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ABSTRACT

Quasi-Monte Carlo (QMC) methods have been used in a
variety of problems in finance over the last few years, where
they often provide more accurate estimators than the Monte
Carlo (MC) method. These results have led many researchers
to try to find reasons for the success of QMC methods in
finance. A general explanation is that financial problems
often have a structure that interacts in a constructive way
with the point set used by the QMC method, thus resulting
in estimators with reduced error. This positive interaction
can be amplified by various fine-tuning techniques, which
we review in the first part of this paper. Leaving aside
these techniques, we then choose a few randomized QMC
methods and test their “robustness” by comparing their
performance against MC on different financial problems.
Our results suggest that the chosen methods are efficient in
a broad sense for financial simulations.

1 INTRODUCTION

Since the seminal work of Boyle (1977) where the Monte
Carlo (MC) method was introduced for pricing options in
finance, this method has proven to be useful for a wide
variety of financial problems. One often cited advantage of
MC is its “robustness”, that is, its application is generally
not restricted to special types of models or problems. One
area where it was thought for a long time that MC could
not be used is the pricing of American options. But several
people have shown in the last few years that MC could
be used for this problem as well. We refer the reader to
Glasserman (2004) for a thorough treatment of the use of
MC in finance.

As an alternative to MC, quasi-Monte Carlo (QMC)
methods can be used for financial problems. These methods
use a highly uniform point set (HUPS) to perform sampling
instead of using random sampling like in MC. An early
reference where these methods are used in finance is the
work of Paskov and Traub (1995), who give numerical
evidence demonstrating the superiority of QMC methods
on a mortgage-backed security problem. At the time, this
caused some surprise since this problem deals with a function
defined over a 360-dimensional space and back then, it was
believed that QMC could only outperform MC when the
dimension was not too large (e.g, smaller than 20, say).
That belief came from the fact that QMC methods are
deterministic and the known error bounds for the QMC
approximation

µ̂n = 1

n

n∑
i=1

f (ui ) (1)

of

µ =
∫

[0,1)s
f (u)du (2)

based on a HUPS Pn = {ui , i = 1, . . . , n} behave like
O(n−1 logs n). Thus when the dimension s = 360, the
number of points n needs to be unrealisatically large in
order for the QMC error bound to be better than the n−1/2

probabilistic bound associated with MC.
Before going further, let us give an example to illus-

trate how the formulation (2) is general enough to include
most financial problems. Consider an Asian option pricing
problem, where the goal is to evaluate

E(e−rT max(AT − K, 0)), (3)

where AT = 1
s

∑s
j=1 S(tj ), 0 ≤ t1 < . . . < ts = T , S(t) is

the value of the underlying asset at time t , r is the risk-free
interest rate, T is the expiration time of the option, and K

its strike price. Assume the underlying asset follows the
Black-Scholes model, that is, under the risk-neutral measure
(see, e.g., Glasserman (2004)),

dS(t) = rS(t)dt + σS(t)dB(t),

where B(·) is a standard Brownian motion. Therefore, S(t)

has a lognormal distribution whose parameters depend on
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r , t , S(0), and the volatility σ of the underlying asset. More
precisely, we can write

S(t) = S(0)e(r−σ 2/2)t+σB(t), (4)

and since B(t) ∼ N(0,
√

t) (where N(µ, σ) denotes the
normal distribution with mean µ and variance σ 2), (4)
can also be written as S(t) = S(0)e(r−σ 2/2)t+σ

√
tZ , where

Z ∼ N(0, 1). Now, if Z is generated by inversion, we
can write Z = �−1(U), where �(·) is the cumulative
distribution function of a N(0, 1), and U ∼ U [0, 1). So
each S(tj ) can be written as a function of uj ∈ [0, 1), which
implies we can write e−rT max(AT −K, 0) = f (u1, . . . , us)

for some function f , and thus

E(e−rT max(AT − K, 0)) =
∫

[0,1)s
f (u)du.

The work of Paskov and Traub led many researchers to
try to understand better why QMC methods could do well
even in large dimensions. The notion of effective dimension
has been introduced as a result of these investigations.
Roughly, for a problem with an effective dimension d,
good results can be obtained as long as the QMC method
used is based on a HUPS that has good d-dimensional
projections.

