
Proceedings of the 2004 Winter Simulation Conference
R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

HDPS, AN XML/XSLT BASED HIERARCHAL MODELING SYSTEM

Richard Curry

London Business School
Regent’s Park

London NW1 4SA, United Kingdom

Kiriakos Vlahos

Athens Laboratory of Business Adminsitration
Athinas Ave. & 2A Areos Str.
166 71 Vouliagmeni, Greece
ABSTRACT

HDPS is a practical system for designing modeling
paradigms, creating hierarchal model definitions, and eval-
uating multi-paradigm models - particularly in business and
finance. HDPS relies on XML (W3C 2004) to create model
types, definitions, and instances. A type defines a modeling
paradigm; for example, one type might define discrete event
simulation while another may specify linear programming.
A definition describes a system such as a firm’s pricing
decision process. A model instance is the state and history
of a definition when operated upon by a type. Further,
each type relies on one or more implementations to pro-
vide its functionality. xHDPS, a .NET version of HPDS,
implements several modeling paradigms including simula-
tion (discrete event, continuous time, and Monte-Carlo),
optimization (linear and non-linear), knowledge-based ex-
pert systems, and general calculation (spreadsheet) models.
A multi-generation service adoption model demonstrates a
typical HDPS model structure with several interconnected
models utilizing different modeling paradigms.

1 INTRODUCTION

Practitioners commonly employ multi-methodology prob-
lem solving and analysis (Munro and Mingers 2002). In
many cases their work spans several paradigms, collections
of methods and tools developed and used by different com-
munities of researchers. These paradigms range from soft
to hard modeling techniques and their models are com-
bined using ad-hoc methods. Combining these models
poses a difficulty because models in different paradigms of-
ten involve incompatible conceptualization procedures and
require radically different structures and procedures. The
challenge in creating these models lies in connecting model
instances from dissimilar types and creating a unified mod-
eling representation. Multi-paradigm models have been
explored using many approaches. A common method em-
ploys multi-models(Ören 1991), and more recently this has
extended to include meta-theoretic approaches for modeling
the modeling process such as Traoré (2003). An example
of a simulation-based model is the CAESAR simulation of
complex adaptive supply chain networks by (Pathak, Dilts,
and Biswas 2003).

There have been many research projects focusing on
simulation and modeling for scientific and engineering sys-
tems, which have provided a good understanding of these
areas. However, business and finance simulations typically
face additional challenges due to of the lack of deep under-
standing about some of their aspects, such as the decision
process of individuals. In addition, business systems tend
to be loosely coupled and vary in structure as their sys-
tems evolve. The design and philosophy behind HDPS,
the Hierarchal Dynamic multi-Paradigm System, reflects its
primary purpose of modeling business and finance systems
composed of interacting sub-systems.

Often in these systems, each sub-system may be best
described using a modeling paradigm that is different from
the ones required by others. HDPS addresses these by
creating a flexible system for building hierarchal models
with interchangeable sub-models built on multiple modeling
paradigms. HDPS facilitates the model design process at
three levels. The first simplifies the implementation and
modification of modeling paradigms. The second creates a
standard method of defining a model, regardless of which
paradigm will be used to evaluate the model. The third
allows the evaluation of a hierarchy of model instances
within a unified modeling framework.

HDPS separates a model into four parts: implementa-
tion, type, definition, and instance. The implementation is
the system which evaluates or simulates a model. Typically,
the implementation is chosen due to the similarity and ap-
plicability of its paradigm to the system under evaluation. A
type describes a cookbook for solving a model instance us-
ing a particular paradigm. For example a type can describe
the transition rules for a queuing system. A definition is
a description of a physical or logical system that abstracts
objects in the system from their function. Finally, an in-
stance is the state of the model while an implementation
transforms its definition using the specified type.



Curry and Vlahos
In various types of modeling, these phases are combined
in different manners. For example, the implementation and
type are usually highly connected, particularly in method-
ologies based on software (i.e. a typical simulation package
such as Arena or Extend). Abstracting the definition from
the type is more common; for example, this has been done in
optimization using structured modeling, a formalization of
mathematical programming that takes the implementation
away from model specification (Geoffrion 1987a) (Geoffrion
1987b). In the simulation area many papers have explored
this subject including: Barros (1995),Barros, Zeigler, and
Fishwick (1998), and Zeigler, Praehofer, and Kim (2000).
Additionally, these techniques have been adopted for strate-
gic modeling and industry level simulation (Ninios, Vlahos,
and Bunn 1995).

