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ABSTRACT  

The Virtual Test Bed (VTB) is a prototype of a virtual en-
gineering environment to study operations of current and 
future space vehicles, spaceports, and ranges. The High-
Level Architecture (HLA) as defined by the Department of 
Defense (DoD), is the main environment. The VTB/HLA 
implementation described here represents different systems 
that interact in the simulation of a Space Shuttle liftoff. 
This example implementation displays the collaboration of 
a simplified version of the Space Shuttle Simulation Model 
and a simulation of the Launch Scrub Evaluation Model. 
Spaceports and ranges are complex systems. This VTB 
framework is a collaborative computing environment that 
integrates in a seamless fashion simulation models that rep-
resent the different stages in the lifecycle of a complex sys-
tem.  A complex system is a non-linear system of systems 
whose interactions bring together interesting emergent 
properties that are very difficult to visualize and/or study 
by using the traditional approach of decomposition.  

1 BACKGROUND  

The VTB has been designed as an architecture to facilitate 
the integrated execution of different simulation programs 
with other supporting non-simulation software. The archi-
tecture must deal with issues related to the coordination of 
different hardware platforms and components and different 
software components. In addition, the architecture must 
synchronize the timing of the different simulations and co-
ordinate ownership of objects and message exchanges 
among several simulations that may be running in parallel, 
each one addressing different mission components.  

The VTB project is an evolution of NASA’s Intelli-
gent Launch and Range Operations (ILRO) Program at 
Ames Research Center (ARC) implemented in 2000 to per-
form initial studies of a test bed with a demonstration 
(Bardina 2000; Intelligent Systems Project 2000). The ob-
jective of the VTB Project is to provide a collaborative 
computing environment that supports simulation creation, 
execution, and reuse, and supports the integration of mul-
tidisciplinary simulation models representing elements of 
launch, range, and spaceport operations.  The VTB will 
provide many benefits, such as enabling risk management 
evaluations of legacy and new vehicle frameworks, provid-
ing a technology pipeline for evaluating and implementing 
new solutions to existing problems, and enabling better 
knowledge management.  

This paper discusses the integration of simulations of 
spaceport and range operations.  This integration will make 
possible the functional and logical visualization of these two 
important systems, and will allow engineers to more thor-
oughly investigate and display simulations of the operational 
processes required during the lifecycle of a space vehicle.  

2 THE VTB/HLA FRAMEWORK  

The integration of simulation models is inherently com-
plex, and that complexity expresses itself and must be dealt 
with in different ways.  Simulation modeling software is 
the means for addressing the complexity of the engineering 
systems being modeled, but the software itself represents a 
substantial incarnation of complexity. This complexity is 
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due not only to the technical sophistication necessary to cre-
ate software simulation applications, but also to suboptimal 
software design decisions and limitations imposed due to 
commercial concerns.   

To address the problem of describing this inherently 
complexity integrated simulation system, the VTB/HLA 
framework will be described in parts.  First, a brief descrip-
tion of the HLA will be presented.   Next, a description of 
the VTB and how it can be integrated with the HLA will be 
presented.  This will be followed by an extended example 
of how the integrated test bed can be used. 

2.1 The High-Level Architecture (HLA )  

The Department of Defense’s intention in creating the 
HLA was to have a system where existing computer simu-
lations could be combined to address new, more complex, 
problems of interest.  

HLA is formally defined by three components: 1) 
HLA rules, 2) an interface specification whose software 
implementation is called the Run-time Infrastructure (RTI), 
and 3) a data specification tool called the object model 
template (OMT).  HLA rules are a set often basic princi-
ples that define the responsibilities, relationship and the 
ways to exchange information among federates and the 
RTI.   In the HLA, simulations are called “federates” and a 
 group of federates operating together in a distributed simu-
lation is called a federation.  The RTI is the only executable 
software component of the HLA, and its interface provides 
services that allow federates to exchange information and 
coordinate federation execution.  The functionality provided 
by the RTI includes services to manage federation creation 
and operation; information exchange responsibilities within 
the federation; object creation, identification, ownership, and 
deletion; and time synchronization and coordination. Feder-
ates exchange information with other federates by invoking 
the services of the RTI, and receive information from the 
RTI through asynchronous callbacks.  The OMT defines the 
structure of information that can be shared by federates in a 
federation. The key data elements defined by the OMT are 
objects and interactions.  Objects are persistent data entities 
that are created, modified, and deleted by federates during a 
federation execution.  Interactions are non-persistent data 
entities that function like messages sent from a federate to 
one or more other federates.  A key function of the OMT is 
to promote information sharing and simulation reuse (Kuhl 
et al. 1998). 

