)] (6)

ρ∗(u, v) =
{

1 if u=v;
r = eγ otherwise.

(7)

(7) can be considered as the “multiplicative" cost.
Define an information state:

σ
γ
t+1 = NY · Q(Yt+1)DT (X̂t ) · σ

γ
t , (8)

where Q(y) := diag(qi,y), AT denotes the transpose of
the matrix A and the matrix D is defined by

[D(v)]i,j := ai,j · exp(γρ(i, v)). (9)

σ
γ
0 is set equal to NY · Q(Y0)p0, where p0 is the initial

distribution of the state and is assumed to be known.
Theorem 1 The optimization problem (6) is solved
recursively by

X̂t (σ ) = i if σ i ≥ σ j , ∀j �= i,

where σ = (σ 1, ..., σNX) is the value the information state
(8) takes at time t.

The estimator obtained is termed Risk-sensitive Maxi-
mum A Posteriori Probability (RMAP) estimator.

Proof See (Ramezani 2001).
We next obtain a simplex preserving operator Fγ by

assuming that no observation is available and that the initial
probability distribution is given. In the risk-neutral context,
this operator is simply AT which governs the evolution
of probability distribution; as the risk-sensitive cost is a
generalization of the risk-neutral one, one might expect that
this new operator which governs the evolution of “risk-
sensitive probability" to be a generalization of AT . Setting
NY ·Q(Yt ) equal to the identity matrix I corresponds to the
case when no observation is available. It can be shown that
the information state is independent of scaling; i.e., if σ is
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an information state so is ασ for every α > 0 and replacing
it one with the other does not change the resulting estimate
of the state. Associate with each i ∈ X, a unit vector in
RN

X whose ith component is 1. Denote the “risk-sensitive
probability" Ut as the normalized information state(6) when
no observation is available. We have the following theorem:
Theorem 2 Let NY ·Q(Yt ) = I ,then the estimator which
minimizes (5) is given by

X̂t = argmax i∈SX < Ut , ei >,

where Ut evolves according to

Ut+1 = AT ·H {diag (exp(γ < eargmax
i

Ui
t

ej >)) · Ut } := Fγ (Ut ), (10)

and H(X) = X∑
i (Xi)

and U0 = p0.
Proof The scale independence property allows the intro-

duction of H(X), and the result follows from straightforward
computation afforded by the assumption NY · Q(Yt ) = I .

4 SIMULATION RESULTS

The operator Fγ can be viewed as a non-linear generalization
of the linear operator AT . It is apparent that this operator
plays the same role in the context of risk-sensitive estimation
as the operator AT does in the risk-neutral case. Thus,
one might expect that the risk-sensitive properties of the
exponential criterion be reflected in the action of Fγ .

First, observe that both operators are simplex preserving
and Fγ → AT as γ → 0. It is well known that under
primitivity of the matrix A, the dynamical system defined
by

pn+1 = AT pn, (11)

for every choice of the initial probability distribution p0,
converges to p∗ which satisfies AT p∗ = p∗ (Shriyayev
1984).

Compare (10) and (11); how does the “product count" of
errors manifest itself in the behavior of the RMAP estimator
of an HMM? Let us begin with a basic example.
Example 1: Let NY = NX = 2 , q11 = q22 = q. (See
Figure 1 and 2.) Also, assume that the chain has an initial
distribution p = (p1, p2) with p1 +p2 = 1. q controls the
amount of the available information, in particular q = 1/2
implies that no information is available, (the case of pure
“prediction") and q=1 corresponds to the case of “perfect
observation".
Let q = 1/2, a12 = a21 = 0 and allow γ to vary: 1.02 ≤
eγ ≤ 1.22. Figure 2 shows the behavior of the estimator.
We have stacked up the sample paths starting at e1 for a
 2
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Figure 1: Example 1
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Figure 2: a12 = a21 = 0, q = 1/2

range of values of eγ ; on each path the lower value indicates
e1 and the higher value corresponds to e2.

When p1 = p2, an oscillatory behavior appears only
after one step. As we increase p1, the onset of this behavior
is delayed, but it is inevitable, unless p2 = 0.

Now let a12 = 0.1 and a21 = 0.15 with everything
else kept the same (Figure 3). The oscillatory behavior
is delayed and relatively suppressed. This appears counter
intuitive: the initial setting (a12 = a21 = 0) does not allow
any transition between the states, but the RMAP estimator
is oscillatory. The second set of parameters (a12 = 0.1 and
a21 = 0.15) allows transitions between the states, yet the
estimator’s behavior is less oscillatory and closer to that of
MAP.

Now let p1=0.6, a12 = a21 = 0, but q = 0.6. Figure
4 shows a series of sample paths with the state initialized
at e1 and 1.02 ≤ eγ ≤ 1.22 as before.