From a more general point of view, what has been
emerging from these investigations is that QMC methods
can be successful when the underlying point set interacts in
a constructive way with the problem at hand. This interac-
tion can actually be enhanced by either choosing a HUPS
specifically for a given problem, or trying to reformulate
the function to be integrated so that good properties of the
HUPS can be exploited. An example of the latter is the use
of Brownian bridge techniques, which were introduced by
Caflisch and Moskovitz (1995). Examples of the former
include recent work by Wang and Sloan (2003a), where
lattice rules are chosen in a component-wise fashion using
a criterion that depends on the integrand. More details on
these enhancement or fine-tuning techniques are given in
the first part of this paper. In the second part, we take a
different point of view and try to see if these enhancement
techniques are necessary for QMC methods to be efficient
for financial simulations. To do so, we choose a few QMC
constructions and test their “robustness” by using them on
different financial problems.

More precisely, the remainder of this paper is organized
as follows: in Section 2, we briefly recall basic facts about
RQMC methods. The concept of effective dimension is
discussed in Section 3, along with other related definitions.
Section 4 reviews methods that can be used to enhance
QMC, by exploiting the interaction between the function
to be integrated and the HUPS used. Numerical results
illustrating the efficiency of a few selected RQMC methods
for financial simulations are presented in Section 5. Con-
cluding comments and ideas for future research are outlined
in Section 6.

2 RANDOMIZED QUASI-MONTE CARLO

We mentioned in the introduction that when QMC methods
are used to approximate (2), bounds on the deterministic
error can be found. These bounds are valid for functions
satisfying strong regularity conditions (e.g., f must be of
bounded variation: see Niederreiter (1992) and Owen (2004)
for the details), and are not useful in practice because they
are very difficult to compute and too conservative.

One way of obtaining error estimates for QMC methods
is to randomize the underlying HUPS. More precisely, let
v be a uniform random vector in some space �. Then
choose a randomization function r : � × [0, 1)s → [0, 1)s

and construct the randomized version P̃n = {ũ1, . . . , ũn}
of Pn, defined by ũi = r(v, ui ). For example, with the
Cranley-Patterson rotation (Cranley and Patterson, 1976),
� = [0, 1)s and r(v, ui ) = (ui + v) mod 1.

The function r should be chosen so that (i) r(v, u) is
uniformly distributed over [0, 1)s for any u, and (ii) P̃n has
the same highly uniform properties as Pn.

Once a randomization is chosen, the variance of the
resulting estimator

∑n
i=1 f (ũi )/n can be estimated by gen-

erating m i.i.d. randomized point sets P̃n.
For more on randomization techniques and standard

constructions for QMC methods, we refer the reader to Owen
(1998), L’Ecuyer and Lemieux (2002), and Glasserman
(2004).

3 EFFECTIVE DIMENSION AND
RELATED CONCEPTS

Let us first briefly introduce some notation. For I =
{j1, . . . , jt } ⊆ {1, . . . , s}, let −I = {1, . . . , s} \ I and uI =
(uj1 , . . . , ujt ). For each I , define the ANOVA component

fI (u) =
∫

[0,1)s−t

f (u)du−I −
∑
J⊂I

fJ (u).

We can then write f (u) = ∑
I fI (u), and we have that

∫
[0,1)s

fI (u)fJ (u)du =
{

0 if I �= J

σ 2
I if I = J.

Therefore Var(f ) = σ 2 = ∑
I �=∅ σ 2

I and thus the σ 2
I /σ 2

– called sensitivity indices in Sobol’ (2001) – can be seen
as a measure of the relative importance of the ANOVA
components fI . We refer the reader to Owen (1998) for
more on ANOVA decompositions.
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To analyze the interaction between f and a given
point set, it is useful to talk about the projections of
Pn: for I = {j1, . . . , jt } ⊆ {1, . . . , s}, let Pn(I) =
{(ui,j1 , . . . , ui,jt ), i = 1, . . . , n}. Now, for Pn to approx-
imate (2) with small variance, the intuition is that the
projections Pn(I) corresponding to important subsets I –
as measured by σ 2

I /σ 2 – should be highly uniform. For less
important subsets I , the quality of Pn(I) is not as crucial.

