
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

EXAMINING THE FEASIBILITY OF CONSTRUCTING SIMULATION
MODELS USING THE WEB-BASED ‘GRAB-AND-GLUE’ FRAMEWORK

Tillal Eldabi
Man Wai Lee
Ray J. Paul

Centre for Applied Simulation Modelling (CASM)

Department of Information Systems and Computing
Brunel University

Uxbridge
Middlesex UB8 3PH, U.K.

ABSTRACT

The Grab and Glue discrete event simulation (Grab-and-
Glue) framework has been proposed for several years. This
paper investigates the feasibility of this framework. A simu-
lation model of a single server queuing system is constructed
by following the Grab-and-Glue framework as a ubiquitous
example. Different scissions are grabbed from the Web or
programming textbooks, and glued together using JBuilder5.
The potential of Grab-and-Glue is discussed as well as the
current challenges of constructing Grab-and-Glue simulation
models. Some critiques and recommendations for the ongo-
ing research on constructing simulation models based on the
Grab-and-Glue framework have also been proposed.

1 INTRODUCTION

Constructing simulation models following traditional simu-
lation modelling frameworks take a long time and hence
high cost (Pidd 1998, Eldabi et al. 2003). However, prob-
lems occur rapidly in the real life, especially in the business
domain, therefore, the problem may become out of date by
the time the model is completed. In traditional simulation
modelling frameworks, data collection, model construction
and output analysis are leading to time consuming problem
(Eldabi et al. 2003). Although Paul (2002) proposed the
Grab-and-Glue discrete event simulation modelling frame-
work (Grab-and-Glue) to try to alleviate this particular prob-
lem, the feasibility of constructing simulation models by fol-
lowing this framework has not yet been established. It is not
yet known whether Grab-and-Glue could save time in devel-
oping a reliable model or not. This paper assesses whether it
is possible to construct a Grab-and-Glue simulation model or
not and the acceptability of its output.

A simulation model can be constructed by either using
programming source code or simulation packages. Current
simulation packages do not allow features that incorporate
external programs freely (Spitznagel and Garlan 2003),
which is the main principle of Grab-and-Glue. This re-
search will first concentrate on the use of a general purpose
language, Java, to assess the feasibilities of the Grab-and-
Glue framework. In this paper, a ubiquitous example sin-
gle-server queuing system, which is citied by Law and Kel-
ton (2000), has been adopted for investigation purposes.

A brief description of the Grab-and-Glue framework is
given in Section 2. Section 3 discusses the model
construction base on the Grab-and-Glue framework. In
Section 4, the single-server queuing system is described by
using a “barbershop” example. A description of the
assembly of the model following the Grab-and-Glue
framework is also presented in this section. Section 5 pre-
sents the findings of the study. Critiques and lessons
learned are presented in Section 6. Finally, Section 7 pre-
sents the conclusions and future works.

2 BACKGROUND OF THE STUDY

The intention of this article is to assess the feasibility of
constructing simulation models by following the Grab-and-
Glue framework suggested by Paul (2002). The concept of
this framework is based on grabbing different scissions
from the Web and gluing them together to form a model
(see Figure 1). “Scissions” are defined as “the act of cut-
ting or severing into divisions or fissions”. In computer
science, we intend to define this term as “a piece of some-
thing for model construction”. For example, it may be a
piece of source code in any programming languages, a
component, an object, a file, or a document etc. Although
the definition of a “scission” includes “component” and
“object”, we intend to adopt this term because either
“component” or “object” has its predefined meanings.
“Components” and “Objects” can be “Scissions”, but not
vice versa.

Eldabi, Lee, and Paul

Real-World Problem

Grab and Glue

Run

Satisfactory?

Life Moves On

Retry

Reject
No

Yes

Figure 1: Framework for Grab-and-Glue

After gluing the grabbed scissions, if the problem own-

ers feel the model is satisfactory, life moves on and the prob-
lem owners can continue their work; otherwise the undesired
scissions inside the model will be rejected, the grabbing
process will be repeated and the new scissions will be glued
to the relevant positions.