While an HDPS model requires implementations that
are able to execute all of the paradigms present in the
multi-model hierarchy, each definition is not bound to any
particular implementation because each type is not bound
to a particular implementation. Likewise, it is possible
for multiple types to use the same implementation. This
is of particular benefit to those developing or extending
modeling paradigms because for the same type, several
implementations can be tested to determine which provides
more satisfying answers. In the same manner, a definition
may be used with more than one type. This is useful because
some sub-systems may have several alternative methods for
exploring their behavior and evaluating their performance.
This occurs quite often because some economic systems
have many theories for explaining and forecasting behavior
but no established “laws” for doing so. Using several types
on a definition allows the modeler to explore the behavior of
the system under various theories to determine the robustness
of the multi-model.

A typical HDPS model contains an evolving hierarchy
of sub-models and acts as a multi-model. These might
include an input / output model connected to a database,
an outer model representing the state of the system, a
model representing the transitions of the system, a model
for the endogenous decisions in the systems, and a model
representing the policy, the decision under the control of
the modeler.

The practice of separating the instance, definition, type,
and implementation in HDPS provides many benefits for
a modeler. It clarifies an instance as one particular run of
a model, which may be one of a number of identical or
nearly identical models drawn from a common definition.
The definition describes the system under study, separating
the objective “what is” from the subjective “what will be,”
which results from a transformation contained in a type. The
type specifies the paradigm used to generate model instances
and as such logically represents changes that occur in a
general class of models. An implementation is a program
that creates an instance from a definition using a compatible
type.

2 PARTS OF AN HDPS MODEL

An HDPS model has three parts: type, definition, and in-
stance. The type defines a modeling paradigm by specifying
the method of representation and transformations used upon
instances. The definition is a logical description of the sys-
tem being modeled. The instance is a running realization of
the model consisting of the current state of the model, a set
of inputs and outputs, and a list of the current transformation
and any further transformations scheduled to occur.

2.1 Type

Types are reusable and extensible meta-models describing
a modeling paradigm. In HDPS, types are composed of
three parts: transformations, schema, and invariants. Trans-
formations determine the actions (events) that a model of
a given paradigm undergoes. The schema determines the
structure of definitions as well as acting as a mechanism for
verifying their contents. The invariants are lists modeling
elements such as classes and objects that are present in all
instances of the type.

An event, which may be scheduled by the type, defi-
nition, or the implementation, triggers the evaluation of a
transformation. During a transformation, the implementa-
tion updates the instance according to rules specified in the
type. The transformation rules in a type are set out as a
functional program that acts on elements in an instance.

HDPS allows the extension of types through inheritance.
Inheritance allows one model type to take functionality for
a “parent” modeling type and extend it by adding or chang-
ing behavior. In HDPS, the inheritance mechanism allows
the creation of type hierarchies composed of model types.
The HDPS type hierarchy is rooted with HDPS type, which
provides the basic functionality for communicating with
the implementation and the multi-model instance hierar-
chy. Figure 1 shows an example type hierarchy for several
common model types.

2.2 Definition

A model definition is a collection of elements that describes
a portion of the system under consideration. Usually a def-
inition provides a parameterization of a system, including
the objects in the model and an interface that allows com-
munication with other models. When used in conjunction
with a compatible type, a definition creates an instance as
shown in section 2.3.

In addition to functionality provided by the type, a
definition can add functionality by creating or extending
events. In these events, a definition specifies a custom



Curry and Vlahos
Figure 1: An Example HDPS Type Hierarchy

HDPS

GENERIC

Optimization

Linear

Non-Linear

Expert Systems

Calculations

Simulation

Monte Carlo

Continuous Time

Discrete Event

sequence of actions in addition to those present in the
transformations defined by the type. Events do this by
exposing a programming environment that allows them to
interact directly with the implementation to expand the
functionality of the basic type.

A definition can specify new classes and objects in
addition to those provided by a type. As in object-oriented
programming, an object represents a real world entity and a
class defines its properties, methods, and events. Typically,
a type defines most classes in the invariant section; however,
HDPS allows extensible types, such as the GENERIC type,
where definitions can specify additional classes. With in
a class, properties are values associated with an object,
methods are actions undertaken in response to a direct
request, and events are actions taken in response to an
event transformation. Although classes specify a default
behavior for events, each object is able to override this
functionality by specifying custom events. Although HPDS
provides for a common standard for defining classes, object
handling is type specific subject to the provision that the
type follow the standard interfacing rules.