Often, problems in finance are such that the nominal
dimension s of the corresponding function f is large, but
the important components fI are such that |I | is small. The
notion of effective dimension captures this idea: following
Caflisch, Morokoff and Owen (1997), we say that f has an
effective dimension dtr in the truncation sense (in proportion
p) if

∑
I :I⊆{1,...,dtr} σ 2

I ≥ pσ 2, and f has an effective

dimension of dsu in the superposition sense if
∑

I :|I |≤dsu
σ 2

I ≥
pσ 2.

For example, for the Asian call option described by (3)
with the parameters s = 32, σ = 0.3, r = 0.05, S(0) =
50, K = 45, Lemieux and Owen (2001) estimate a
lower bound of 0.97 on

∑
I :|I |≤2 σ 2

I /σ 2. Hence this 32-
dimensional problem has an effective dimension of 2 in the
superposition sense in proportion 0.97. They use quasi-
regression to compute these lower bounds, and the standard
approach outlined in the introduction to generate the under-
lying asset price’s paths. Alternatively, Sobol’ (1993) and
Archer, Saltelli and Sobol’ (1997) estimate the sensitivity
indices by directly estimating σ 2

I , an approach also used by
Wang and Fang (2003), and Wang and Sloan (2003b). As
discussed in the two latter papers, this approach works well
to estimate the effective dimension in the truncation sense,
but is cumbersome for estimating the effective dimension
in the superposition sense.

Numerical results presented in these two papers suggest
that many problems in finance have a low effective dimen-
sion in the superposition sense (with paths generated using
the standard approach), which is consistent with results
given in Paskov (1997), and Caflisch, Morokoff and Owen
(1997). Wang and Sloan (2003b) also present an interesting
theoretical analysis aimed at explaining this phenomenon.

4 ENHANCING QUASI-MONTE CARLO

The fact that many financial problems naturally have a low
effective dimension in the superposition sense implies that
HUPS with good low-dimensional projections – i.e., Pn(I) is
highly uniform whenever |I | is small – can provide accurate
estimates for these problems. However, many constructions
for HUPS are such that the quality of Pn(I) deteriorates
as the smallest index j1 in I increases. Sobol’ and Halton
sequences are examples of such constructions. Hence for
RQMC estimators based on these HUPS to perform well,
the problem at hand must have a small effective dimen-
sion in the truncation sense. This fact has motivated the
introduction of techniques aimed at reducing this type of
effective dimension, which we now discuss.

4.1 Brownian Bridges and Dimension Reduction

The Brownian bridge (BB) technique for QMC integration
was first introduced by Caflisch and Moskowitz (1995),
and then generalized by Morokoff and Caflisch (1997).
In the standard approach to generate a path – which we
outlined in the introduction – the coordinates u1, . . . , us

of u are successively used to generate the observations
B(t1), . . . , B(ts) of the asset’s underlying Brownian motion.
If instead one tries to use the first few coordinates of u
to specify as much as possible the behavior of B(·), then
hopefully, this should reduce the effective dimension of
the problem in the truncation sense. BB does that by
first generating B(ts), then B(t�s/2�), then B(t�s/4�) and
B(t�3s/4�), and so on. This can be done easily since the
Brownian bridge property tells us that for any u < v < w,
we have that B(v)|(B(u) = a, B(w) = b) has a normal
distribution with mean a(w−v)/(w−u)+b(v−u)/(w−u)

and variance (v − u)(w − v)/(w − u).

This technique can be generalized by observing that the
standard method to generate B(·) can be written as W = Az,
where W = (B(t1), . . . , B(ts))

T , z = (z1, . . . , zs)
T , and

A =




1 0 0 0 · · · 0
1 1 0 0 · · · 0
1 1 1 0 · · · 0

. . .

