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ABSTRACT 

We propose the algorithms for pricing American and Euro-
pean options in incomplete markets. We consider a non-self-
financing replicating portfolio and minimize the hedging er-
ror consisting of the self-financing error of the portfolio dy-
namics and the error of the option’s payoff replication. We 
treat the pricing problem as regression with constraints and 
reduce it to a quadratic minimization problem. The algo-
rithms of pricing American and European options differ in 
imposing one additional type of constraints. Prices of op-
tions for different initial and strike prices can be found in 
one optimization run. The algorithms create a table repre-
senting the option price as a function of time and the under-
lying stock price for the whole lifetime of the option. We 
illustrate the numerical performance of the algorithms with 
options on futures contracts in natural gas market. 

1 INTRODUCTION 

The classical Black and Scholes theory (Black and Scho-
les, 1973) of options pricing is based on perfect replication 
of an option payoff by a self-financing portfolio consisting 
of a stock and a bond (the market is assumed to be com-
plete). However, real markets, such as electricity and natu-
ral gas markets, may have various sources of incomplete-
ness, leading to significant errors in option prices based on 
the classical algorithms.   

One of the common approaches to pricing options in in-
complete markets is considering a replicating portfolio and 
minimizing the square of the replication error at expiration, 
see for example (Follmer and Schied, 2002). Pricing is done 
under various assumptions on underlying processes; for in-
stance, for the Markov underlying stock process, recursive 
expressions for optimal replication strategy can be derived 
for European style options (Bertsimas et all., 2001).  

2 DESCRIPTION OF THE ALGORITHM 

We consider a dynamic replication strategy by rebalancing 
positions of the stock and the bond. The strategy is not 
self-financing, i.e. hedging and replication errors may have 
nonzero values at different time intervals. We minimize the 
total mean square error of hedging by adjusting positions 
of the stock and the bond.  We use a historical bootstrap 
simulation procedure to model the evolution of the under-
lying stock process. The drift coefficient and the volatility 
of the “fan” of historical sample-paths is adjusted to match 
forecasted drift coefficient and volatility. 

The model can fit a broad class of underlying stock 
processes. The type of the stock process is incorporated by 
including a set of constraints on functions representing the 
stock and the bond parts of the replicating portfolio. These 
constraints describe properties of the functions, such as 
monotonic behavior and convexity (properties implied by 
the underlying process).   

The hedging error minimization is reduced to a quad-
ratic optimization problem. We use a two dimensional grid 
in the space of time and the stock price. The hedging posi-
tions of the stock and the bond are functions of time and the 
stock prices. The resulting strategy creates a two dimen-
sional table providing positions of the stock and the bond for 
all possible stock price movements at discrete times. The al-
gorithm estimates prices of options for different initial and 
strike prices in one optimization run. We consider both 
European and American options.  American options are 
priced by imposing additional constraints on the replicating 
portfolio (option price should be greater than or equal to the 
immediate exercise value of the option).   

3 NUMERICAL RESULTS 

We have conducted various numerical experiments for 
pricing American options in different markets. Numerical 
experiments demonstrated reasonable performance of the 
suggested algorithm. 

This section illustrates the proposed algorithm with the 
results of pricing of options in the natural gas market. We 
priced American put options on futures contracts on natural 
gas with different strikes (expiration 5/24/2001). Tables 1 
and 2 show calculated prices of options with 16 and 9 days 
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to expiration, respectively. We used 30 historical futures 
sample paths to model the underlying futures price process.  

 
Table 1: Numerical Results for American 
Put Options on Futures Contracts. Initial Fu-
tures Price is $4.24, Time to Expiration is 16 
Days. Strike = Strike Price of the Option, 
Actual = Actual Price of the Option (PA), 
Obtained = Calculated Price of the Option 
(PO),  Accuracy = 2(PA - PO)/( PA + PO), 
Strike-Initial = the Difference between the 
Strike Price and the Initial Price 

Strike Actual Obtained Accuracy Strike-
Initial 

3.6 0.006 0.050 157.45% -0.639
3.7 0.007 0.063 159.71% -0.539
3.8 0.047 0.077 48.63% -0.439
3.9 0.067 0.100 39.23% -0.339
4.0 0.097 0.125 25.46% -0.239
4.2 0.175 0.191 8.74% -0.039
4.4 0.287 0.285 -0.63% 0.161 
4.6 0.431 0.426 -1.28% 0.361 
4.8 0.598 0.592 -0.97% 0.561 
5.0 0.778 0.783 0.69% 0.761 
5.2 0.969 0.976 0.75% 0.961 
5.4 1.164 1.171 0.59% 1.161 
5.6 1.363 1.370 0.52% 1.361 
5.9 1.661 1.670 0.53% 1.661 