Building an HDPS multi-model has three steps: spec-
ifying a definition’s interface, creating child instances, and
linking instances. In HDPS, defining an interface requires
specifying input and output ports for instances using con-
nectors and arguments. Each connector exposes one in-
ternal object or property in an instance to other instances.
Connectors are used in conjunction with pipes, which a
definition uses to join connector either to their own or those
in child models (see section 2.3). In addition to connectors
and pipes, instances can pass input and output information
through arguments at the beginning of each evaluation (and
as such are not associated with events). While connectors
and pipes provide persistent communications between mod-
els, arguments provide specific information for each call of
the instance. For example, arguments could be used to pass
input parameters, such as a particular sequence of events
to call or implementation specific parameters, and output
status.
2.3 Instance

An instance is a realization of a definition that is being
transformed by a type. A single instance acts like a DEVS
atomic model while a hierarchy of instances form a cou-
pled model (Zeigler 1990). An instance has three primary
components: state, event queue, and interface. The state
describes the values for an instance at a particular instant;
in particular, it is a set of objects that are persistent between
transformations. The state can be conceptualized as a file
containing all objects along with the current transformation
index. During a typical transformation, the implementation
loads the old state, changes it according to the rules specified
in the type, and then saves the result as a new state.

The instance contains a list of pending events called
the event queue. The event queue provides a schedule of
transformations arranged by priority. While the queue pri-
ority is often considered to be time, it need not be as many
paradigms do not include the notion of time. A prime exam-
ple of this is optimization, which has many different steps
without a notion of time. Events relate to many different
types of simulation and modeling environments. Although
the event queue was modeled like one used in discrete event
simulation, it is also readily adaptable to other paradigms
where events can correspond to stages in model setup and
evaluation. For example, a mathematical program’s events
could preprocess the instance data, optimize the model, and
post-process the output, or a continuous time simulation’s
event could update the system of differential equations at
each �t . The operation of each instance occurs according
to a schedule as shown in Algorithm 2.3. Notice that the
current state is not loaded or saved by default in an event as
this is not considered a basic operation because the state will
not be updated during each event. [ht] Instance Evaluation
Load Input Arguments Select Next Event Evaluate Actions
Schedule Dependent Events Next Event is Empty or Event
Priority > Max Priority Save Output Arguments

The final part of the instance is the interface. The
interface controls child instances and the links between child
models. During instance evaluation, a transformation can
create, modify, evaluate, or drop a child instance. Linking
these instances requires specifying pipes. A pipe contains
all the associated properties, methods, and events for the
connectors attached to the pipe as well as an index that
indicates the last usage of the pipe. The connector on the
receiving instance is responsible for determining if or how
to use an object pushed on a pipe. By default a connector
can use the first, last, min, max, average, or product of
values on the pipe(s) for properties and can use the first
or last for events. The index of a pipe is a stamp that
defines when the object was pushed onto the pipe. The
index allows a instance that attempts to pull the value from
a pipe to check if it has a newer or older value than those
on the pipe. When the values are pulled from a pipe, the



Curry and Vlahos
model takes all of the values, unless the pipe is marked to
preserve the data, in which case only its parent instance
can free the data. A pipe can be connected to multiple
connectors on many instances, and these connections can
change during an instance’s transformations. Using these
mechanisms, HDPS supports dynamic structure modeling
through dynamic model instancing and pipe re-routing.

3 USING XML AND XSLT

An HDPS model uses XML (eXtensible Markup Language)
files to store all data, transformations, and meta-level in-
formation. Further, the standard tools that have grown
around XML form the basic structure for implementations
of HDPS. The use of XML and other markup languages is
not new in modeling, and in particular there many exam-
ples of the use of XML technologies for simulation, most
using it for model definition, data storage, and inter-model
communication such as Fishwick (2002), and Vangheluwe
and de Lara (2002). HDPS expands on these modeling
efforts by using the inherent extensibility of XML to create
a complete modeling environment that conforms to industry
standards. Two key technologies used by HDPS are XML
namespaces (W3C 1999a), which simplifies type inheri-
tance, and the extensibility of XSLT (eXtensible Stylesheet
Language Transformations) (W3C 1999b), which eases the
development of new implementations. While hand-crafting
XML is a tedious and difficult process, many tools exist for
generating generic XML and the prevalence of XML has
made it easy to extend these tools to create custom XML
generators for HDPS types. This section continues by ex-
plaining how HDPS uses XML to specify types, definitions,
and instances.