Once again, the oscillations are suppressed. It is evident
that the transition probabilities representing the underlying
dynamics, the risk-sensitivity parameter and the availability
of information are coupled in the behavior of the sample
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Figure 3: a21 = 0.15, a12 = 0.1, q = 1/2
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Figure 4: a12 = a21 = 0, q = 0.6

paths. The dependence of the period on transition proba-
bilities is shown next. Let

A =

0.9 − ε 0.1 ε

0.4 0.6 0.0
0.0 ε 1.0 − ε


 (12)

and eγ = 101. The periodic orbit appear to be independent
of the initial conditions but the period can depend strongly
on ε and as ε → 0 the period appears to be unbounded.

Figure 5 shows the values of the first component of the
RS-probability vs. time for ε = 0.001. (There are 2000 data
points and hence some apparent overlaps) Our simulations
show that as ε → ∞, the period increases rapidly. One
possible explanation is that ε controls the mixing properties
of (12); the matrix A is primitive only for strictly positive
values of ε and as ε approaches zero, (12) “approaches"
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Figure 5: RS-Probability
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Figure 6: The Multi-Scale Representation

a non-mixing dynamical system and hence its stationary
behavior becomes less “stable".

4.1 MULTI-SCALE REPRESENTATION
AND RISK-SENSITIVITY

By a Multi-scale representation of a Markov chain, we mean
a partition of the states of that chain. Each element of the
partition will be called a “scale" or a “cluster".
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Example 2: Consider the Markov chain given by Figure 6.
Consider the observation matrices Cu and Cl :

Cl × 10−3 =



991 1 1 1 1 1 1 1 1 1
1 991 1 1 1 1 1 1 1 1
1 1 496 496 1 1 1 1 1 1
1 1 496 496 1 1 1 1 1 1
1 1 1 1 991 1 1 1 1 1
1 1 1 1 1 991 1 1 1 1
1 1 1 1 1 1 991 1 1 1
1 1 1 1 1 1 1 991 1 1




Cu × 10−3 =



991 1 1 1 1 1 1 1 1 1
1 991 1 1 1 1 1 1 1 1
1 1 701 291 1 1 1 1 1 1
1 1 291 701 1 1 1 1 1 1
1 1 1 1 991 1 1 1 1 1
1 1 1 1 1 496 496 1 1 1
1 1 1 1 1 496 496 1 1 1
1 1 1 1 1 496 496 1 1 1




.

We say that a “cluster" of states is resolved if it is
possible from the observations to determine whether or
not a sample path has assumed any of the states within
that cluster. Examining Cu and Cl shows that both provide
nearly perfect observation at the scales shown in the Figure
6 (M1 to M5). Within the clusters, Cu provides partial
observation for the components of M1, e3 and e4 while
keeping M5 “unresolved" so that it remains impossible to
distinguish between the states e6, e7 and e8. Cl leaves M1
unresolved while nearly resolving M5 into its components.
Which one of these matrices should we choose to “better"
observe our Markov chain and is this choice invariant under
risk-sensitivity?

Cl provides nearly perfect observation for the less likely
path while Cu provides only partial observation but for the
more likely path. Our simulations presented in Graph 7
(D is the cost under Cu subtracted from the cost under Cl

via Monte Carlo simulation for the cost function averaged
over 10,000 sample paths) show that the choice depends
on the amount of risk considered and is not invariant under
risk-sensitivity. (On the x-axis, the parameter u is eγ − 1.)
Let us look at the example and the simulations closely to
understand why. For MAP and RMAP with small values of
γ , Cu, as the graph shows, is a better option but as γ increases
choosing Cl quickly becomes the better option. The switch
happens at a value of u∗ between u = 0.14 and u = 0.15 (
See Graph 7); changing the transition probabilities among
the states of M1 and among those of M2 may change the
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Figure 7: The Cost Difference

value of u at which we switch from Cu to Cl . For example,
when we set a34 = a43 = 0.1 and a33 = a44 = .9, the
value of u∗ is less than half the previous value.

Do we want to see the “details" of M1 or M5? A more
“conservative" estimator prefers to resolve M5 because M5
contains more branches (e6 to e8). The estimator can choose
one branch at a time and will return to it only after it has
visited the other branches. If we provide no information
and leave M5 completely unresolved then, as γ increases,
the estimator is forced to visit each state of M5 successively
and thus each branch of M5 is ignored for two successive
steps. This turns out to be costly as the value of γ is
increased. If we increase the number of the branches in
M5, the value of u∗ at which the switch happens quickly
decreases.

5 CONCLUSIONS

In this paper, we introduced and studied risk-sensitive esti-
mators as a generalization of Maximum A Posteriori Prob-
ability (MAP) estimator for Hidden Markov Models. We
introduced the notion of risk-sensitive probability. We con-
sidered the relationship between risk-sensitivity, transition
probabilities and information. We showed via simulation
that the asymptotic behavior of risk-sensitive probability
could be periodic. We showed that the value and inter-
pretation of information depends on the degree to which
higher order moments are taken into account. These sim-
ulations were carried out for ergodic Markov chains. The
non-ergodic case is the subject of further research.
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