Grab-and-Glue depends on assembling the grabbed
scissions. This idea is new to simulation area but it is not
new to software engineering. Mackulak et al. (1998) stated
that reuse of existing generic models such as simulators or
software packages that contain pre-programmed models,
can reduce the model building time and increase the simu-
lation’s accuracy. Du and Wu (2001) assembled a model
to develop an evolutionary system development process by
assembling different components; Spitznagel and Garlan
(2003) proposed to assemble a system from independent
components and to use a wrapper for component commu-
nications; whilst Ravichandran and Rothenberger (2003)
proposed software reuse for increasing the software devel-
opment efficiency and the quality of the software system.

3 MODEL CONSTRUCTION

As mentioned in Section 2, the idea of the Grab-and-Glue
framework is to grab different scissions and to glue them
together. This section will describe the process of model
development. The next subsection will discuss a frame-
work for the single-server queuing model. After that the
scissions required to construct the simulation model, and
the search space for the scissions will be identified.

3.1 Framework for Single-Server Queuing Model

Figure 2 shows the framework of the single-server queuing
model. Arrival time will be recorded for each newly arriv-
ing entity. The arriving entity will then join the end of the
queue. The first entity in the queue will be removed and
served if the activity “process” is idle. Otherwise, it will
wait until the activity “process” is free. When the current
entity inside the “process” has been served, it will leave the
model, and the next entity in the queue will be served.
Entity Arrival Queue Process Entity Exit

Figure 2: Framework for Single-Server Queuing Model

3.2 Scissions for Grab-and-Glue

As shown in Figure 3, the basic scissions for constructing
the single-server queuing model are random number genera-
tor, simulation clock, queue, scission for calculating the dis-
crete value, and scissions for holding temporary data
(Huffman 2001). A random number generator is required
for number generation, which will be used as an input of the
simulation model (the arrival time and the departure time).
A simulation clock will be used to record and manage the
simulation time. A queue will be used to store the list of en-
tities waiting to be served, base on the first-in-first-out ap-
proach. A scission for producing the simulation output, and
a scission for holding temporary data, such as the state of an
action and the corresponding time are also required.

Any Queue?

Hold entity arrival
and time

Set simulation
clock to arrival time

Produce
Simulation Output

Exit

Entity join queue Move simulation
clock to next event

Record waiting
time

Yes

No

Scissions

Random Number
Generator for generating

arrival time

Generatre and Hold
departure and time

Figure 3: Scissions for Single-Server Queuing Model

3.3 Search Space

After deciding the required scissions, it is important to es-
tablish the search space (in the web) for those scissions
mentioned in Section 3.2. Several methods have been
adopted for searching the required scissions. The first ap-
proach to search is to use search engines Google (2004)
and Yahoo (2004) to find the required scissions. If the re-
sult of this round fails to provide suitable scissions, the

Eldabi, Lee, and Paul

search will be modified to include open source websites
such as http://www.planet-source-code.com
(Ippolito 2004). Initial searches suggest that it is difficult
to find all the required scissions to build the model, so sub-
sequently the search space is extended to include pro-
gramming textbooks.

4 EXAMPLE OF GRAB-AND-GLUE

This section provides a demonstration of Grab-and-Glue,
by using a single-server queuing system as a ubiquitous
example of simulation as used by Law and Kelton (2000).
The single-server queuing system is demonstrated through
a “barbershop” example. This example can be described as
follows: at the beginning, there will be one barber and no
customer in the barbershop. When a customer arrives, his
hair will be cut by the barber. When a second customer
arrives, his hair will be cut if the barber is free; otherwise
he will wait until the barber finishes serving the current
customer. In the meantime, if a third or more customers
arrive, they will join the waiting customer to form a queue.
Customers in the queue will be served, depending on
whether the barber is free or not and on their positions in
the queue. The queue follows the first-in-first-out ap-
proach. This process will be iterated until eleven custom-
ers have their hair cut by the barber in this example. For
destination purposes, this example will follow eleven cus-
tomers. Figure 4 shows the flowchart of the simulation
program which is written in Fortran and C by Law and
Kelton (2000); and Java by Huffman (2001). The source
code by Law and Kelton (2000) is written from scratch,
while the source code by Huffman (2001) is written by
converting it from Law and Kelton (2000).

The next subsection describes the implementation of
this model, following the framework in Figure 4. The
“Grab” process will be presented first, followed by the
“Glue” process.

4.1 The “Grab” Process

A summary of the scissions which were grabbed is shown
in Table 1.