3.1 Types

A type defines a model paradigm. The type consists of a
XSD schema that defines the available structures, an XSLT
transformation that defines the operations that the model
can undertake, and an XML invariant list, a file containing
modeling elements for the initial instance and state that
are not included in the type. For simple types, only the
transformation file is necessary to evaluate a model. The
schema is only necessary for verifying the XML in the
definition and the invariant file is necessary only if the type
contains standard classes and objects that are not defined
in the transformation. XSLT directly supports much of the
type inheritance by allowing a type transformation to load
one or more existing HDPS type transformations using the
import XSLT element and by adding additional invariants
using the document function.

Event transformations use XSLT to connect the model
definition, instance, and implementation. The functionality
is implemented using XSLT functions or by functions in an
embedded script or custom transformation engine. XSLT
recommends adding namespaces for functions implemented
in custom engines or embedded scripts. Reflecting this, the
base HDPS type adds four new namespaces to implement
its functionality, see Table 1 for the namespaces and their
roles.

Table 1: Namespaces in HDPS Type

Namespace Role
HDPS Basic structures and actions
Model Model and interface manipulation
System Accesses the implementation
Stack Accesses the operations stack

In custom types, the functions in these namespaces
as well as functions in new namespaces define a modeling
paradigm. Transformations call these functions for elements
in the definition depending on the current event. Figure 2
provides part of the HDPS type’s transformation file.

Figure 2: Template for HDPS:MODEL element

01 <xsl:template match="HDPS:MODEL">
02 <xsl:choose>
03 <xsl:when test="hdps:IsEvent(’BUILD’)">
04 <xsl:apply-templates select="HDPS:INTERFACE"
-- mode="BUILD"/>
05 </xsl:when>
06 <xsl:otherwise/>
07 </xsl:choose>
08 <xsl:apply-templates select="child::*[1]"/>
09 <xsl:apply-templates mode="ACTION"
-- select="HDPS:EVENT[@NAME=hdps:CurrentEvent()]"/>
10 <xsl:apply-templates mode="TEST"
-- select="HDPS:EVENT" mode="TEST"/>
11 </xsl:template>

The transformation file shown in figure 2 handles the
main evaluation loop that occurs on each evaluation of
the model, except for startup of the first model in the
multi-model. On the “BUILD” event (which is automati-
cally scheduled on loading the model and tested for using
the “IsEvent” function found on the hdps namespace), the
interface is loaded, otherwise the model continues. To
load the interface, XSLT performs a transformation on the
HDPS:INTERFACE element that instructs the implementa-
tion to add the definition’s connectors and arguments to the
instance. Next, for every event, the first XML child object,
which contains the specific definition, is transformed on
line 07 according to its specific type. Then, the type will
evaluate the definition specific events by calling a trans-
formation on the specific event in the definition. Finally,
the HDPS:MODEL transformation test all events in the
definition to see if they should be added to the event queue.



Curry and Vlahos
3.2 Definitions

HDPS definitions use XML to specify the objects and struc-
tures in a model. Since a type’s schema specifies the markup
style for a definition, making a general description is diffi-
cult. However, each definition must conform to the HDPS
type for its basic structure and interface.

All definitions reside in a project element,
“HDPS:PROJECT”, that forms the root element for a multi-
model; however, not all definitions in a multi-models must
reside in the same project – they can be included from other
the project as well. Each definition in the model exists in
an “HDPS:MODEL” element which contains the informa-
tion about the preferred type and implementation. The first
child element of HDPS:MODEL contains the objects and
events for the specific type. Any further child elements
of HDPS:MODEL represent the interface, which typically
consists of a list of “HDPS:CONNECTOR” elements that
define the connectors for an instance.

Figure 3 provides an example definition for a model
of type GENERIC (a standard type that supports the core
functionality for the HDPS namespaces). The definition,
“Driver,” contains one object, one connector, and one event.
The object, “OBJ A,” is a state variable of class “INTEGER”
with a default value of 0. On the “BUILD” event, this model
instances a sub-model, “Child 1,” of type “Calculation” using
a specific transformation file and implementation. Then the
event links “OBJ A” to connector “A” and connects “A” to
“AA” on “Child 1” with “Pipe 1.” Then, the model Driver
schedules the “EVAL” event on “Child 1” and starts its
execution.

