
Proceedings of the 2004 Winter Simulation Conference
R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

SINGLE-THREADED SPECIFICATION OF PROCESS-INTERACTION FORMALISM IN JAVA

Peter H.M. Jacobs
Alexander Verbraeck

Department of Systems Engineering
Delft University of Technology
Delft, THE NETHERLANDS
ABSTRACT

In order to support the conceptualization and specifica-
tion of simulation models of complex systems, several
formalisms or world views exist. Petri nets, differential
equations, discrete event system specification and process
interaction are typical examples. Throughout the last decade
many have attempted to implement the process interaction
formalism in Java. These initiatives mostly resulted in
multi-threaded simulation languages in which a Process
extends a Thread. These threads are then sequentially
suspended and resumed. The article "Why are Thread.stop,
Thread.suspend and Thread.resume Deprecated?" (Sun Mi-
crosystems 1999) implicitly ended most of these deadlock
prone initiatives. This paper introduces a unique single-
threaded implementation of this world view by introducing
a Java-based Java interpreter, which is used only to interpret
pausable processes. This interpreter supports all Java pro-
gramming constructs and hopefully serves as a cornerstone
for renewed development of process oriented Java based
simulation languages.

1 INTRODUCTION

As introduced by (Kiviat 1967) and (Fishman 1973), sim-
ulation models have two orthogonal types of structure: a
static and a dynamic structure. Where the static structure
represents the state of the simulation model, the dynamic
structure represents its time-dependent state transitions.

(Nance 1981) introduces a small set of basic definitions
which carefully distinguish the time and state relationships.
He argues that with this given set of definitions any sim-
ulation model representation can be constructed. Nance’s
starting point is the object-oriented system description of
(Kiviat 1969). A simulation model is considered to be
comprised of objects that are described in terms of their
attributes and values.

According to (Nance 1981), any simulation model must
have an indexing attribute, that is, an attribute that enables
state transitions in the model. In time-based simulation, sys-
tem time (or simulation time) is used as such an attribute.
Based on this definition, Nance defines the following con-
cepts:

An instant is defined as a value of system time at which
the value of an attribute can be altered. An interval is the
duration between two successive instants and a span is the
concatenated succession of intervals. The state of an object
is the enumeration of all attribute values of an object at an
instant.

Time and state concepts are related through a further
set of definitions; an event is a change in the state of an
object. A process is the succession of states of an object
over a span.

Where this set of definitions uniquely describes the
static structure of a simulation model, there are different
approaches to describe the dynamic structure of a simula-
tion model. These approaches are referred to as world view,
formalism or modeling construct. For discrete event simula-
tion, three classical formalisms are known: event scheduling,
activity scanning and process interaction (Fishman 1973).
In addition (Balci 1988) presents a unique strategy for the
implementation of each particular formalism.

The core notion underlying this paper is that all three
formalisms have a certain value with respect to providing
guidance to a modeler in the conceptualization and spec-
ification of the dynamic structure of a system. Since the
choice for a particular formalism depends both on the system
under investigation and on the view of the modeler, most
simulation languages support more than one formalism.

Throughout the last decade many have attempted to im-
plement the process interaction formalism in Java. These
initiatives mostly resulted in multi-threaded simulation lan-
guages in which a Process extends a Thread. These
threads are then sequentially suspended and resumed.
The article "Why are Thread.stop, Thread.suspend and
Thread.resume Deprecated?" (Sun Microsystems 1999) im-
plicitly ended most of these deadlock prone initiatives.

Jacobs and Verbraeck
As revealed by the title, this paper introduces a sin-
gle threaded implementation of the process interaction for-
malisms in Java. This paper is organized as follows: section
2 starts with an introduction of formalisms based on the
concept of locality. Section 3 provides an introduction in
the event scheduling formalism and section 4 provides a for-
mal definition of the process interaction formalism. In this
section the downside of current multi-threaded implemen-
tations is discussed. Section section 5 introduces several
potential approaches to a single threaded implementation
of this formalism.

Section 6 presents the interpreter as the preferred im-
plementation of the process interaction formalism in Java.
Section7 presents a benchmark of the interpreter; section 8
finishes with conclusions and recommendations for further
research.