1 1 1 1 · · · 1




,

if we assume that tj − tj−1 = 1 for each j = 1, . . . , s,
and the zj = �−1(uj ) are i.i.d. standard normal variables.
Replacing A by a matrix V such that V V T = AAT =:
� is called a generalized Brownian bridge technique in
Morokoff and Caflisch (1997). For example, Acworth,
Broadie and Glasserman (1997) use a principal components
analysis (PCA) to define V , that is, they take V = PD1/2,
where P ’s columns are formed by the eigenvectors of the
covariance matrix �, and D is a diagonal matrix containing
the corresponding eigenvalues of � in decreasing order.
In their numerical results, PCA outperforms BB, and in
addition, it can be used for multi-assets problems, whereas
BB can only be used in this case if the assets are uncorrelated.
PCA requires more computation time however, but Åkesson
and Lehoczy (2000) propose a modification to PCA that
reduces it.

More recently, Imai and Tan (2002) have proposed
to use a matrix V of the form V = AH , where A is
the lower triangular matrix obtained from the Cholesky
decomposition of �, and H is an orthogonal matrix chosen
so as to minimize the effective dimension of the problem in
the truncation sense. A feature of this technique not present
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in BB and PCA is that the chosen matrix V depends on
the problem. In the examples they provide, their technique
slightly outperforms PCA, but they do not discuss the relative
importance of the overhead computation that is required.

As mentioned before, the above techniques are aimed at
reducing the effective dimension in the truncation sense, and
are thus mostly useful for HUPS whose projections Pn(I)

deteriorate as the smallest index j1 in I increases. It is
important to know that some HUPS do not have this undesir-
able feature; they are dimension-stationary, that is, for any
I = {j1, . . . , jt } ⊆ {1, . . . , s} and l ≤ s − jt , we have that
Pn(I) = Pn(I + l). So for instance, a dimension-stationary
point set is such that Pn({1, 3, 4}) = Pn({2, 4, 5}) = . . . =
Pn(100, 102, 103}), and so on. By using recurrence-based
point sets (L’Ecuyer and Lemieux 2002), which include
Korobov and polynomial Korobov lattice point sets, it is
easy to construct HUPS that are dimension-stationary. In
addition, these point sets can handle problems with infinite
dimension.

4.2 Customized Sampling Method

To study problems having a small effective dimension dtr
in the truncation sense, one can use weighted spaces of
functions. In such spaces, a weight γj is associated with
each dimension j = 1, . . . , s. The properties of functions
with small dtr can then be captured by using weights, say, of
the form γj = ατj , where α and τ < 1 are parameters to be
determined. Wang and Sloan (2003a) use this approach to
construct lattice rules in a component-by-component fashion
(see, e.g., Sloan, Kuo and Joe (2002)). In their work, the
parameters α and τ are problem-dependent, which is why
we call this approach a “customized sampling method”.

For problems with a small dsu but for which dtr is not
necessarily small, working with weighted spaces of this
form is not appropriate. However, one can still choose a
HUPS based on a criterion that incorporates information on
the problem. For example, a preliminary estimation of the
sensitivity indices could be performed to guide the definition
of a criterion of the form Mt1,...,td or 	t1,...,td discussed in
L’Ecuyer and Lemieux (2002).

5 NUMERICAL RESULTS

In the two previous sections, we reviewed approaches that
can be used to enhance QMC methods by exploiting specific
properties of the problem at hand. Although these fine-tuning
techniques are certainly useful, in some cases it may not
be feasible to use them. For example, in a general-purpose
simulation software that includes RQMC methods, it may
not be realistic (or safe) to make these techniques available.
From this point of view, it seems of interest to select a
few RQMC methods and see how “robust” they are, that is,
if they can outperform MC on a variety of problems, and
without using these enhancement techniques.

The purpose of this section is to investigate this point,
and we do this by comparing the performance of three
RQMC methods against MC on three problems. The RQMC
methods chosen are Sobol’, Korobov (Kor), and polynomial
Korobov (PKor) rules. The Sobol’ sequence is implemented
as in Lemieux, Cieslak and Luttmer (2002), and the two
Korobov methods are based on parameters chosen (for each
n) via the criteria M32,24,12,8 and 	32,24,12,8 (L’Ecuyer and
Lemieux 2002). All three methods are randomized by a
shift (which is digital for Sobol’ and polynomial Korobov),
and thus properties (i) and (ii) of Section 2 holds for all
our RQMC methods. The problems we consider consist in
pricing (1) a digital option; (2) an American option; (3) a
mortgage-backed security.