Figure 4: Flowchart of Single-Server Queuing System Program (by Huffman 2001)

Eldabi, Lee, and Paul

Table 1: Summary of the Grabbed Scissions
Scissions Authors

Random Number
Generator Horstmann (2002)

Lemay and Cadenhead
(1999) Queue (First-in-First-out)

Horstmann (2002)
McNaughton (2001)

Raxix (2002) Simulation Clock
Huffman (2001)

Discrete Event Calculator Huffman (2001)
Scissions for holding data Huffman (2001)

• Random Number Generator. A “random number

generator” scission was required for constructing
simulation models. The number generator needed
to be a class file or a function which can generate
random numbers (non-integer) as an input to the
simulation model. In this experiment, searching for
a random number generator was started by using
search engines Google (2004) and Yahoo (2004) by
using keywords such as “random data generator”,
“random number generator”, and “pseudo number
generator”. Although a number of results were ob-
tained, they were not suitable to be put inside the
model for number generation. As a result, the
search space was modified to include programming
textbooks. Finally, a number generator class was
found in Big Java, which was authored by
Horstmann (2002). This java class file was written
for generating integers. However, what the model
required is a float number generator. Therefore, this
file was modified to satisfy the requirement.

• Queue. A “queue” scission was required to serve
the customers based on a first-in-first-out basis.
“Queue” and “first in first out” were used as key-
words in the search engine. Because the output of
the search was not acceptable, the search direction
was modified to search from the open-source
website and programming textbooks. Several java
class files were grabbed. The first one was writ-
ten by Jones (2003), which was obtained from
<http://www.planet-source-code.com>
(Ippolito 2004). The second one was written by
Lemay and Cadenhead (1999). The name of the
files (methods) were addelement(), insertelemen-
tat(), removeelement(), and linkedlistenumera-
tor.java (java class file). Another group of a
linked list for queue was found from Horstmann
(2002). This group consisted of two classes,
namely LinkedList.java and ListIterator.java.
LinkedList.java contained all the methods for
queuing, whilst ListIterator.java contained the in-
terface for LinkedList.java. Among all these
groups, the one from Horstmann (2002) was
adopted. However, LinkedList.java was modified
so that it could be glued during the modelling
process. The main reason was that this class file
only contained the addFirst method, without a
method for joining at the end of the queue.

• Simulation Clock. A “simulation clock” scission
was required for setting and recording the simula-
tion time. Huffman (2001) constructed a Timer
java class file to act as a simulation clock. Ac-
cording to his description, this scission could not
be accessed directly by any method outside the
Timer class so that it could not be changed unin-
tentionally. Other scissions were also grabbed for
simulation purposes. Keywords “clock”, “simula-
tion clock”, “timer”, and “simulation timer” were
used in the search engine and the open source
website. The first result was written by
McNaughton (2001). However, this was rejected
because it performed like a clock and its function
did not satisfy the simulation’s purpose. The sec-
ond one “a sample TCP”, which was constructed
by Raxix (2002), was found in <http://
www.planet-source-code.com> (Ippolito
2004). After investigating this file, it was con-
cluded that the grabbed scission was difficult to
glue into our program. As a result, both of them
were rejected. Another scission for timer was
grabbed from Huffman (2001). This scission was
finally selected because it had already been used
for simulation purpose, and it was discovered that
it was suitable to be adopted for our model.

• Output Generation. A scission for generating the
output result was required. “Discrete calculation”
was used as a keyword for searching through a
search engine. However, since it was not possible
to find either through the search engine or the
open source website, this scission was grabbed
from Huffman (2001).

• Scissions for Holding Temporary Data (Activity).
A scission for holding data (the state of an action
and the corresponding time) was also required.
For example, state could be the arrival, departure,
wait etc., whilst time was generated by the ran-
dom number generator. Based on this criterion, it
was discovered that the most suitable scission was
written by Huffman (2001) after searching differ-
ent sources. As a result, it was grabbed.

4.2 The “Glue” Process

The first trial of the “glue” process was conducted using
the scissions in Table 2 (see First Trial) and JBuilder5 – a
Java development environment (Borland® 2004). After
combining the basic scissions, the model generated a large
number of syntax and logical errors. One of the reasons is
that because some of the scissions were incompatible with
each other.