The VTB is implemented on top of these components.  
In addition, it has to support and incorporate the capability 
to integrate applications that support other distributed 
computing approaches, such as the Object Management 
Group’s (OMG) Common Object Request Broker Archi-
tecture (CORBA), the World Wide Web Consortium’s 
(W3C) Simple Object Access Protocol (SOAP), and Mi-
crosoft’s Distributed Common Object Model (DCOM). 

2.2 The Virtual Test Bed (VTB)  

At its heart the VTB is a cooperative computing environ-
ment (Figure 1). The VTB provides an environment to in-
tegrate simulation models developed for specific elements 
of space operations into an interactive simulatornetwork 
that supports a single view of operations. For instance, 
NASA KSC has existing models that have been developed 
over time by different sources. These existing models (“leg-
acy” models) have been developed from different points of 
Figure 1: The Virtual Test Bed Environment 
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view and for different aspects of the operation cycle. They 
represent different levels of resolution, and have selected 
different representation methods for internal entities, activi-
ties, and interactions (VTB Team 2003).  

2.3 The VTB/HLA Integration  

Figure 2 depicts a conceptualization of the implementation 
and functionality of the VTB using the HLA. The VTB fol-
lows standards set by the DOD and the Institute of Electri-
cal and Electronic Engineers (IEEE) for the integration of 
models. The High Level Architecture (HLA) is one of 
those standards. The VTB will follow HLA as the principal 
framework to integrate all the different types of models 
that need to be a part of the VTB. For example, a spaceport 
can be represented using different types of models using 
different information spaceport size and operation. The 
simulation system will be a subsystem that will evolve 
over time to meet this important requirement.  

The VTB employs object models and object-oriented 
methods to exercise a hierarchical description of entities, ac-
tivities, and interactions represented in the integrated models.  

3 A VTB/HLA INTEGRATION EXAMPLE  

Many factors contribute to a launch vehicle launching on 
time. The launch vehicle, spacecraft, and supporting range 
must all be ready to go at the desired launch time in order 
for the launch to occur. Each of these elements has sup-
porting systems consisting of hundreds of subsystems and 
millions of individual components. Thousands of opportu-
nities exist for technical system failure or human error.  
 

Some factors that can impact launch decisions, such as in-
clement weather and launch area intrusions, are out of the 
control of the launch officials.   The different elements af-
fecting launch decisions are addressed through two simula-
tion models that were built independently.  

The first model simulates Space Shuttle flow from 
processing at the Orbiter Processing Facility (OPF), through 
transport to the launch pad, liftoff, mission, landing at KSC, 
and refurbishing at OPF to get ready for a new launch. This 
is a simplified version of the conceptual flow diagram de-
scribed by the Space Shuttle Processing Model (Cates, 
Steele, Mollaghasemi, and Rabadi 2002). A single shuttle is 
used to route between the different facilities and launch op-
erations at KSC. All processing times come from real world 
data as included in the Space Shuttle Processing Model.  

In the Space Shuttle Processing Model, when the or-
biter reaches the launch pad and is ready for launch, the 
simulation generates a random variable to determine the 
time that will elapse until the launch occurs.  This time fol-
lows a theoretical distribution that closely matches events as 
historically observed. Those events account for historically 
observed instances of delays or scrubs that affected the 
launch process. A delay means the launch is postponed for a 
short time but still occurs on the expected date. A scrub 
means the launch is postponed for at least one day.  