5.1 Digital Options

We chose this problem because it has been shown (Pa-
pageorgiou (2002)) that the Brownian bridge technique is
worsening the estimation here, which is another reason to
investigate the effectiveness of “plain” RQMC methods (i.e.,
that do not use enhancement techniques). The payoff of a
digital call option is given by

CD = 1

s

s∑
j=1

(Stj − Stj−1)
0+Stj ,

where tj = jT /s for j = 1, . . . , s, and (x)0+ is equal to 1
if x > 0, and is 0 otherwise. Thus, the value of this type
of option is determined more heavily by local trends of
the underlying asset rather than by its global trend, which
might be a reason for the failure of the Brownian bridge
technique on this problem.

Table 1 gives results for different values of s and n,
and with T = 1, r = 0.045, σ = 0.3, and S(0) = 100.
The number of randomizations m was set to 25 for these
results. For each pair (s, n), we give for each method the
estimator for µ on the first line, and its standard error on
the second line.

As we can see in this table, the three RQMC methods
consistently succeed in reducing the variance for this prob-
lem, by factors ranging between about 30 and 4000. Note
also that the PKor method is often the best method.

5.2 American Options

The options that we discussed so far were both European
options, that is, the holder can only exercise the option at
expiration time. An American option gives its holder the right
to exercise before expiration time. More precisely, in this
paper we assume that with an American option, the holder
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Table 1: Digital Option
(s, n) MC Sobol’ Kor. PKor
(64,1024) 52.718 52.691 52.698 52.690

9.88e-2 1.08e-2 9.60e-3 5.07e-3
(64,4096) 52.737 52.689 52.691 52.691

5.35e-2 1.99e-3 2.60e-3 8.05e-4
(128,1024) 52.235 52.228 52.237 52.230

8.13e-2 1.52e-2 1.04e-2 3.32e-3
(128,4096) 52.272 52.234 52.233 52.233

3.59e-2 5.42e-3 4.40e-3 4.59e-3
(256,1024) 51.954 51.912 51.916 51.905

8.36e-2 1.33e-2 1.18e-2 3.30e-3
(256,4096) 51.947 51.923 51.908 51.918

3.15e-2 5.38e-3 3.41e-3 4.32e-3

can exercise at a set of specific dates t1 < t2 < . . . < tb = T ,
which are usually equally spaced in time (such options are
sometimes called Bermudan options in the literature). This
complicates the pricing problem considerably because in
order to estimate the value of the option, we can no longer
simply run several realization paths of the underlying asset
and compute the average actualized payoff: we must also
determine when should the option be exercised. Formally,
an American option based on a vector S = (S1(·), . . . , Sd(·))
of d underlying assets and with payoff function C(t, S(t))

has value

µ = max
1≤j≤b

E(e−rtj C(tj , S(tj ))). (5)

Many researchers have studied American option pricing
in the last few years, and how MC could be used for that
problem. We refer the reader to Glasserman (2004) for a
detailed review of this research area. Here, we focus on the
regression-based (REG) technique proposed by Longstaff
and Schwartz (2001), which produces a low-biased estimate.
To the best of our knowledge, Chaudhary (2004) is the only
work that studies the use of QMC methods for this approach.
This author also proposes a space-effective implementation
of the Brownian bridge technique within this approach.

We now describe the REG approach, giving only the
information necessary to understand our RQMC implemen-
tation. We refer the reader to Longstaff and Schwartz
(2001); Clément, Lamberton and Protter (2002); Glasser-
man (2004) for additional information, including motivation
for this method and how it relates to other methods.