In order to interoperate with existing techniques, XML
based modeling languages, such as MathML (W3C 2003),
can be embedded in an HDPS model. Typically, these
would be integrated by having the respective type directly
support the paradigm or by having the type call an external
program that uses the embedded elements.

3.3 Instances

Three sets of XML elements define an HDPS instance:
the state, event queue, and interface. Conceptually, these
elements exist in an XML file appended to the definition
during type transformations; however, none of the elements
of the state need to be implemented as XML files as there
may be large performance gains if the instance is held in
some other format by the implementation. In the state, each
object stores its current attribute values in a collection of
XML elements. Each event on the event queue stores its
name, priority, and, optionally, an identification number.
The interface has the current list of child instances and pipe
linkages. Figure 4 provides an example state file.

In addition to the state of individual instances, the
multi-model contains XML elements representing the pipes
Figure 3: A Sample Definition

01 <HDPS:PROJECT>
02 <HDPS:MODEL NAME="Driver" TYPE="GENERIC"
-- TRANSFORM="GENERIC.XSLT">
03 <GENERIC:MODEL xmlns:GENERIC="urn:GENERIC">
04 <HDPS:EVENT NAME="BUILD">
05 <HDPS:ACTIONS>
06 <HDPS:LOAD_MODEL_DEF FILE="A.xml"
-- NAME="Child" TYPE="Calculation"
-- TRANSFORM="Calculation.XSLT"
-- IMPLEMENTATION="HDPSLib.dll"/>
07 <HDPS:INSTANCE INSTANCE="Child 1"
-- DEFINITION="Child"/>
08 <HDPS:LINK CONNECTOR="A" OBJECT="OBJ A"
-- ATTR="VALUE" DIRECTION="BOTH"/>
09 <HDPS:ADD_PIPE NAME="PIPE 1"
-- FROM_CONNECTOR="A"
-- TO_MODEL="Child 1" TO_CONNECTOR="AA"/>
10 <HDPS:EVALUATE NAME="Child 1" EVENT="EVAL"/>
11 </HDPS:ACTIONS>
12 </HDPS:EVENT>
13 <GENERIC:OBJECTS>
14 <GENERIC:OBJECT NAME="OBJ A" TYPE="INTEGER">
15 <GENERIC:ATTR NAME="VALUE" STATE="TRUE"/>
16 <GENERIC:DEFAULT ATTR="VALUE">
17 <HDPS:VAL IS="0"/>
18 </GENERIC:DEFAULT>
19 </GENERIC:OBJECT>
20 </GENERIC:OBJECTS>
21 </GENERIC:MODEL>
22 <HDPS:INTERFACE>
23 <HDPS:CONNECTOR NAME="A" TYPE="INTEGER"
-- MAX_CONNECTIONS="10" USE="LAST"/>
24 </HDPS:INTERFACE>
25 </HDPS:MODEL>
26 </HDPS:PROJECT>

that connect the hierarchy of instances. The implementation
of the HDPS type handles the location and format of these
files, which need not be implemented as XML files. How-
ever, when interfacing non-compatible implementations, the
standard format for both arguments and pipes consists of an
indexed list of objects and attribute values. For example,
figure 5 shows that an “INTEGER” typed pipe, “Pipe 1,”
has a property, “VALUE,” of 10 at index 1.

4 XHDPS, A .NET IMPLEMENTATION OF HDPS

xHDPS is an implementation of HDPS built upon the Mi-
crosoft .NET technologies ©(Microsoft 2004). In particular,
xHDPS implements its core libraries as a C++.NET assem-
bly and provides a generic interface for models written in
C#. xHDPS contains a working set of the core HDPS type
as well an implementation of several types representing
modeling paradigms such as continuous time simulation
(systems of differential equations), linear and non-linear
optimization, backward and forward chaining knowledge
based systems, and general calculations for spreadsheet
modeling techniques.