Eldabi, Lee, and Paul

Table 2: Summary of the Grab-and-Glue Process

Trials Scissions have
been grabbed Action taken

Random Number
Generator

(Horstmann,
2002)

Accept

Queue (Jones,
2003) Reject

Simulation clock
(McNaughton,

2001)
Reject

Discrete event
calculator (Huff-

man, 2001)
Accept

First Trial

Scission for hold-
ing state of action
and time (Huff-

man, 2002)

Accept

Queue (Lemay
and Cadenhead,

1999)
Reject

Second Trial
Simulation clock

(Raxix, 2002) Reject

Queue
(Horstmann,

2002)
Accept

Third Trial
Simulation clock
(Huffman, 2001) Accept

As described in Figure 1, if the problem owner is not

satisfied, irrelevant scissions will be rejected and the Grab-
and-Glue process will be retried. “Queue” from Jones
(2003), and “timer clock” from McNaughton (2001) were
rejected after the first trial. These two scissions were re-
jected because it was discovered that both of them were ir-
relevant to the required simulation model. According to
the Grab-and-Glue framework, the grabbing process will
be repeated after the rejection. A new scission for queuing
was grabbed from a java textbook by Lemay and Caden-
head (1999), whilst a new scission for the simulation clock
was grabbed from the open source website by Raxix
(2002). These two scissions were used to replace the
original one (see Second Trial in Table 2). However, after
spending some time to try to glue them together, it was
discovered that both of them were difficult to be glued to-
gether because of the large number of syntax errors. As a
result, these two scissions were rejected again.

The grabbing process was restarted after rejecting the
irrelevant scissions (see Third Trial in Table 2). A new
scission for the queue was grabbed from Horstmann
(2002), whilst a simulation clock was grabbed from Huff-
man (2001). After replacing the rejected scissions, some
syntax errors were found by the Java compiler. However,
this number is relatively small when compared with the
previous gluing trials. As a result, these two scissions were
used for the simulation model development.
5 FINDINGS FROM THE EXPERIMENT

This experiment was conducted by following the Grab-and-
Glue framework. This framework aims at constructing a fast
and a rough model by gluing different scissions together.
During the modelling process, a number of problems were
faced. Section 5.1 discusses the potential of Grab-and-Glue,
while Section 5.2 deals with the current challenges.

5.1 Potentials of Grab-and-Glue

According to Eldabi et al. (2003), the purpose of construct-
ing a simulation model based on the Grab-and-Glue
framework is to overcome the set of problems faced when
following the traditional simulation modelling framework,
namely that it is time consuming and thus costly.

In justifying the potential of Grab-and-Glue, the time
taken in data collection and in constructing the simulation
is of utmost importance. Simulation models can be con-
structed by using programming code or software package
(Pidd 1998, Eldabi et al. 2003). In our experiment, the
model was constructed using programming code. Al-
though time was spent in investigating the grabbed java
classes, it was relatively short compared with writing the
source code from scratch. Additional time was required
for output analysis. However, since the aim of construct-
ing simulation models by Grab-and-Glue is problem under-
standing, this is less important as a decision model. The
results of the model can be divided into the output of the
model and the structure of the model. For the output of the
model, it is difficult to analyse because it is difficult to en-
sure that the model is sufficiently accurate (Paul et al.
2003). However, if the model can be proved free from
logical errors, the usability of this model will be increased.

5.2 Current Challenges

Grab-and-Glue can speed up simulation development as
shown in section 5.1. However, it is not able to deal with
some other issues. Four problems occurred during the
modelling process in this experiment. The first problem
was the number of scissions can be grabbed from the Web.
During the experiment, most of the grabbed scissions from
the Web were not suitable for simulation purposes. For
example, “clock” on the web was designed for use on a
web page, and was not suitable for constructing a simula-
tion model. This discovery mirrors Fishwick’s view: “One
of the most critical problems in the field of computer simu-
lation today is the lack of published models and physical
objects within a medium – such as the World Wide Web –
allowing such distribution” (Page et al. 2000).

The second problem was the compatibility. Even
though all the grabbed scissions were written in Java, it
took a long time to glue them together because of the vari-
ety of returned values from different java classes and

Eldabi, Lee, and Paul

methods. For example, scission A had 2 outputs, but scis-
sion B had 1 input (see Figure 5). Similarly, the output of
scission A was a string value, whilst the input of scission B
was an integer value. Some modification is needed to glue
scission A and B together - which is time consuming.