The method uses n realization paths {Si (t), t =
0, t1, . . . , tb; i = 1, . . . , n} of the underlying assets. It then
estimates for each path i when is the optimal exercise time
t∗i . This is done by proceeding backward from T as follows:
set t∗i = T , then at time t = tb−1, tb−2, . . . , t1, set t∗i = t if

C(t, Si (t)) > F̂ (Si (t)), where F̂ (t, Si (t)) is an estimate of
the continuation value of the option at time t given Si (t).
This estimate is obtained by regression of the actualized
payoffs (from time t∗j , for each path j ) against the current
value of the assets over the paths that are in-the-money, that
is, such that C(t, Si (t)) > 0. More precisely, a finite set
of multivariate basis functions {ψl(·), l = 0, 1, . . . , M} is
chosen, and the regression coefficients are estimated as

(β̂0, . . . , β̂M)T = (�T �)−1�T (y1, . . . , yn∗)T ,

where n∗ is the number of paths that are in-the-money
at time t , yi = C(t, Si (t)), and �i,l = ψl(Si (t)) for
i = 1, . . . , n∗, l = 0, . . . , M . Then F̂ (t, Si (t))) =∑M

l=0 β̂lψl(Si (t)).
Once the optimal exercise times are estimated for each

path, the option’s value is estimated by

µ̂n,reg = 1

n

n∑
i=1

e−rt∗i C(t∗i , S(t∗i )).

Note that this approach – as well as most MC-based
approaches for American option pricing – uses information
across all paths to compute an estimate for (5). More
precisely, the regression coefficients – and thus the estimated
optimal exercise times t∗i – are determined from all paths.
Hence the estimator µ̂n,reg does not satisfy the general
definition (1). What does it imply? Formally, it means that
if we use an RQMC method to compute µ̂n,reg – i.e., the
n paths are obtained from using the n points of a HUPS in
dimension s = bd – then we cannot use standard results on
the variance of RQMC estimators to predict the behavior of
µ̂n,reg. However, we can still hope that the high uniformity
of the underlying HUPS will result in an estimator with
reduced variance. The results below indicate that this seems
to be the case, although the variance reduction factors are
not as large as for the other two problems considered in
this paper.

We now report results for three kinds of American
options studied in Longstaff and Schwartz (2001). In each
case, we assume the vector of underlying assets S(·) follows
a multivariate geometric Brownian motion, that is, for l =
1, . . . , d,

dSl(t) = Sl(t)(r − δl)dt +
d∑

k=1

Ml,kdBk(t),

where δl is the continuous dividend rate for Sl(·),
B1(·), . . . , Bd(·) are independent standard Brownian mo-
tions, and the matrix M whose (l, k)th entry is Ml,k is such
that C = MMT , where C is the instantenous covariance
matrix of S(·). In our numerical experiments, we assume
Cl,l = σ 2 for l = 1, . . . , d, and Ck,l = ρσ 2 for k �= l.
All results were obtained with n = 4096 and m = 25, and
using the same basis functions as Longstaff and Schwartz.
Each entry in the forthcoming tables contains an estimate
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for µ on the first line, and its standard error on the second
line. Results for the corresponding European options are
also given.

In Table 2, we look at a simple put option on one asset
paying no dividend, with T = 2 and 50 exercise periods
per year. Hence s = 100 for this problem. The other
parameters are σ = 0.2, r = 0.06, and K = 40.

Table 2: American Put on Single Asset
S(0) MC Sobol’ Kor PKor
36 American

4.861 4.847 4.849 4.843
9.87e-3 6.23e-3 5.10e-3 5.89e-3

European
3.786 3.757 3.763 3.770

1.43e-2 5.08e-3 6.30e-3 4.77e-3
40 American

2.911 2.899 2.894 2.896
9.96e-3 5.27e-3 4.80e-3 5.31e-3

European
2.379 2.347 2.353 2.363

1.19e-2 6.08e-3 5.23e-3 5.00e-3
44 American

1.721 1.704 1.693 1.701
6.36e-3 3.61e-3 5.12e-3 3.74e-3

European
1.446 1.423 1.427 1.434

9.97e-3 6.57e-3 4.38e-3 5.21e-3

The results in Table 2 show that all three RQMC methods
consistently reduce the variance compared to MC, by factors
ranging between 1.5 and 4 for the American options, and
2.3 and 9 for the European options.