2 FORMALISMS: MODELS FOR DYNAMIC
STRUCTURE DESCRIPTION

In discrete event simulation, three classical formalisms ex-
ist to describe the dynamic structure of a system under
investigation. These formalisms are meta-models of dy-
namic structure representation and as such are models too
(Vangheluwe 2002). The meta-model of these formalisms
is the selected set of state and time definitions introduced
in the first section.

The differences between these formalisms is based on
the concept of locality (Weinberg 1971). Locality refers
to the degree to which all relevant parts of a model are
found in the same place. The three classical formalisms for
discrete event simulation are:

• Event Scheduling: the event scheduling formal-
ism provides locality of time: a modeler defines
events at which discontinuous state transitions oc-
cur. Since object oriented programming languages
provide methods to effectuate these state transi-
tions, event scheduling results in scheduled method
invocation (Jacobs et. al. 2002). An event can
cause (by means of scheduling) other events to oc-
cur. As described by (Balci 1988) the strategy for
the event scheduling world view is to repeatedly
select the earliest scheduled event, to advance the
system time to the execution time of that event and
to invoke the method specified by the event.

• Activity Scanning: the activity scanning formal-
ism provides locality of state. Besides the events
described in the event scheduling formalism, a
modeler may define contingent events, which oc-
cur when some condition is met (Nance 1981). The
simulation strategy for this formalism differs from
the strategy of the event scheduling world view
in that the condition associated with contingent
events must be evaluated repeatedly. This strategy
is generally considered less efficient with respect
to computational execution (Balci 1988).

• Process Interaction: the process interaction for-
malism provides locality of object: each process
in a simulation model specification describes its
own action sequence (Overstreet 1986). This for-
malism thus reflects the autonomy of an individual
process (i.e. life cycle) and the concurrency in the
execution of distinct processes. In its action se-
quence, a process must have the ability to suspend
and resume operation.

A simulation language is said to be event-oriented,
activity-oriented, or process-oriented whenever it supports
simulation models which express their dynamic structure
according to the event scheduling, activity scanning or pro-
cess interaction formalism. The aim of several (Java based)
simulation languages is to support multiple formalisms.

3 EVENT SCHEDULING

As introduced in the previous section, event scheduling is
accomplished by a strategy of scheduled method invocation.
As becomes clear in section 5, the approach of this paper
is to map (or embed) the process interaction formalism on
the event scheduling formalism. For this reason a good
understanding of the later formalism is required and a more
detailed overview is presented here.

According to the definitions introduced in section 1,
state transitions occur at instants. In an object oriented
system representation, an object can change the state of
another object either by directly changing one of its at-
tribute values or by invoking a method on this object which
internally changes one or more of its attribute values.

Most object oriented literature advises modelers to limit
the visibility and accessibility of attributes (Eckel 2003).
This design paradigm (or pattern) is referred to as encapsu-
lation. Externally invoked state transitions on an object are
therefore preferably accomplished by method invocation.

In contrast with simulation models, software systems
only have an implicit notion of time. The only time used in
software systems is the real time, which is also referred to
as wall-clock time. A good example of this implicit notion
of time is the time-out used in most IO-connections.

As presented in section 1, simulation models use an
explicit notion of time. Whenever a state change on an
object is scheduled on an instant of the system time, direct
method invocation cannot occur: the invocation must be
scheduled.

In order to illustrate this difference, we consider a
customer-retailer relation in which a customer orders a
specific product. The Order class is defined with two
attributes : customer, and product.

Jacobs and Verbraeck
The direct invocation of the publicly accessible
receiveOrder method on an instance of the Retailer
class by an instance of the Customer class might look as
follows:

public class Customer {
private void createOrder()
{
Order order = new Order(this,"TV");
retailer.receiveOrder(order);

}
}

The strategy of scheduling method invocation used in sim-
ulation is required whenever we assume that our customer
waits for a particular duration before actually placing the
order. Our pseudo-code might look like:

public class Customer {
private void createOrder()
{
Order order = new Order(this,"TV");

//the system time for ordering
double orderTime =

simulator.getTime()+ 2.0;

//the ordering process is scheduled
Event event = new Event(orderTime,

retailer, receiveOrder, {order});
simulator.schedule(event);
}

}

The event scheduled on the simulator is defined as a
tuple < τ, p, o, m, A >. In this definition τ : τ ∈
R+

0,∞ is the execution time of the event, and p : p ∈
[Priority.MIN, P riority.MAX] represents the priority
of an event. In the above code p is implicitly set to
Priority.DEFAULT . The object on which the method
m must be invoked with the set (array) of arguments in A

is described by o.