To illustrate the VTB capabilities and the procedure 
needed to combine existing computer simulations, the ran-
domly generated delay (or scrub) in the Space Shuttle 
Processing Model was deleted, and processing requiring 
Shuttles to wait on the launch pad until an external authori-
zation for launch is received was added. 
Figure 2: Implementation of the VTB using the HLA 
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To generate launch authorization commands, a second 
model independently simulates the range, the launch pad, 
and other spaceport facilities. This model focuses on 
events occurring in the range and in the processing facili-
ties that can cause launch delays or launch scrubs due to 
mechanical or electrical failure.   

Although both models discussed here were built using 
Arena™, either one of them (or both) could have been built 
using other software such as ProModel™, Anylogic™, or 
any other commercial simulation software that supports an 
interface to the RTI. 

3.1 The (Modified) Space Shuttle  
Simulation Model  

The (modified) Space Shuttle Simulation Model (“Launch-
Pad federate”) is a mini model of space shuttle operations 
created in Arena™. Here a single shuttle is used to move 
between the different facilities and launch operations at 
KSC. The Shuttle starts processing at the OPF (Orbiter 
Processing Facility).  All processing times come from real 
world data. After OPF processing, the shuttle is routed to 
the PAD where it completes PAD processing and sends a 
signal to MissionControl federate (the Launch Delay and 
Scrub model) that it is ready to launch. At this point, 
LaunchPad federate waits for a GO/NOGO signal from 
MissionControl federate. This signal passing takes place 
through the RTI.  

Figure 3 shows the Shuttle waiting in the launch pad 
for authorization for liftoff. The dialog box in Figure 3 is 
displayed at the moment when the authorization signal is 
received.  
 

 
Figure 3: The (modified) Space Shuttle Simulation 
Model 

 
As soon as LaunchPad federate gets the signal from 

MissionControl federate to launch, it will route the shuttle 
to orbit, where it will finish the orbiting process. At the end 
of the orbiting process, the model checks for the end-of-
mission day and lands the shuttle at KSC. After the shuttle 
lands at KSC, the shuttle’s flight number is checked. If the 
flight number is 8, the shuttle is sent to Palmdale for main-
tenance. Otherwise it continues the cycle from the OPF. If 
it is sent to Palmdale, it finishes Palmdale processing and 
returns back to the OPF. 

3.2 The Launch Delay and Scrub Model  

The Launch Delay and Scrub Model (“MissionControl fed-
erate”) implements the scrub and delay logic using the his-
torical scrub and delay probabilities for a shuttle launch. As 
soon as MissionControl federate gets the signal from 
LaunchPad federate, MissionControl federate generates a 
dummy entity to run the launch counter starting from 3 days. 
This entity enables the repeated evaluation of conditions that 
would call for a scrub for all times during the countdown 
phase. If there is a scrub, this entity is sent to the start of the 
sequence; i.e., it will restart the countdown counter.   

If there is no scrub, the model checks for delays.  The 
time and duration for a delay is generated randomly. If the 
entity encounters a delay, the launch is postponed for the 
duration of the delay. If the entity does not encounter any 
scrubs or delays, it runs the counter for 3 complete days, 
and at the last moment it sends the signal for launch 
through the RTI to LaunchPad federate. After passing the 
signal, the entity goes to the start of the sequence and waits 
for the signal for the next launch. This model also main-
tains information about the number of scrubs and the cur-
rent delay time for the launch. 

Figure 4 displays the Launch Delay and Scrub Model 
as it evaluates the weather and technical status of the range 
and launch facilities prior to authorizing the Shuttle for 
liftoff. The dialog box in Figure 4 shows the moment when 
the request for authorization message is received.  
 

 
Figure 4: The Launch Delay and Scrub Model 

3.2.1 The Logic and Data behind the Launch  
Delay and Scrub Model   

Historical information exists for the average number of 
system failures per month.  A system failure is defined as a 
system or component failure that would result in a launch 
scrub.  Launches can continue with many non-operational 
individual components or subsystems as long as a backup 
exists or the subsystem is not mission critical, safety criti-
cal, or has been designated as mandatory for this mission.  