In Table 3, we consider an American-Bermudan-Asian
option on one asset paying no dividend, and with T = 2
years. The payoff of this option at time t is given by
max(0, At − K), where K is the strike price and At is
the arithmetic average of the underlying asset during the
period three months prior to time 0 up until time t . The
option can be exercised any time after time 0.25, and time
is discretized into 100 steps per year to approximate the
continuous average and exercise opportunities. Thus the
dimension s is 200 for this example. The results in Table
3 are given for different pairs (A0, S(0)), and for σ = 0.2,
r = 0.06, and K = 100.

Here again, all three RQMC methods consistently re-
duce the variance compared to MC, by factors ranging be-
tween approximately 1.6 and 15 for the American options,
and 1.6 and 37 for the European options.

The last example considered is a call option on the
maximum of five assets. These five assets are identically
distributed, and are assumed to be independent in Table 4,
while in Table 5 we assume ρ = 0.5 in the instantaneous
covariance matrix C. There are three exercise periods per
year and T = 3 in this example, so the dimension s is
Table 3: American-Bermudan-Asian Call on Single
Asset
(A0, S(0)) MC Sobol’ Kor PKor
(90,80) American

0.955 0.981 0.978 0.977
1.05e-2 7.37e-3 8.30e-3 5.52e-3

European
0.947 0.972 0.970 0.968

1.04e-2 7.22e-3 8.11e-3 5.56e-3
(90,120) American

22.407 22.417 22.404 22.406
3.62e-2 1.12e-2 9.59e-3 9.32e-3

European
21.248 21.243 21.230 21.230

4.10e-2 6.92e-3 7.62e-3 6.76e-3
(100,100) American

8.663 8.665 8.669 8.657
2.60e-2 1.20e-2 1.00e-2 7.95e-3

European
8.193 8.207 8.190 8.186

2.82e-2 8.93e-3 9.24e-3 8.57e-3
(110,90) American

4.185 4.216 4.206 4.203
1.82e-2 8.37e-3 8.20e-3 7.94e-3

European
3.950 3.981 3.963 3.968

1.98e-2 8.59e-3 8.56e-3 8.89e-3
(110,110) American

17.349 17.353 17.347 17.352
2.80e-2 1.16e-2 1.17e-2 1.07e-2

European
15.407 15.411 15.397 15.394

3.60e-2 8.05e-3 8.10e-3 7.79e-3

45 here. The dividend rate δ is set to 0.1 for each asset,
σ = 0.2, r = 0.05, and K = 100.

Once again, all three RQMC methods succeed in re-
ducing the variance compared to MC, whether the assets
are correlated or not. For correlated assets, we see in Table
5 that the standard error of the MC estimators is often quite
large (over 0.1), while RQMC methods have standard errors
that are always below 0.05.

5.3 Mortgage-Backed Securities

This problem has been studied several times in the QMC
literature, including in Paskov (1997), Caflisch, Morokoff
and Owen (1997), and Tezuka (2001), to which we refer
the reader for more details. In short, the goal here is to
estimate a quantity of the form

µ = E


 s∑

j=1

dj cj


 , (6)



Lemieux
Table 4: Call on Maximum of Five Uncorrelated
Assets

S(0) MC Sobol’ Kor. PKor
90 American

16.763 16.696 16.697 16.710
5.15e-2 2.88e-2 2.55e-2 3.22e-2

European
14.626 14.569 14.574 14.551

5.55e-2 1.84e-2 2.98e-2 1.66e-2
100 American

26.231 26.170 26.176 26.200
6.41e-2 3.22e-2 2.12e-2 3.52e-2

European
23.090 23.029 23.024 23.002

6.67e-2 2.45e-2 3.44e-2 2.15e-2
110 American

36.832 36.765 36.809 36.815
7.09e-2 3.79e-2 2.58e-2 3.62e-2

European
32.718 32.656 32.662 32.633

7.74e-2 2.97e-2 3.84e-2 2.42e-2

which represents the value at time 0 of a security backed
by mortgages of length s months. Typically, s is chosen
to be 360, corresponding to mortgages of 30 years. The
variables dj and cj represent the discount factor and cash
flow for month j , respectively. In turn, these quantities
depend on random factors such as interest and prepayment
rates. At the end though, the sum in (6) can be written as
a function of i1, . . . , i360, where ij is the interest rate for
month j , and µ in (6) can be written as an integral of the
form (2).