4 PROCESS INTERACTION

This section discusses the process interaction formalism.
In order to discuss this formalism in a language indepen-
dent fashion, two modeling frameworks are used: Zeigler’s
DEVS framework (Zeigler et. al 2000) and the unified
modeling language (UML) (Booch et. al 1999). Where
the DEVS framework assists in understanding what we will
refer to as the control state, the UML framework draws the
requirements for further specification.
An autonomous system with a discrete event structure
is presented in the DEVS formalism as

< X, �, Y, δint , δext , λ, τ > (1)

In equation (1) X is the set of input values of a model.
� defines the initial state of the model, and Y is the set
of output values to a model. δint : s → s represents the
internal transition function, δext : s ∗ X → s represents the
external transition function. In these definitions s represents
a state of the model at an instance and λ : s → Y is the
output function of the model. The time advance function
is represented by τ : R+

0,∞. A very illustrative and intuitive
interpretation of this formal representation is given by (Cota
et al. 1992): For a given state s, τ(s) is the amount of
time the system will remain in state s until a next internal
event occurs. The sequential state then changes from s to
δint (s). If in between τ(s) an external event occurs, the
system changes from s to δext (s).

In the terminology of the DEVS framework, a formalism
is an approach to structure the transition functions δint and
δext and time advance function τ . (Zeigler et. al 2000)
provides mathematical formalizations of these functions for
all three classical formalisms.

In the process interaction formalism, a modeler defines
processes. The formal distinction between a process and an
object is the fact that a process has a control state attribute.
In its control state a process stores its reactivation point in
its sequence of activities. The requirements for a Process
class become:

#hold(duration : double) : void

#suspend() : void

#process() : void
+resume() : void

-controlState : ControlState

Process

• The Process class is abstract. Processes as
such cannot be instantiated. Classes extending
Process are required to implement the abstract
process method and to specify the actual se-
quence of activities.

• The suspend, hold, and process methods
have protected and therefore limited visibility.
They cannot be invoked publicly. It is impor-
tant to understand that unlimited visibility would
conflict with the locality on object and thus with
a required encapsulation of the process.

• The resume method is public, which delineated
unlimited visibility. This is required since an object
cannot resume itself in a suspended state.

Jacobs and Verbraeck
In Java it is far from trivial to access the control state of
an object. Until today the approach chosen by all process-
oriented simulation languages implemented in Java was to
circumvent its access by implementing the Process class
on top of a Java Thread.

Since a Java thread wraps an operating system thread,
and operating system threads provide methods to suspend
and resume, it is a fairly easy task to specify a multi-threaded
process interaction formalism in Java.

Besides the advantages of easiness and apparent cor-
rectness, this approach has some very strong disadvantages:

• Sun Microsystem published "Why are Thread.stop,
Thread.suspend and Thread.resume Deprecated?"
(Sun Microsystems 1999). In this article Sun Mi-
crosystems argues that invoking these methods
leads to deadlock prone code. With respect to
re-producable experiments it must further be un-
derstood that the sequence of execution of multi-
threaded processes depends on the operating system
scheduler. This makes the approach platform, and
context dependent.

• Operating system threads are expensive with re-
spect to CPU resources required for their instan-
tiation and the amount of allocated memory. An
operating system thread typically keeps track of
open files, file and user permissions, management
information, etc. A personal computer can there-
fore only handle between 1000-5000 concurrent
threads. Models specified in process-oriented sim-
ulation languages are therefore limited to an equal
amount of concurrent processes.

• Since a Java thread only wraps an underlying oper-
ating system thread, Java threads are not serializ-
able. Processes extending a Java thread can there-
fore not be streamed over a network (distributed
simulation) nor stored to file (model persistency).

Based on these disadvantages, it became our goal to
explore possible approaches of single threaded implemen-
tations.