In addition to the purely modeling types shown in figure
1 and mentioned above, xHDPS contains types to support
user interfaces and databases. Of these types the HDPS



Curry and Vlahos
Figure 4: Initial State for the Sample Definition

01 <STATE:INSTANCE NAME="A" DEFINITION="DEF"
-- TYPE="GENERIC">
02 <STATE:CURRENT_INDEX IS="1">
03 <STATE:OBJECTS>
04 <STATE:OBJECT NAME="A" TYPE="INTEGER">
05 <STATE:INDEX>1</STATE:INDEX>
06 <STATE:ATTR NAME="VALUE">10</STATE:ATTR>
07 </STATE:OBJECT>
08 </STATE:OBJECTS>
09 <STATE:EVENT_QUEUE>
10 <STATE:EVENT NAME="BUILD" PRIORITY="-1" ID="1"/>
11 </STATE:EVENT_QUEUE>
12 <STATE:INTERFACE>
13 <STATE:PIPES>
14 <STATE:PIPE NAME="PIPE 1" LOCATION="PIPE 1"
-- FROM_CONNECTOR="A"
-- TO_INSTANCE="CHILD 1" TO_CONNECTOR="AA"/>
15 </STATE:PIPES>
16 <STATE:SUBMODELS>
17 <STATE:SUBMODEL NAME="CHILD 1"
-- DEFINITION="CHILD MODEL TYPE="Cacluation"
-- TRANSFORM="CalculationEngine.XSLT"
-- IMPLEMENTATION="HDPSLib.dll"
18 </STATE:INTEFACE>
19 </STATE:PROJECT>

Figure 5: A Pipe from the Sample Definition

01 <PIPE:PIPE NAME="PIPE 1" TYPE="INTEGER"
-- PRESERVE="YES" PARENT="DRIVER">
02 <PIPE:INDEX IS="1">
03 <PIPE:ATTR NAME="VALUE">10</PIPE:ATTR>
04 </PIPE:INDEX>
05 </PIPE:PIPE>

core library supports a database model, DATAIO, and a
simple user interface library, HDPS_UI. Beyond the core
library, xHDPS implements other types as .NET assemblies
that are loaded at run time. In this manner, xHDPS offers
co-simulation through the inclusion of different implemen-
tations in a multi-model.

Additionally, .NET allows for great flexibility in the
design of new model types and implementations. Model
types and implementations are contained in .NET assemblies
derived from a .NET class that implements the HDPS type.
To create these assemblies, .NET facilitates the extension of
the XSLT transformation engine by assigning the functions
of .NET classes to XSLT namespaces. Further, because the
.NET framework is language neutral, new implementations
can be added in any programming language supported by
.NET. Additionally, existing code may be wrapped with
custom classes derived from the base class, HDPSModel,
using C++.NET. In xHDPS, implementations of types are
added to the multi-model by loading their associated .NET
assemblies into the instances of the multi-model.

In xHDPS, an implementation can be tailored to a
definition and type to improve performance over a more
generic approach by overriding the functionality of the
parent type or implementation. For example, the traveling
salesperson problem (TSP) can be implemented as a generic
integer program or it could be solved using problem specific
heuristics that can provide a significant performance boost.

5 MULTI-GENERATION SERVICE ADOPTION
MODEL

This section presents a model of the adoption of a multi-
generation service that is provided by a profit-maximizing
monopolist. The monopolist initially sell a service, A, and
at some later date introduce a new service, B, that is at
least as good in every respect, except price, as A. At each
period, the monopolist will optimize its profits by selecting
prices for each service. Given this price, consumers decide
what if any product they should adopt. A hierarchal model
of this system contains six models: MGSAM, Consumer,
Adoption, Demand, Producer, Pricing, and Revenue. Figure
6 depicts this multi-model as a hierarchy or system entity
structure of the multi-model.

Figure 6: Instance Hierarchy for the Multi-Generation Ser-
vice Adoption Model

MGSAM

Consumers

Adoption

Demand

Producers

Pricing

Revenue

The top-level model, MGSAM, controls the input/output
and coordination of the consumer and producer sub-models.
The consumer model coordinates the operations of its two
sub-models, the adoption and demand model. The adoption
model determines the number of consumers using each
service with the differential equations 1 through 4 (Norton
and Bass 1987):

S1(t) = F1(t) · m1 t ≤ τ2 (1)

S2(t) = 0 t ≤ τ2 (2)

S1(t) = F1(t) · m1 · [1 − F2(t − τ2)] t > τ2 (3)

S2(t) = F2(t − τ2) · [m2 + F1(t) · m1] t > τ2 (4)

Given that Si(t) is the market share for generation i at
time t , mi is number of adopters of the ith generation. τ2 is
the time of the introduction of the second product. Pi is the
innovation coefficient and Qi is the imitation coefficient.
These can be unrolled into a series of differential equations
that can be simulated using a methodology similar to that
employed by system dynamics.