The resulting function f in (2) has an effective di-
mension dsu in the superposition sense that depends on the
parameters for the interest rate model. Caflisch, Morokoff
and Owen (1997) give two sets of parameters for which f

is “nearly linear” (i.e., dsu = 1 in proportion p ≈ 1), and
“non-linear” (i.e., dsu = 1 only in proportion p ≈ 0.94).
Those are the two sets we use in our experiments below.

As we can see in Table 6, all three RQMC methods
reduce the variance substantially for this problem, both in
the nearly linear and non-linear cases. More precisely,
reduction factors between 34 and 4100 are obtained for this
problem. The PKor method is the best method in all cases,
and performs especially well for the nearly linear example.

6 CONCLUSION

The notion of effective dimension and other concepts related
to it have led to the discovery of many fine-tuning tech-
niques for the application of RQMC methods in finance in
the last few years. In this paper, we briefly reviewed recent
developments in this area of research. As a consequence of
this recent trend, it is interesting to see if these fine-tuning
Table 5: Call on Maximum of Five Correlated
Assets

S(0) MC Sobol’ Kor. PKor
90 American

13.489 13.567 13.553 13.579
7.70e-2 2.60e-2 3.21e-2 2.99e-2

European
12.130 12.303 12.320 12.299

8.43e-2 2.18e-2 2.89e-2 1.84e-2
100 American

19.451 19.630 19.537 19.541
1.04e-1 2.91e-2 4.48e-2 3.61e-2

European
17.516 17.722 17.726 17.702

1.05e-1 2.25e-2 2.90e-2 1.72e-2
110 American

26.560 26.687 26.542 26.601
1.06e-1 4.28e-2 3.93e-2 4.05e-2

European
23.768 23.996 23.993 23.963

1.24e-1 2.29e-2 2.80e-2 1.88e-2

Table 6: Mortgage-Backed Security
n MC Sobol’ Kor. PKor

nearly linear
1024 131.782 131.788 131.788 131.788

3.85e-2 2.18e-3 2.05e-3 8.22e-4
4096 131.790 131.787 131.787 131.787

2.03e-2 6.84e-4 7.58e-4 3.16e-4
non-linear

1024 130.705 130.706 130.710 130.713
2.97e-2 4.91e-3 5.09e-3 2.32e-3

4096 130.711 130.712 130.714 130.712
1.47e-2 1.78e-3 1.69e-3 1.61e-3

techniques are necessary for RQMC methods to perform
better than MC. We attempted to answer this question by giv-
ing numerical results comparing the performance of three
RQMC methods against MC on three different financial
problems. Although the number of points was relatively
small (1024 or 4096) and the dimension relatively large
(ranging between 45 and 360), our numerical results sug-
gest that the chosen RQMC methods consistently provide
estimators with smaller variance than MC. The gains are
sometimes modest (factor of 1.5), but in some cases are
quite large (over 4000).

There is still a lot of ongoing research addressing the
problem of American option pricing. Following the work
presented here, some possible next steps would be to study
the combination of RQMC with other variance reduction
techniques, such as importance sampling and control vari-
ates. Ideas developed in Broadie and Glasserman (1997),
Avramidis and Hyden (1999), and Morani (2003) might be
useful here. Boyle, Kolkiewicz and Tan (2001) have studied
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the use of RQMC methods within algorithms designed to
produce high-biased estimators, such as the stochastic mesh
of Broadie and Glasserman (1997): we believe it would
be interesting to compare alternative ways of incorporating
RQMC methods within this algorithm. Finally, it would be
useful to compare the efficiency of the estimators obtained
here with other low-biased estimators, such as the one pro-
posed by Boyle, Kolkiewicz and Tan (2003), which is based
on a low-discrepancy mesh and uses ideas developed by
Avramidis and Hyden (1999).
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