5 SINGLE THREADED IMPLEMENTATION OF
PROCESS INTERACTION

This section explores single-threaded approaches to imple-
ment the process interaction formalism in Java. In the
terminology of the DEVS framework, the goal of this sec-
tion is to discuss possible approaches to implement the
Process class with the transition functions and time ad-
vantage function corresponding to the event scheduling for-
malism! (Vangheluwe 2002) and (Zeigler 2000) would refer
to embedding the process interaction formalism in the event
scheduling formalism.
5.1 Method Splitting

The first approach discussed here is called method splitting.
This approach is based on the idea of rewriting the model
in an event-scheduling formalism by splitting the process
method. The approach is illustrated by the customer-retailer
example of section 3. In the process interaction formalism,
the process of our customer might look like:

protected void process() {
Order order = new Order(this,"TV");
this.hold(2.0);
retailer.receiveOrder(order);

}

In order to embed the process interaction into the event
scheduling formalism, the code is splitted around all
suspend and hold statements. The above invocation
of hold(2.0) is removed and a new method is inserted.
The event-scheduling code becomes:

protected void process() {
Order order = new Order(this,"TV");

Eventevent=newEvent(2.0,"processA",order);
simulator.schedule(event);

}

private void processA(Order order) {
retailer.receiveOrder(order);

}

We conclude that the strategy of this approach is to split
around hold and suspend methods, and to schedule the
second part of a splitted method on every hold. In order
to transfer the local variables used in the original method,
they become parameters for these newly created methods.

Method splitting can occur in three modes. Firstly
a modeler can rewrite a model by hand. This is a time
consuming task, which probably results in specifying a
model in the event scheduling formalism in the first place.
The second option is to pre-compile a model by a pre-
compiler which translates a process interaction model into
an event scheduling model. The later is then compiled
into byte-code. The last option is to translate an already
compiled model process interaction model into an event
scheduling one. This is called byte code engineering.

The second and third options require a unique translating
scheme. For the following reasons, the creation of such a
scheme is far from trivial:

• A first problem arises whenever the process does
not directly invoke suspend or hold methods,
but invokes another method which invokes either
suspend or hold. Splitting this method does
not work since the return given by the first part of
the splitted method does not reach the simulator.

Jacobs and Verbraeck
The result is received by the process method
which incorrectly assumes successful completion
and continues its next operation.

• Recursive methods, or methods invoked through
reflection are very difficult, if not potentially im-
possible to split.

The result of these disadvantages is to conclude that
though method splitting works for easy situations, it results
in constraints on the set of language constructs available to
the modeler. Another conclusion is that un-allowed language
constructs are not likely to be noticed by general purpose
compilers.

5.2 Stack swapping

In order to understand the concept of stack swapping, this
paper introduces the Java virtual machine specifications of
method invocation.

Whenever Java source code is compiled, a unique
.class file is generated reflecting the compiled byte code
for the particular class. Though the format of this file
may seem unreadable, it consists of integers, shorts, utf-8
characters, etc.

A .class starts with several constants defining the
name of the class, its superclass, and the set of interfaces
it implements. Then the constantpool is specified. The
constants in this pool are used by the fields and methods
described in the .class file and merely serve the purpose
of preventing unnecessary bytes in the file (a pointer to the
3rd constant in a constantpool of 255 positions occupies
only 1 byte, where duplicating a complete string will most
certainly not).

Then all fields and methods of the class are described by
their signature (including, name, (return) type, and possible
parameters). The body of a method is specified as a list of
sequential assembly operations. The Java virtual machine
specification (Lindholm 1999) introduces all most 200 of
such operations. Whenever a method is invoked, a Java
virtual machine simply sequentially executes this list of
operations.

In software terms, the invocation of a method is called a
frame and a stack represents a last-in-first-out (LIFO) stack
of objects. In order to execute the invocation of a method,
a Java virtual machine uses two types of stacks. One is
a frame stack, exclusive to a thread. The operand stack
represents a stack for operations and is exclusive to each
frame (or method invocation). As will become obvious from
the following example, another object used in the execution
of a frame is the pool of localvariables. This pool holds all
local variables of a method (including the method-parameter
values).