Sepúlveda, Rabelo, Park, Riddick, and Peaden    

 

Many factors (see Table 1) affect the ability of launch 
vehicle to successfully launch on time (Lebo and Woltman, 
2002).  The launch vehicle, spacecraft, and supporting 
range must all be ready to go, simultaneously, in order for 
the launch to occur.  Each of these elements has supporting 
systems consisting of hundreds of subsystems and millions 
of individual components. Thousands of opportunities exist 
for technical system failure or human error.   
 

Table1: Factors Affecting Delays and Scrubs 
System  Subsystem  Failure Rate  
Launch 
Vehicle  

Airborne Systems  1 failure per month  

 Ground Systems  3 failures per month  
Spacecraft  Airborne Systems  0.5 failures per month  
 Ground Systems  2 failures per month  
Range  Telemetry Systems  1 failure per month  
 Tracking Systems 2 failures per month  
 Command Systems  1 failure per month  
Other  
factors  

Weather  Lookup table – varies 
by month  

 Launch Area clear  Lookup table – varies 
by month  

 
Using the historical data, it was determined that for the 

launch vehicle, there was a 10.5% chance of the launch ve-
hicle element causing a scrub.  For the spacecraft, there 
was a 6.8% chance of causing a launch scrub.   Other fac-
tors such as inclement weather (see Figure 5) and launch 
area intrusions (for example, a pleasure boat or an unau-
thorized aircraft entering a restricted area, see Figure 6) are 
out of the control of the launch officials.   
 

 
Figure 5: Bad Weather Occurrence 

 
All of the hardware systems had a constant failure rate, 

except for two items, weather and launch area clearance 
that varied significantly with the time of year.  In these 
cases, lookup tables were created to model the average 
“bad occurrence” per month for each month of the year.  

  
 
Figure 6: Launch Area Intrusions 

 
A simplified model (see Figure 7) depicting the differ-

ent contributions to delays and scrubs and their relationships 
was built using a System Dynamics approach. 
 

 
Figure 7: Contributions to Delays and Scrubs 

 
The combined contribution of weather and range intru-

sions to range scrubs is depicted in Figure 8. The probability 
of a range scrub varied by month since the weather and 
launch area surveillance components also varied.  It varied 
from 10% to 30% depending on the month, with the spring 
and summer months showing a higher chance for a scrub.  

The overall launch scrub probability is shown in Figure 
9 and varies between 16% and 32%, depending on the 
month.  This data is useful for financial and schedule plan-
ning for launch vehicles.  

3.3 VTB/HLA Integration Details  

Figure 10 summarizes the integration that occurs between 
the modified Space Shuttle Simulation Model (LaunchPad 
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federate) and the Launch Delay and Scrub Model  
 (MissionControl federate). This integration and all mes-
sages exchanged occur over the RTI.  
 

 
Figure 8: Combined Contribution of Weather and 
Range Intrusions to Range Scrubs 

 

 
Figure 9: Overall Probability of a Delay of Scrub 

 
As illustrated in Figure 10, when one of the models 

requests it, the RTI creates a federation and lets the model 
join it. Later, when the second model joins the federation, 
the RTI synchronizes their clocks. It should be noted that 
in most stand-alone simulation models, the simulation usu-
ally starts at time zero and advances in whatever time units 
the model is designed to use. When integrated using the 
RTI, the models are synchronized so that their correspond-
ing clocks advanced at the appropriate time for the com-
bined distributed simulation.   In this example, the models 
can be seen to synchronize around a specific calendar date 
and then progress in parallel while keeping their joint be-
havior synchronized. After both simulations run their re-
spective courses, the models resign from the federation 
and, when the last one does so, the RTI removes the fed-
eration and closes down.  

3.3.1 The DMS Adapter  

The integration of the VTB with the HLA is accomplished 
using the National Institute for Standards and Technol-   

 

 
Figure 10: The DMS Adapter 

 
ogy’s (NIST) Distributed Manufacturing Simulation 
(DMS) Adapter.  Figure 11 shows how the integration is 
done. The DMS Adapter is a component of an HLA-based 
infrastructure for distributed simulation of manufacturing 
facilities. The adapter was developed by NIST as part of 
the MISSION project, an international, collaborative pro-
ject, part of the international Intelligent Manufacturing 
Systems (IMS) Program (see <www.ims.org>).   