 
To demonstrate the typical structure of the solution across 
time, we present calculation results for the option with 
strike $5.20 and 9 days to expiration. Table 3 shows the 
two dimensional table with value of this option as a func- 

 

 
 

Table 2: Numerical Results for American 
Put Options on Futures Contracts. Initial Fu-
tures Price is $4.40, Time to Expiration is 9 
Days. Strike = Strike Price of the Option, 
Actual = Actual Price of the Option (PA), 
Obtained = Calculated Price of the Option 
(PO),  Accuracy = 2(PA - PO)/( PA + PO), 
Strike-Initial = the Difference between the 
Strike Price and the Initial Price 

Strike Actual Obtained Accuracy Strike-
Initial 

3.6 0.006 0.024 120.79% -0.794
3.7 0.007 0.033 130.52% -0.694
3.8 0.017 0.045 90.68% -0.594
3.9 0.025 0.058 79.66% -0.494
4.0 0.045 0.073 47.46% -0.394
4.2 0.082 0.112 30.84% -0.194
4.4 0.169 0.173 2.40% 0.006 
4.6 0.295 0.267 -9.85% 0.206 
4.8 0.448 0.425 -5.32% 0.406 
5.0 0.624 0.608 -2.63% 0.606 
5.2 0.814 0.807 -0.83% 0.806 
5.4 1.009 1.007 -0.20% 1.006 
5.6 1.207 1.207 0.00% 1.206 
5.9 1.506 1.507 0.07% 1.506 

ftion of time and the underlying futures price. It is straight-
forward to obtain the exercise policy from Table 3: the op-
tion should (should not) be exercised if the value of the 
replicating portfolio is equal to (is less than) the immediate 
exercise value of the option. The corresponding exercise 
policy is presented in Table 4. 
 

Table 3: The Option Price is a Function of Time and the Underlying Futures Price. Results for the 
American Put Option with Initial Price $4.40, Strike Price $5.20, and Time to Expiration 9 Days 

Futures 
price, $ Option price, $ 

5.94 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0 0
5.66 0.13 0.13 0.13 0.13 0.13 0.13 0.11 0.06 0.03 0
5.39 0.43 0.3 0.23 0.23 0.20 0.18 0.16 0.15 0.10 0
5.13 0.43 0.31 0.31 0.31 0.29 0.26 0.24 0.21 0.10 0.07
4.88 0.43 0.43 0.43 0.43 0.43 0.41 0.40 0.36 0.32 0.32
4.65 0.61 0.61 0.61 0.61 0.61 0.60 0.59 0.57 0.55 0.55
4.43 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77
4.21 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
4.01 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19
3.82 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38
3.64 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.56 1.56 1.56
3.46 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74

Time to 
expiration 

(days) 
9 8 7 6 5 4 3 2 1 0 
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Table 4: Exercise Policy:  “Keep” = Keep the Option; “ex”= Exercise the Option. Results for the 
American Put Option with Initial Price $4.40, Strike Price $5.20, and Time to Expiration 9 Days 

Futures 
price, $ Decision (keep/exercise) 

5.94 keep keep keep keep keep keep keep keep keep keep
5.66 keep keep keep keep keep keep keep keep keep keep
5.39 keep keep keep keep keep keep keep keep keep keep
5.13 keep keep keep keep keep keep keep keep keep keep
4.88 keep keep keep keep keep keep keep keep ex ex 
4.65 keep keep keep keep keep keep keep keep ex ex 
4.43 ex ex ex ex ex ex ex ex ex ex 
4.21 ex ex ex ex ex ex ex ex ex ex 
4.01 ex ex ex ex ex ex ex ex ex ex 
3.82 ex ex ex ex ex ex ex ex ex ex 
3.64 ex ex ex ex ex ex ex ex ex ex 
3.46 ex ex ex ex ex ex ex ex ex ex 

Time to 
expiration 

(days) 
9 8 7 6 5 4 3 2 1 0 
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