The execution of byte code can perhaps best be de-
scribed by a simple example. Consider a class defining
two mathematical operations square and its more general
pow.

public static double square(double a) {
return pow(a,2);

}

public static double pow(double a, int b) {
while(b>1)
{
return a*pow(a,b-1);

}
return a;

}

If square(4.0) is invoked, the main thread of execution
creates a new frame for this invocation and pushes this
frame on top of its frame stack. Then it starts the execution
of this frame resulting in the execution of the following 4
assembly operations:

DLOAD_0 //stack.push(localvariable(0))
ICONST_2 //stack.push(constantpool(1))
INVOKESTATIC //invoke

pow(stack.pop(),stack.pop())
DRETURN //return stack.pop()

Based on the source-code presented in this example, it is not
difficult to understand that the INVOKESTATIC operation
invokes the more general pow(a,2) method. A new frame
is thus created and pushed on top of the previously created
frame representing the square invocation. The thread
first executes this newly pushed frame before it resumes
the DRETURN operation. The operations of the pow frame
are:

ILOAD_2 //stack.push(localvariable(2))
ICONST_1 //stack.push(constantpool(1))
IF_ICMPLE //if(..<..)
DLOAD_0 //stack.push(localvariable(0))
ILOAD_2 //stack.push(localvariable(2))
ICONST_1 //stack.push(constantpool(1))
ISUB //stack.push(stack.pop()-stack.pop())
INVOKESTATIC //invoke

pow(stack.pop(),stack.pop())
DLOAD_0 //stack.push(localvariable(0))
DMUL //stack.push(stack.pop()*stack.pop())
DRETURN //return stack.pop()
DLOAD_0 //stack.push(localvariable(0))
DRETURN //return stack.pop()

Since the pow method is a recursive method, the num-
ber of frames created for its invocation is equal to b-1.
Whenever a frame returns a value, this value is pushed
on its parent frame. Then the frame is removed from the
framestack and the execution of the parent frame resumes.

Jacobs and Verbraeck
The approach introduced as stack swapping works as
follows: assume a Process is paused with a hold state-
ment. The simulator thread now:

• pops its framestack up to the point where the
process method of the Process was invoked.
Since the process method is void, no return
value is pushed to the parent frame.

• stores this popped part of its framestack as the
control state of the Process.

• stores the index of the last executed operation as
reactivation point of this control state.

• continues the execution of its framestack which
results in executing the next scheduled simulation
event. The suspend is now successfully accom-
plished.

Whenever the simulator thread resumes a Process it
pushes the control state of the process on its framestack
and resumes its new top frame on the specified reactivation
point. In contrast with both the multi threaded and method
splitting approaches, stack swapping has no constraints; it
is therefore the preferred approach for the specification of
the process interaction. One remaining problem is that the
Java programming language does not provide any language
constructs to access neither the framestack of a thread, nor
its local variables.

6 JAVA INTERPRETER

As described in the previous section, stack swapping is the
preferred approach to implement the process interaction
formalism. The only hurdle is now to design a library which
provides control over the execution of assembly operations.
The Java interpreter presented in this paper provides this!

The approach chosen in this paper is to develop an
interpretation library. This library can best be seen as
a virtual machine implemented in Java. In order to do
so, a number of objects were designed and implemented.
First of all, the standard java.util.Stack was used
for both the operand stack and the framestack. Both the
constantpool and the localvariables were spec-
ified as ordinary arrays.

A bit more problematic was the specification of
the class-file. Where the Class class provides
meta-information of an Object we developed the
ClassDescriptor as a class which provides the required
meta-information of a Class. A ClassDescriptor
holds MethodDescriptors which hold Operations.

The most time consuming, but straightforward task
was to specify all 200 assembly operations. An example of
such operation is the DMUL operation which multiplies two
doubles. Its execute method is implemented as follows:
public void execute(
final OperandStack stack,
final Constant[] constantPool,
final LocalVariable[] localVariables)
{
double value2 = ((Number) stack.pop())

.doubleValue();
double value1 = ((Number) stack.pop())

.doubleValue();
stack.push(new Double(value1 * value2));
}

The approach for the implementation of the process interac-
tion formalism in the DSOL suite for simulation becomes:

• a Process class is specified as introduced in
the class diagram in section 4. This class has
one attribute called framestack which type is
java.util.Stack.

• the constructor of the Process schedules on
the simulator the interpretation of the process
method to be invoked at time=0.0 . The inter-
pretation is thus scheduled!

• Starting at time=0.0, the process is inter-
preted sequentially and hierarchically. In order to
prevent any overhead, a tight invocation scheme is
used: only invocation of pausable methods is in-
terpreted. All other invocations are not interpreted,
but directly invoked through reflection.