Scission A Scission B

Wrapper
Figure 5: Gluing Scissions A and Scissions B
by Using Wrapper

The third problem was the number of syntax errors.

JBuilder5 has the ability to find all the syntax errors from
the model during compilation. However, it failed to solve
them automatically. It can take time to solve these errors
because some class files are linked to others. Solving one
error might require investigating source code from two or
more java class files.

The fourth problem was the identification of logical er-
rors. Although JBuilder5 is able to find out the syntax error
automatically, it cannot find the logical errors. As a result, it
is difficult to ensure that the execution of the model is free of
logical errors unless they are analysed manually.

6 CRITIQUES AND RECOMMENDATIONS

One criticism of the approach is the visualization. Al-
though the constructed model in this example has not been
visualized, it can be conducted if the required scissions for
visualization can be grabbed. Another criticism is the ac-
curacy of the model. It could be argued that the output of
the constructed model was not accurate enough because the
required data was generated by a random number genera-
tor. However, precise data is only required for classical
simulation models, not for Grab-and-Glue. According to
Paul and Taylor (2002), the purpose of constructing a
simulation model is either to help the decision maker to
make better decisions, or to help the problem owners to get
a better understanding of their problem. Grab-and-Glue is
designed for the second purpose by providing a platform
for a different way of thinking. It enables the user to have
a better tool for thinking of the model without collecting
the precise data. Grab-and-Glue can be used as a “fit for
purpose” simulation modelling method, not the way to
construct an elegant calculating machine. As a result, the
interest of the numerical output becomes insignificant.

In order to alleviate the first problem, it is recom-
mended to improve searching techniques, to explore other
sources of scissions, such as discussion groups in the Web,
or other programming textbooks. For the compatibility
problem, it is recommended that the scissions should be re-
viewed before gluing them together. Looking back to Figure
5, a wrapper is adopted in scission B to convert the number
of input variables of that scission to be two, which can then
glue with scission A tightly. Spitznagel and Garlan (2003)
suggest that a wrapper can be adopted to wrap scission A or
scission B, so that they can be the same type for communica-
tion. Another way would be to construct a communication
media to link scission A and scission B together (see Figure
6). The purpose of using a communication media is to allow
data to pass through different scissions instead of tightly glu-
ing them together. The idea of using a communication me-
dium is brought from Hicks et al. (1999). Hicks et al. (1999)
mentioned that references may be passed as arguments to
remote method invocations or returned as values if there is a
way to transmit and to resolve remote and local references.
Figure 6 shows a proposed method for data or numerical
value passing through different scissions when scissions are
not tightly glued together.

Scission A Scission BCommunication
Media

Figure 6: Using Communication Media for Data Flow
between Different Scissions

After gluing the scissions, if the number of syntax error

is small, it can be solved by experienced programmers.
However, if the number of syntax error is large, it is better to
reject the scissions and re-apply the Grab-and-Glue process.

7 CONCLUSIONS AND FUTURE WORKS

This experiment shown that it is feasible to construct simu-
lation models following the Grab-and-Glue framework. A
barbershop was used as an example of a single-server
queuing model. A simulation model was constructed by
gluing different scissions together inside a project in
JBuilder5, which were grabbed from different sources. Af-
ter gluing them together, if the output of the model was not
satisfactory, irrelevant scissions were rejected and other
scissions were grabbed and glued into the model. After a
number of trials of the process of Grab-and-Glue, a simula-
tion clock, a discrete event calculator, and scissions for
holding the state of action and time were grabbed from the
World Wide Web; a random number generator and a queue
were grabbed from a programming textbook.

Some problems were faced during model construction,
namely the limited number of suitable scissions on the Web,
the compatibility problem, and the number of syntax and
logical errors. In order to alleviate the first problem, the
search space for searching suitable scissions could be ex-
panded to include other sources. Compatibility problems
could be reduced by pre-investigating the collected scissions
before gluing them together, or using a communication me-

Eldabi, Lee, and Paul

dia for linking different scissions. Scissions should be re-
jected if the number of syntax or logical errors is large.