The DMS Adapter’s infrastructure was designed to 
support the integration of different manufacturing simula-
tions with each other and with other manufacturing soft-
ware applications.  Applications that might be integrated 
using the DMS adapter include: new or existing simulation 
created with existing, non-HLA-compliant simulation de-
velopment tools; existing enterprise software applications 
dealing with non-simulation situations (production plan-
ning, human resources, inventory control, supply chain in-
formation, finance and accounting, instruments data collec-
tion, etc); or general non-simulation and non-
manufacturing oriented legacy software applications.    

One of the goals of the DMS Adapter is to minimize 
the changes needed for simulations to participate in an in-
tegrated manufacturing simulation run. The DMS Adapter 
encapsulates the functionality of the HLA and exposes an 
integration architecture that provides similar functionality, 
but in a manner that is easier to use in a manufacturing en-
vironment.  It provides mechanisms to coordinates the time 
between legacy simulations, facilitates message exchange, 
and provides facilities for object creation, update, storage, 
deletion, and transfer of ownership.  

The DMS Adapter facilitates the adoption of distrib-
uted simulation in manufacturing environments by provid-
ing an interface that reduces the complexity of integrating 
simulations using HLA to a level that is practical for manu-
facturing simulations.   It provides a simplified time man-
agement interface, automatic storage for local object in-
stances, and simplified object and interaction filtering.  It 
also eliminates the need to develop custom federate ambas-
sador implementations for existing non-HLA simulations.    
If incorporated into each federate, the DMS Adapter works 
with the RTI to manage the exchange of object and interac-
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tion information between federates.   A conceptual view of 
the structure of a simulation integrated with the DMS 
adapter to is shown in Figure 11. 

3.3.2 The Use of Extensible Markup Language (XML) 
and the Unified Modeling Language (UML) 

The data model to be used by the Adapter for the integra-
tion of the VTB simulations must incorporate a vocabulary 
that captures all the features that are shared between all 
NASA Shuttle processes. The vocabulary must be common 
so that terminological differences between processes are 
reconciled and each feature is represented only once.    
Once a common vocabulary is constructed, each process 
analysis will only have to define a single interface instead 
of customized interfaces for each additional analysis.  
XML schemas are used to define XML messages that will 
be exchanged between the different simulations in the VTB 
using the DMS Adapter.   

To be able to define the XML messages to be ex-
changed the following approach was taken: 
 

1. The messages for simulations that are a part of or 
potentially a part of the VTB are represented as 
Unified Modeling Language (UML) classes.  
UML class diagrams can then be used to analyze 
the potential for integrating new simulations in to 
the VTB, and to facilitate the development of new 
XML schemas that define new messages that can 
be supported by the simulations that are a cur-
rently a part of the VTB. 

2. UML sequence diagrams can be used to design 
the protocols necessary to synchronize the current 
VTB simulations with other simulations that 
could potentially be a part of the VTB. 

 

3.3.3 Future Work  

The main objective of the VTB team effort is to develop a 
new and unique collaborative computing environment 
where simulation models can be hosted and integrated in a 
seamless fashion. This collaborative computing environ-
ment will be used to build a "Virtual" Spaceport. The Vir-
tual Range is a prototype virtual engineering environment 
to study the safety criteria of current and next generation 
space vehicles during launch and range operations. The fo-
cus of our future work will be to integrate and develop the 
Virtual Test Bed with the Virtual Range. The emphasis is 
on the integration of the VTB operations and the Virtual 
Range models.  

The modular architecture of the VTB enables the 
analysis of new vehicle types (e.g., the Crew Exploration 
Vehicle (CEV)) and the study of other launch sites.  It is 
anticipated that the current environment will be extended 
to support the integration of other discrete-event simula-
tions of KSC operations, and to make greater use of the 
High Level Architecture.  These developments will be re-
ported on in future papers. 
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