7 RESULTS

The previous section described the interpretation of Java byte
code. In order to see whether this approach indeed solves the
scalability, serializability and reproducibility disadvantages
without creating an unacceptable loss of performance, a
customer delay was specified in both the event scheduling
formalism and in the process interaction formalism.

The pseudo-code for the customer implemented in the
event scheduling formalism is:

public void process() {
doubleduration=holdDistribution.draw();
this.simulator.scheduleEvent(
new SimEvent(
this.simulator.getSimulatorTime()
+ duration,
"resume"));

}

private void resume(){}

The pseudo-code for the customer implemented in the pro-
cess interaction formalism is:

Jacobs and Verbraeck
public void process() {
doubleduration=holdDistribution.draw();
this.hold(duration);
}

The computational performance between the process inter-
action and event scheduling world-view is illustrated in table
1. The first column of this table illustrates the number of
simultaneously created entities at time=0.0. The second
and third column present the computational execution time
in milliseconds of the event scheduling (ES) and process
interaction (PI) formalisms. The fourth column presents the
relative speed of event scheduling versus process interac-
tion. The benchmark presented was conducted on a Intel

Table 1: Benchmark of Process Interaction

DEVS (millisec) PI (millisec) PI/DEVS
1 18 358 19.91

10 19 352 18.53
100 30 401 13.39

1000 111 763 6.88
10000 475 3077 6.47
100000 3211 20012 6.23

Pentium III Mobile CPU 1200MHz, 512 Mb ram, SuSE 8.2
(Linux) operating system and Sun’s Blackdown-1.4.1-01
JRE. Conducting an equal test with the multi threaded pro-
cess interaction simulation language Silk (Kilgore 2000)
resulted in an irrecoverable stack overflow after 1320 pro-
cesses were instantiated.

As the decreasing PI/DEVS factors in table 1 illus-
trate, a performance loss of around 300 millisecond is due
to an initial penalty for parsing the .class file and con-
structing appropriate assembly operations. Based on the
1000, 10000, and 100000, we conclude that the actual
interpretation of a process is around 6 times slower than its
event scheduling opponent.

8 CONCLUSIONS

This paper introduces a single threaded implementation of
the process interaction formalism in Java. The development
of this library is considered vital since it replaces the less
scalable, deadlock-prone, platform-dependent, and multi-
threaded approaches used so far.

The approach presented here extends Java’s reflection
concept to class reflection. Where Java provides language
constructs to introspect an object, resolve its class, and
indirectly invoke its methods, the approach chosen here is
to introspect a class, resolve method assembly operations
and invoke these operations indirectly.

Suspension and resuming simulation processes is im-
plemented as follows: in the constructor of a Process
schedules the interpretation of its process method at
simulation time=0.0. Whenever interpretation starts,
the list of assembly operations is sequentially executed until
new invoke operations occur.

If the target for this new operation is an instance of
Process, the operation is interpreted. If not, indirect
invocation is not required and therefore not used. Java’s
reflection library is then used to minimize computational
overhead.

A further conclusion is that since process interaction is
based on a single-thread (i.e. the simulator thread), dead-
locks caused by synchronization of objects over processes
cannot occur. The penalty of using interpretation is around
300-800 milliseconds per Class and around 6 times slower
than its event scheduling "opponent".

9 OBTAINING THE SOFTWARE

Both the process-interaction formalism and the in-
terpreter are part of the DSOL suite for simulation
(see Jacobs et. al 2002, Lang et. al. 2003).
DSOL is published under the General Public Li-
cense. More information on the license can be found at
<http://www.gnu.org/copyleft/gpl.html>.
The DSOL project description can be found at
<http://www.simulation.tudelft.nl>
and the software can be downloaded from
<http://sourceforge.net/projects/dsol/>

AUTHOR BIOGRAPHIES

PETER H.M. JACOBS is a PhD. student at Delft Uni-
versity of Technology. His research focuses on the design
of simulation and decision support services for the web-
enabled era. His working experience within the iForce
Ready Center, Sun Microsystems (Menlo Park, CA), and
engineering education at Delft University of Technology
founded his interest for this research. His e-mail address
is <p.h.m.jacobs@tbm.tudelft.nl>.