The output result from the constructed model will be
analyzed as part of ongoing research. Apart from that, the
pub model, which can be found in Paul and Balmer (1998)
will be used as another complex example of constructing a
simulation model by Grab-and-Glue. Because the single-
server queuing model was constructed by following the
event-based executive, the process-based executive will be
used in the next model so that the suitable way for construct-
ing models by Grab-and-Glue can be identified. If the re-
quired scissions for creating the model failed to be found in
the same programming language, Java, scissions which were
written in other languages will also be grabbed.

REFERENCES

Borland®. 2004. Borland Software Corporation. Avail-
able online via <http://www.borland.com>.
(accessed March 30, 2004).

Du, T. C., and J. L. Wu. 2001. Using Object-Oriented
Paradigm to Develop an Evolutional Vehicle Routing
System. Computers in Industry 44: 229-249.

Eldabi T., M. W. Lee, and R. J. Paul. 2003. A Framework
for Business Process Simulation: The Grab and Glue
Framework. In Proceedings 15th European Simulation
Symposium: Simulation in Industry, ed. A. Verbraeck,
and V. Hlupic, 291-296. Delft: Society for Computer
Simulation International.

Google. 2004. Google. <http://www.google. com>
(accessed December 24, 2003).

Hicks, M., S. Jagannathan, R. Kelsey, J. T. Moore, and C.
Ungureanu. 1999. Transparent Communication for
Distributed Objects in Java. In Proceedings of the ACM
1999 Conference on Java Grande, ed. G. Fox, K.
Schauser, and M. Snir, 160-170. San Francisco. Cali-
fornia: Association for Computer Machinery, New York.

Horstmann, C. 2002. Big Java. New York: John Wiley
and Sons.

Huffman B. J. 2001. An Object-Oriented Version of
SIMLIB (a Simple Simulation Package). Informs
Transactions on Education, 2(1). Available online via
<http://ite.pubs.informs.org/Vol2No1/
Huffman/Huffman.php> (accessed May 29, 2003).

Ippolito, I. 2004. Planet Source Code ™. Exhedra Solution,
Inc. Available online via <http://www.
planet-source-code.com> (accessed March 29,
2004).

Jones, F. 2003. Queue. Ed. Ippolito, I. 1997. Exhedra
Solution. Inc. Available online via <http://www.
planet-source-code.com/vb/scripts/
ShowCode.asp?txtCodeId=3666&lngWId=2>
(accessed December 24, 2003).

Law, A. M. and W. D. Kelton. 2000. Simulation Model-
ling and Analysis. 3rd ed. Singapore: McGraw-Hill In-
ternational Series.
Lemay, L., and R. Cadenhead. 1999. Sams Teach Yourself
Java 2 Platform in 21 Days: Professional Reference
Edition. 1st ed. India: Techmedia

Mackulak, G. T., F. P. Lawrence; and T. Colvin. 1998.
“Effective Simulation Model Reuse: A Case Study for
AMHS Modelling.” In Proceedings of the 1998
 Winter Simulation Conference, ed. D. J. Medeiros; E.
F. Watson; J. S. Carson; and M. S. Manivannan,
978-984. Washington: Association for Computing
Machinery, New York. Available online via
<http://www.informscs.org/wsc98papers/
132.PDF> (accessed January 26, 2003).

McNaughton, M. 2001. A Clock... No big deal, but for a
clock, it's cool. Ed. I. Ippolito, 1997. Exhedra Solution.
Inc. Available online via <http:// www.planet-
sourcecode.com/vb/scripts/ShowCode.
asp?txtCodeId=2083&lngWId=2>(accessed De-
cember 24, 2003).

Page E. H., A. Buss, P. A. Fishwick, K. J. Healy, R. E.
Nance, and R. J. Paul. 2000. Web-Based Simulation:
Revolution or Evolution? ACM Transactions on Mod-
elling and Computer Simulation, 10(1), 3-17

Paul, R. J. 2002. The Internet: An End to Classical Decision
Modelling? In Internet Management Issues: A Global
Perspective, ed. J. D. Haynes, 209-219. Hershey: Idea
Group Publishing and Information Science Publishing.

Paul, R. J., and D. Balmer. 1998. Simulation Modelling.
2nd ed. Uxbridge: Brunel University.