Curry and Vlahos
In a typical diffusion model, the fraction of customers
adopting the service at time t, Fi(t), is shown in equation 5.
In our multi-model, this value is replaced by a price-based
demand function contained in the demand model.

Fi(t) = 1 − e−(Qi+Pi)·t

1 + Qi

Pi
· e−(Qi+Pi)·t

(5)

The demand model determines the demand based on
a multi-stage demand equation (6), and the price that the
monopolist determines. This demand function replaces the
fractional demand shown in equation (5) (for more infor-
mation see (Curry and Vlahos 2003)).

di,t = Mi,t (Qi,t ) ·
(

1 − pi,t

�i,t (Pi,t )

)
(6)

The producer model complements the consumer model
by modeling the pricing strategy of the producer and the
revenue of the monopolist. In the pricing sub-model, a
monopolist optimizes its pricing strategy at each point in time
as shown in equation (7). While this is actually a somewhat
poor policy compared to a multi-period optimization, it
accurately represents many firms’ decisions.

max π =
n∑

t=1

[
(pi(t) = ci · (X(x, p, t))) · xi(x, p, t)

]
(7)

The revenue model determines the actual revenue of the
firm by integrating the price, pi the number of customers,
xi , for each technology as shown in (8).

Revenue =
∫ t

0

∑
i

xi · pi (8)

The output of the model is the adoption curve for both
generations and the total revenue of the monopolist. In
practice, this model could be used by varying the parameters
in the demand model to see the effect different demands
have on the adoption of each generation. In these scenarios,
a policy model could be added to test a set of regulatory
of industry policies in order to maximize the utility of the
system. Finally, the structure of the multi-model allows
it to be expanded to include factors such as investment,
capacity, competition, and government regulations as done
in Curry (2004).

6 CONCLUSION

The desirable and increasingly common practice of build-
ing models that combine many modeling methodologies has
been encumbered by the complexity of integrating models
from different paradigms, particularly because of differences
in their conceptualization and definition. HDPS was devel-
oped to simplify this process by adopting a standards-based
representation for modeling. The core idea of HDPS is
to decouple the modeling process into four design stages:
type, definition, instance, and implementation. An HDPS
type provides a common language for describing paradigms,
which simplifies development and extension of modeling
techniques. A system of definitions provides the ability to
create multi-models by plugging in component instances de-
veloped in many different paradigms. Further, HPDS allows
a modeler to experiment with definitions using different types
and implementations. HDPS handles the inherent complex-
ity of multi-paradigm modeling by adopting XML and other
industry-standard tools to create a paradigm-neutral repre-
sentation. In summary, modelers using HDPS can build
extensive multi-paradigm models without having to resort
to ad-hoc methods, which allows them to build increasingly
complex models of financial and business systems.

REFERENCES

Barros, F. J., B. P. Zeigler, and P. A. Fishwick. 1998. Mul-
timodels and dynamic structure models: an integration
of dsde/devs and oopm. In Proceedings of the 1998 Win-
ter Simulation Conference, ed. D. J. Medeiros, E. F.
Watson, J. S. Carson, and M. S. Manivannan, 413–
419. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers, Inc.

Barros, F. J. 1995. Dynamic structure discrete event system
specification: A new formalism for dynamic structure
modeling and simulation. In Proceedings of the 1995
Winter Simulation Conference, ed. C. Alexopoulos and
K. Kang. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers, Inc.

Curry, R. E., and K. Vlahos. 2003. The effect of regulatory
regimes and market structure on consumer adoption of
broadband. In Proceedings of the ITS Europe Confer-
ence. ITS Europe.

Curry, R. E. 2004, Forthcoming. Hierarchical multi-
paradigm modeling: A method for formalizing and
evaluating dynamic economic systems, with an appli-
cation to the adoption of consumer broadband. Ph. D.
thesis, University of London.

Fishwick, P. A. 2002. Using xml for simulation modeling.
In Proceedings of the 2002 Winter Simulation Con-
ference, ed. E. Yucesan, C.-H. Chen, J. Snowdon, and
J. Charnes, 616–622. Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers, Inc.