ALEXANDER VERBRAECK is an associate professor in
the Systems Engineering Group of the Faculty of Technol-
ogy, Policy and Management of Delft University of Technol-
ogy, and a part-time full professor in supply chain manage-
ment at the R.H. Smith School of Business of the University
of Maryland. He is a specialist in discrete event simula-
tion for real-time control of complex transportation systems
and for modeling business systems. His current research
focus is on development of open and generic libraries of
object oriented simulation building blocks in Java. Contact
information: <a.verbraeck@tbm.tudelft.nl>.

http://www.gnu.org/copyleft/gpl.html
http://www.simulation.tudelft.nl
http://sourceforge.net/projects/dsol/

Jacobs and Verbraeck
REFERENCES

Balci O. 1988. The implementation of four conceptual
frameworks for simulation modeling in high-level lan-
guages. In Proceedings of the 20th conference on
Winter simulation, ed. M.A. Abrams, P.L. Haigh, J.C.
Comfort, 287-295. ACM Press. San Diego, California,
United States.

Booch G., J. Rumbaugh , and I. Jacobson. 1999, The
unified modeling language user guide, Indianapolis,
IN:Addison-Wesley.

Cota B.A., R.G. Sargent. 1992. A Modification of the
process interaction world view. ACM Transactions on
modeling and computer simulation 2 (2): 109-129.

Eckel, B. 2003. Thinking in Java. 3rd ed. Upper Saddle
River, NJ:Prentice Hall

Fishman, G.S. 1973, Concepts and methods in discrete event
digital simulation, New York: John Wiley and Sons,
pp. 22-58, 1973.

Jacobs, P.H.M., N.A. Lang , A. Verbraeck. 2002 DSOL; A
Distributed Java based discrete event simulation archi-
tecture, Proceedings of the 2002 Wintersim conference

Kilgore, R.A. 2000. Silk, Java and object-oriented simula-
tion. In Proceedings of the 32nd conference on Winter
simulation, ed. P.A. Fishwick, K. Kang, J.A. Joines,
R.R. Barton, 246-252. Society for Computer Simula-
tion International. Orlando, Florida, United States.

Kiviat, P.J. 1967. Digital computer simulation: modeling
concepts. RAND Memo RM-5378-PR. RAND Corpo-
ration, Santa Monica, United States.

Kiviat, P.J. 1969. Digital computer simulation: computer
programming languages. RAND Memo RM-5883-PR.
RAND Corporation, Santa Monica, United States.

Lang N.A., P.H.M. Jacobs, A. Verbraeck. 2003. Distributed,
open simulation model development with DSOL ser-
vices. In Proceedings of the 15th European Simulation
Symposium, ed. A. Verbraeck, V. Hlupic, R. Scoble.
210-218. SCS European Publishing House, Germany.

Lindholm T., F. Yellin, 1999. The Java(TM) virtual machine
specification. 2nd ed. London, UK:Addison-Wesley.

Nance R.E. 1981. The time and state relationships in
simulation modeling, Communications of the ACM 24
(4): 173-179.

Sun Microsystems. 1999. Why are Thread.stop,
Thread.suspend, Thread.resume and Run-
time.runFinalizersOnExit deprecated? Avail-
able online via <http://java.sun.com
/j2se/1.4.2/docs/guide/misc/> [Accessed
August 3, 2004].

Overstreet C.M., R.E. Nance, 1986. World view based
discrete event model simplification. Modeling and
Simulation Methodology in the Artificial Intelligence
Era, ed M.S. Elzas, T.I. Oren, B.P. Zeigler, 165-179.
Amsterdam, the Netherlands.
Vangheluwe H., J. de Lara. 2002. Meta-models are models
too. In Proceedings of the 34nd conference on Win-
ter simulation, ed. J.L. Snowdon, J.M. Charnes, E.
Yucesan, C-H. Chen , 128-135. Society for Computer
Simulation

Weinberg, G.M. 1971, The psychology of computer pro-
gramming. New York, NY: Van Nostrand Reinhold.

Zeigler B.P., H. Praehofer and T.G. Kim. 2000. Theory
of modeling and simulation. integrating discrete event
and continuous complex dynamic systems. 2d ed. San
Diego, CA: Academic Press.

http://java.sun.com/j2se/1.4.2/docs/guide/misc/ threadPrimitiveDeprecation.html
http://java.sun.com/j2se/1.4.2/docs/guide/misc/ threadPrimitiveDeprecation.html

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1548
	02: 1549
	03: 1550
	04: 1551
	05: 1552
	06: 1553
	07: 1554
	08: 1555