Paul R. J., T. Eldabi, and J. Kuljis. 2003. Simulation Educa-
tion Is No Substitute for Intelligent Thinking. In Pro-
ceedings of the 2003 Winter Simulation Conference, ed.
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice,
1989-1993. New Orleans. LA: Association for Com-
puter Machinery, New York. Available online via
<http://www.informscs.org/wsc03papers/
257.pdf> (accessed January 20, 2004).

Paul, R. J. and S. J. E. Taylor. 2002. What Use is Model
Reuse: Is There a Crook at the End of the Rainbow?
In Proceedings of the 2002 Winter Simulation Con-
ference, ed. E. Yücesan; C. H. Chen; J. L. Snowdon;
and J. M. Charnes, 648-652. San Diego, CA: Asso-
ciation for Computing Machinery, New York.
Available online via <http://www.informs-
cs.org/wsc02papers/083.pdf> (accessed
January 26, 2003).

Pidd, M. 1998. Computer Simulation in Management Sci-
ence. 4th ed. Chichester: John Wiley & Sons.

Ravichandran, T., and M. A. Rothenberger. 2003. Soft-
ware Reuse Strategies and Component Markets.
Communications of the ACM, 46(8), 109-114.

Raxix 2002. A Sample TCP. Ed. I. Ippolito 1997. Exhedra
Solution. Inc. Available online via <http://www.
planet-source-code.com/vb/scripts/
ShowCode.asp?txtCodeId=
2630&lngWId=2> (accessed December 24, 2003).

Eldabi, Lee, and Paul

Spitznagel B., and D. Garlan. 2003. A Compositional

Formalization of Connector Wrappers. In Proceed-
ings of the 25th International Conference on Software
Engineering, ed. L. Clarke, 374-384. Portland. Ore-
gon: Institute of Electrical and Electronics Engineers
Computer Society, Washington D. C.

Yahoo 2004. Yahoo! <http://www.yahoo.com>
(accessed December 24, 2003).

AUTHOR BIOGRAPHIES

TILLAL ELDABI is a lecturer at the Department of In-
formation Systems and Computing at Brunel University,
UK. He received a B.Sc. in Econometrics and Social Sta-
tistics from the University of Khartoum. He received his
M.Sc. in Simulation Modelling and his Ph.D. from Brunel
University. His research is in aspects of healthcare man-
agement and the intervention of simulation and his main
research also concentrates on the economy of healthcare
delivery. He is looking to exploit the means of simula-
tion on the wider information systems management area
to assist in problem understanding. Dr. Eldabi’s email
and web addresses are <tillal.eldabi@brunel.
ac.uk> and <www.brunel.ac.uk/~cssrtte>,
respectively.

MAN WAI LEE is a Ph.D. student in the Centre for Ap-
plied Simulation Modelling and the VIVID Research Cen-
tre at the Department of Information Systems and Comput-
ing, Brunel University, U.K. He is now under the
supervision of Professor Ray J. Paul and Dr. Tillal Eldabi.
He received a B.Eng. in Department of Mechanical Engi-
neering in The University of Hong Kong and a M.Sc. (with
distinction) in Building Services Engineering from Brunel
University. His main research concentrates on fast simula-
tion process, the new Grab-and-Glue modelling technique.
His email address is <manwai.lee@brunel.ac.uk>.

RAY J. PAUL is a Professor of Simulation Modelling, Di-
rector of the Centre for Applied Simulation Modelling,
creator of the Centre for Living Information Systems
Thinking, all at Brunel University, UK. He received a
B.Sc. in Mathematics, and an M.Sc. and a Ph.D. in Opera-
tional Research from Hull University. He has published
widely, in books, journals and conference papers, many in
the area of simulation modelling and software develop-
ment. He has acted as a consultant for a variety of United
Kingdom government departments, software companies, and
commercial companies in the tobacco and oil industries.
He is the editor of the Springer-Verlag Practitioner book
series. His research interests are in methods of automating
the process of modelling, and the general applicability
of such methods and their extensions to the wider arena of
information systems. He is currently working on wider as-
pects of simulation, in particular in Web-Based Simulation
and the new Grab-and-Glue modelling technique. His email
and web addresses are <ray.paul@brunel.ac.uk>
and <www.brunel.ac.uk/~csstrjp>. Professor Paul
has Parkinsonism, but insists on working part-time because
he enjoys it.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1494
	02: 1495
	03: 1496
	04: 1497
	05: 1498
	06: 1499
	07: 1500
	08: 1501