Geoffrion, A. M. 1987a, January-February. The for-
mal aspects of structured modeling. Operations Re-
search 37:30–51.

Geoffrion, A. M. 1987b, May. An introduction to structured
modeling. Management Science 33:547–588.



Curry and Vlahos
Microsoft 2004. Microsoft .net framework home. Avail-
able online via <http://msdn.microsoft.
com/netframework/>. [accessed March 21, 2004].

Munro, I., and J. Mingers. 2002. The use of multi-
methodology in practice – results of a survey of prac-
titioners. Journal of the Operational Research Soci-
ety 53:369–378.

Ninios, P., K. Vlahos, and D. W. Bunn. 1995. Oo/devs:
A platform for industry simulation and strategic mod-
elling. Decision Support Systems 15:229–245.

Norton, J. A., and F. M. Bass. 1987, September. A diffusion
theory model of adoption and substitution for successive
generations of high-technology products. Management
Science 33 (9): 1069–1086.

Ören, T. I. 1991. Dynamic templates and semantic rules for
simulation advisors and certifiers. In Knowledge Based
Simulation: Methodology and Application, ed. P. A.
Fishwick and R. B. Modjeski. New York: Springer
Verlag.

Pathak, S. D., D. M. Dilts, and G. Biswas. 2003. A multi-
paradigm simulator for simulating complex adaptive
supply chain networks. In Proceedings of the 2003
Winter Simulation Conference, ed. S. Chick, P. Sánchez,
D. Ferrin, and D. J. Morrice, 808–816. Piscataway, New
Jersey: Institute of Electrical and Electronics Engineers,
Inc.

Traoré, M. K. 2003. A meta-theoretic approach to modeling
and simulation. In Proceedings of the 2003 Winter Sim-
ulation Conference, ed. S. Chick, P. Sánchez, D. Ferrin,
and D. J. Morrice, 604–612. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc.

Vangheluwe, H., and J. de Lara. 2002. Meta-models are
models too. In Proceedings of the 2002 Winter Simula-
tion Conference, ed. E. Yucesan, C.-H. Chen, J. Snow-
don, and J. Charnes, 597–605. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc.

W3C 1999a, January. Namespaces in xml.Available online at
<http://www.w3.org/TR/REC-xml-names>.
[accessed March 21, 2004].

W3C 1999b, November. Xsl transformations (xslt).
Available online at <http://www.w3.org/TR/
1999/REC-xslt-19991116>. [accessed March
21, 2004].

W3C 2003, October. Mathematical markup language. Avail-
able online at <http://www.w3.org/TR/2003/
REC-MathML2-20031021/>. [accessed March 21
2004].

W3C 2004, February. Extensible markup language (xml) 1.0
(third edition). Available online at <http://www.
w3.org/TR/2004/REC-xml-20040204>. [ac-
cessed March 21, 2004].

Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of
modeling and simulation: Integrating discrete event and
continuous complex dynamic systems. 2nd ed. Orlando,
FL, USA: Academic Press.

Zeigler, B. P. 1990. Object oriented simulation with hier-
archical modular models. Academic Press.

AUTHOR BIOGRAPHIES

RICHARD E. CURRY is a Ph.D. candidate at the Lon-
don Business School. His research develops methodologies
suitable for modeling complex business and economic situa-
tions, particularly for policy analysis. The major application
area for his work has been telecommunications regulation.
His e-mail address is <rcurry@london.edu>.

KIRIAKOSVLAHOS is anAssociate Professor of Decision
Science at the Athens Laboratory of Business Administra-
tion (ALBA). His early research was relying on the use of
large-scale optimization models, but he is now investigating
the use of more flexible decision support frameworks that
allow the integration of ”hard” and ”soft” approaches. The
main application areas for his work have been the study of
competitive energy and telecommunications markets. He
has published articles in the European Journal of Operational
Research, the Journal of the Operational Research Society,
Decision Support Methods, Energy Economics, Technolog-
ical Forecasting and Social Change and Fiscal Studies. He
has edited a book on Decision Science and special academic
journal issues, and has organized two international confer-
ences. His e-mail address is <kvlahos@alba.edu.gr>


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 1502
	02: 1503
	03: 1504
	04: 1505
	05: 1506
	06: 1507
	07: 1508
	08: 1509


